核酸提取的一些常规方法

合集下载

核酸提取的原理及方法

核酸提取的原理及方法

核酸提取的常见方法及原理核酸提取作为分子实验中最基础的实验之一,几乎是所有实验的基本,无论后续的克隆、PCR、qPCR、建库测序等等都需要核酸才能顺利进行。

今天我们就来简单了解核酸提取的基本原理和方法。

1、什么是核酸核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一,分为脱氧核糖核酸(DNA)和核糖核酸(RNA),其中RNA又可以根据功能的不同分为核糖体RNA(r RNA),信使RNA(m RNA)和转移RNA(t RNA)。

核酸广泛存在于所有动植物细胞、微生物内、生物体内的核酸常与蛋白质结合形成核蛋白。

不同的核酸,其化学组成、核苷酸排列顺序等不同。

DNA主要集中在细胞核内,线粒体和叶绿体中,而RNA主要分布在细胞质当中。

2、核酸提取类型1、总RNA提取总RNA中,75-85%为rRNA(主要是28S-26S/23S和18S/16S rRNA),其余的由分子量大小和核苷酸序列各不相同的mRNA和小分子RNA如tRNA、5S rRNA、5.8S rRNA、miRNA、siRNA、小核RNA(small nuclear RNA,snRNA)及核仁小分子RNA(small nuceolar RNA,snoRNA)等组成。

2、miRNA提取MicroRNAs (miRNAs)是小型的、高度保守的RNA分子,如小干扰RNAs (siRNAs),通过与他们的碱基配对调节其同源mRNA的分子表达,以预防通过各种机制的表达。

他们已成为进行发育、细胞增殖、分化和细胞周期的重点监管机构。

3、基因组DNA提取进行基因结构和功能研究以及基因诊断,通常要求得到的片段长度不小于100~200kb。

在DNA提取过程中应尽量避免使DNA断裂和降解的各种因素,以保证DNA的完整性,为后续的实验打下基础。

4、质粒抽提质粒抽提方法即去除RNA,将质粒与细菌基因组DNA分开,去除蛋白质及其它杂质,以得到相对纯净的质粒。

核酸提取经典方法

核酸提取经典方法

核酸提取经典方法
核酸提取是分离和纯化生物样本中的核酸分子的过程。

经典的核酸提取方法通常包括以下步骤:
1. 细胞破碎和裂解:将细胞或组织样本破碎和溶解,以释放核酸。

常用的方法包括机械破碎、化学裂解和酶裂解等。

2. 蛋白质去除:将裂解后的样品进行蛋白酶处理,以去除蛋白质等杂质。

可使用蛋白酶K处理、苯酚/氯仿法或硅胶膜法等。

3. 酒精沉淀:通过加入适量的醇类,如乙醇或异丙醇,使核酸沉淀下来。

通常会加入盐类,如氯化钠或乙酸钠,以调节溶液的离子浓度。

4. 洗涤:将核酸沉淀物进行洗涤,以去除沉淀物中的杂质。

常用的洗涤方法包括乙醇洗涤法、酚/氯仿洗涤法或硅胶膜洗涤法。

5. 溶解:将洗涤后的核酸沉淀溶解于适当的缓冲液中,以得到高纯度的核酸。

常用的溶解缓冲液包括Tris-HCl缓冲液或无酶水。

上述方法是常见的经典核酸提取方法,但随着科学技术的发展,现代的核酸提取方法也在不断改进和更新,以提高提取效率和纯度。

如今,还有各种基于磁珠、
膜片、筛膜、电泳和自动化设备等的高通量、高效、自动化的核酸提取方法被广泛应用于科学研究和临床诊断。

核酸提取纯化方法

核酸提取纯化方法

核酸提取纯化方法引言核酸提取是分子生物学研究中的一个重要步骤,它主要包括纯化 DNA 和 RNA 两种核酸的过程。

在研究领域,纯化高质量的核酸样品对于准确分析和解读生物信息至关重要。

本文将介绍几种常用的核酸提取纯化方法,包括酚-氯仿法、离心柱法和磁珠法,并对每种方法的优缺点进行评述。

1. 酚-氯仿法酚-氯仿法是一种传统的核酸提取纯化方法,它基于核酸在酚和氯仿两相体系中具有不同溶解度的原理。

具体步骤如下:1.收集待提取的样品,如细菌培养物或组织样品。

2.加入等体积的酚-氯仿溶液,同时加入破碎剂(如玻璃珠或硅胶),彻底混合。

3.离心样品,使得酚相和氯仿相分离。

4.分离上层透明的水相,其中富含 DNA 或 RNA。

5.加入冷异丙醇或乙醇,沉淀核酸。

6.通过离心将沉淀的核酸分离。

7.用缓冲液溶解核酸沉淀,获得纯化后的 DNA 或RNA 样品。

酚-氯仿法提取的核酸样品质量较高,适用于小规模样品的提取。

然而,由于该方法对操作者的技巧要求较高,并且在操作过程中可能存在酚和氯仿对人体的损害风险,所以目前已逐渐被离心柱法和磁珠法取而代之。

2. 离心柱法离心柱法是一种基于硅胶膜和纤维素膜的核酸提取纯化方法,凭借其简单、快速和高效的特点已经成为目前最常用的核酸提取方法之一。

具体步骤如下:1.添加细胞裂解缓冲液到待提取样品中,通过细胞裂解将核酸释放到溶液中。

2.准备离心柱,将离心柱放入收集管中。

3.将样品溶液加到离心柱中,使其通过硅胶膜或纤维素膜。

4.通过洗涤液洗去杂质。

5.加入低盐缓冲液或水,洗脱核酸。

6.将洗脱的核酸收集到新的收集管中。

离心柱法的优点在于简单、快速且对样品的处理量较大,能够同时提取多个样品。

然而,该方法对于某些特殊样品(如富含多酚化合物或多糖的样品)可能会产生一定的干扰。

3. 磁珠法磁珠法是一种新兴的核酸提取纯化方法,它利用了磁珠的磁性和高亲和性,能够快速、高效地提取纯化核酸。

具体步骤如下:1.准备磁珠混悬液,并加入样品。

植物和动物的核酸dna和rna提取方法

植物和动物的核酸dna和rna提取方法

提取植物和动物的核酸DNA和RNA是生物学研究中的重要步骤,它们可以帮助科学家们更深入地了解生物的遗传信息和基因表达。

本文将介绍植物和动物核酸DNA和RNA的提取方法,让读者对这一过程有一个清晰的认识。

一、植物核酸DNA提取方法1. 细胞破碎:需要将植物组织破碎,以释放细胞内的DNA。

这可以通过磨粉或切碎的方法来实现。

2. 细胞裂解:接下来,使用裂解缓冲液来裂解细胞膜和细胞壁,释放DNA分子。

裂解缓冲液的配方可以根据不同植物的特性进行调整。

3. 蛋白质沉淀:通过向裂解液中加入溴化苯酚等物质,可以沉淀掉大部分蛋白质,使得DNA分子得以分离。

4. 乙醇沉淀:将裂解液中的DNA用乙醇沉淀,这样可以将DNA分子从溶液中提取出来。

5. 溶解和纯化:将沉淀的DNA分子溶解在适当的缓冲液中,并进行进一步的纯化和浓缩处理,得到纯净的DNA溶液。

二、植物核酸RNA提取方法1. 细胞破碎:与DNA提取类似,首先需要将植物组织破碎,以释放细胞内的RNA。

2. 细胞裂解:使用特制的裂解缓冲液来裂解细胞膜和细胞壁,释放RNA分子。

不同植物组织的RNA特性可能有所不同,需要根据具体情况进行优化。

3. 蛋白酶处理:加入蛋白酶来降解蛋白质,使RNA得以更好地纯化。

4. 酚-氯仿提取:利用酚-氯仿混合液可以有效地将RNA从裂解液中提取出来,与DNA提取类似。

5. 洗涤和纯化:对得到的RNA进行洗涤和纯化处理,得到纯净的RNA溶液。

三、动物核酸DNA提取方法1. 组织裂解:将动物组织进行细胞破碎,释放细胞内的DNA。

2. 细胞裂解:使用特制的裂解缓冲液来裂解细胞膜,释放DNA分子。

对于硬质组织,可能需要较强的裂解条件。

3. 蛋白酶处理:加入蛋白酶来降解蛋白质,使DNA得以更好地纯化。

4. 酚-氯仿提取:利用酚-氯仿混合液可以有效地将DNA从裂解液中提取出来,与植物DNA提取类似。

5. 溶解和纯化:对得到的DNA进行溶解和纯化处理,得到纯净的DNA溶液。

核酸提取经典方法

核酸提取经典方法

核酸提取经典方法核酸提取是分子生物学实验中的一项重要步骤,用于从生物样本中提取DNA或RNA。

以下是一些经典的核酸提取方法:1. 酚-氯仿法:这是最常用的核酸提取方法之一。

它通过酚的溶解和蛋白质的沉淀来分离DNA或RNA。

该方法适用于从细菌、真菌、植物和动物等不同来源的样本中提取核酸。

2. 硅胶柱法:这是一种基于硅胶柱的核酸提取方法。

样本先经过细胞裂解,然后通过硅胶柱进行吸附和洗脱,最终得到纯净的DNA 或RNA。

硅胶柱法具有高效、快速和高纯度的特点。

3. 盐析法:盐析法利用核酸和盐的相互作用来分离DNA或RNA。

通过调节盐浓度,可以使核酸从溶液中沉淀下来。

该方法适用于大规模提取核酸的情况,例如从细菌培养物中提取大量的DNA。

4. 磁珠法:磁珠法是一种基于磁性珠子的核酸提取方法。

样本中的核酸先与磁珠结合,然后通过磁力将磁珠和核酸一起分离出来。

该方法具有高效、快速和易自动化的特点,适用于高通量的核酸提取。

5. 高盐法:高盐法利用高盐浓度来沉淀DNA或RNA。

通过加入高盐缓冲液,可以使核酸结合起来形成沉淀物。

该方法适用于从血液等样本中提取核酸。

6. 隔离法:隔离法是一种通过细胞壁溶解和蛋白质去除来提取核酸的方法。

该方法适用于从真菌和植物等样本中提取核酸。

7. 酚氯仿异硫氰酸胍法:该方法是酚-氯仿法的改进版,通过加入异硫氰酸胍来进一步去除蛋白质。

该方法适用于从细胞培养物或组织样本中提取核酸。

8. 碱裂解法:碱裂解法利用高碱性溶液来裂解细胞,并中和后沉淀核酸。

该方法适用于从血液、组织或细菌培养物中提取核酸。

9. 酶裂解法:酶裂解法利用酶来降解蛋白质和核酸之间的连接,从而分离核酸。

该方法适用于从酶可溶化的样本中提取核酸。

10. 玻璃纤维柱法:玻璃纤维柱法利用玻璃纤维柱进行核酸吸附和洗脱。

样本先经过细胞裂解,然后通过玻璃纤维柱进行纯化。

该方法适用于从血液或组织样本中提取核酸。

以上是一些常用的核酸提取方法,每种方法都有其适用的样本类型和优缺点。

核酸提取纯化方法

核酸提取纯化方法

核酸提取纯化方法核酸提取是分子生物学实验中的重要步骤,它是从细胞或组织中提取核酸并纯化的过程。

核酸提取的质量和纯度直接影响着后续实验的结果,因此选择合适的提取方法非常重要。

本文将介绍几种常用的核酸提取纯化方法,希望能够为相关实验提供参考。

1. 酚氯仿法。

酚氯仿法是一种经典的核酸提取方法,它适用于从细胞或组织中提取总RNA或DNA。

该方法利用酚酚与细胞裂解液中的蛋白质结合,形成两相体系,从而实现核酸的分离。

酚氯仿法简单、快速,但需要注意操作时要避免接触到有毒的酚和氯仿。

2. 硅胶柱法。

硅胶柱法是一种常用的核酸纯化方法,它适用于从酶切产物或PCR产物中提取DNA。

该方法利用硅胶柱的亲和性吸附作用,将核酸与其他杂质分离。

硅胶柱法操作简单、产出纯度高,但需要注意避免硅胶柱干燥和避免使用含乙醚的洗涤缓冲液。

3. 磁珠法。

磁珠法是一种新型的核酸提取纯化方法,它利用表面修饰的磁珠与核酸间的亲和性吸附作用,实现核酸的快速提取和纯化。

磁珠法操作简便、高效,适用于高通量实验和自动化操作,但需要注意避免磁珠的受污染和避免磁场干扰。

4. 膜柱法。

膜柱法是一种基于离心膜柱的核酸提取方法,它适用于从血液或体液中提取DNA或RNA。

该方法利用膜柱的孔径选择性和亲和性吸附作用,将核酸与其他杂质分离。

膜柱法操作简便、适用于样品处理量大的情况,但需要注意避免膜柱的受污染和避免离心条件不当。

5. 酶切法。

酶切法是一种特异性的核酸提取方法,它适用于从混合物中提取特定序列的DNA。

该方法利用限制性内切酶对DNA的特异性切割,将目标DNA从其他DNA分离。

酶切法操作简单、适用范围广泛,但需要注意选择合适的酶切位点和酶切条件。

总结。

核酸提取纯化是分子生物学实验中的关键步骤,选择合适的提取方法可以提高核酸的质量和纯度。

不同的实验目的和样品类型需要选择不同的提取方法,科学合理地选择和操作提取方法可以为后续实验提供可靠的核酸样品。

希望本文介绍的核酸提取纯化方法能够为相关实验提供参考,提高实验的成功率和准确性。

核酸提取方法

核酸提取方法

核酸提取方法核酸提取是分子生物学实验中的重要步骤,它是从生物样本中提取出核酸(DNA或RNA)的过程。

核酸提取的质量和纯度对后续实验结果具有重要影响,因此选择合适的核酸提取方法至关重要。

本文将介绍几种常用的核酸提取方法,帮助您选择适合您实验需求的方法。

1.酚氯仿提取法。

酚氯仿提取法是最常用的核酸提取方法之一。

它适用于从细胞或组织样本中提取核酸。

该方法的原理是利用酚和氯仿的不同密度,将细胞或组织中的蛋白质和脂质沉淀到有机相中,从而分离出核酸。

酚氯仿提取法简单、快速,适用于大批量样本的提取。

2.硅胶柱法。

硅胶柱法是一种基于硅胶膜的离心柱层析技术,适用于从血液、组织、细胞培养物等样本中提取核酸。

该方法通过硅胶膜的亲和作用,使DNA或RNA能够在柱子中特异性地吸附,然后经过洗脱步骤将核酸从硅胶柱中纯化出来。

硅胶柱法提取的核酸纯度高,适用于需要高纯度核酸的实验。

3.磁珠法。

磁珠法是利用磁珠与核酸的亲和作用,将核酸特异性地吸附到磁珠表面,然后利用外加磁场将磁珠与其他杂质分离。

该方法操作简便,无需离心步骤,适用于高通量核酸提取。

磁珠法提取的核酸质量好,适用于高灵敏度的实验。

4.酶解法。

酶解法是利用蛋白酶和蛋白酶K等酶类将蛋白质降解,从而释放出核酸。

该方法操作简单,适用于从血液、组织等样本中提取核酸。

酶解法提取的核酸适用于一些特殊实验,如PCR、RT-PCR等。

5.离心法。

离心法是利用超速离心将细胞或组织破碎,然后通过差速离心将核酸从其他细胞成分中分离出来。

该方法操作简单,适用于从大量样本中提取核酸。

离心法提取的核酸适用于一些基础实验。

总结。

选择合适的核酸提取方法需要根据实验样本的来源、实验需求以及实验室条件等因素综合考虑。

在实际操作中,可以根据不同实验目的选择不同的核酸提取方法,以确保提取的核酸质量和纯度满足实验要求。

希望本文介绍的核酸提取方法能够为您的实验工作提供帮助。

核酸提取及扩增技术简介(含等温扩增技术)-综述

核酸提取及扩增技术简介(含等温扩增技术)-综述

核酸提取及扩增技术原理简介1核酸理化性质RNA和核苷酸的纯品都呈白色粉末或结晶,DNA则为白色类似石棉样的纤维状物。

除肌苷酸、鸟苷酸具有鲜味外,核酸和核苷酸都呈酸味。

DNA、RNA和核苷酸都是极性化合物,一般都溶于水,不溶于乙醇、氯仿等有机溶剂,它们的钠盐比游离酸易溶于水,RNA钠盐在水中溶解度可达40g/L。

DNA可达10g/L,呈黏性胶体溶液,在酸性溶液中,DNA、RNA易水解,在中性或弱碱性溶液中较稳定。

2细胞破碎大多数核酸分离与纯化的方法一般都包括了细胞裂解、核酸与其他生物大分子物质分离、核酸纯化等几个主要步骤。

每一步骤又可由多种不同的方法单独或联合实现。

根据原理不同,细胞破碎主要包含机械破碎法,化学试剂法,酶溶解法。

1)机械方法:包括低渗裂解、超声裂解、微波裂解、冻融裂解和颗粒破碎等物理裂解方法。

这些方法用机械力使细胞破碎,但机械力也可引起核酸链的断裂,因而不适用于高分子量长链核酸的分离。

有报道超声裂解法提取的核酸片段长度从< 500bp~>20kb之间,而颗粒匀浆法提取的核酸一般<10kb。

2)化学试剂法:经一定的pH 环境和变性条件下,细胞破裂,蛋白质变性沉淀,核酸被释放到水相。

上述变性条件可通过加热、加入表面活性剂(SDS、Triton X-100、Tween 20、NP-40、CTAB、sar-cosyl、Chelex-100等)或强离子剂(异硫氰酸胍、盐酸胍、肌酸胍)而获得。

而pH环境则由加入的强碱(NaOH)或缓冲液(TE、STE 等)提供。

在一定的pH环境下,表面活性剂或强离子剂可使细胞裂解、蛋白质和多糖沉淀,缓冲液中的一些金属离子螯合剂(EDTA 等)螯合对核酸酶活性所必须的金属离子Mg2+ 、Ca2+ ,从而抑制核酸酶的活性,保护核酸不被降解。

3)酶解法:主要是通过加入溶菌酶或蛋白酶(蛋白酶K、植物蛋白酶或链酶蛋白酶)以使细胞破裂,核酸释放。

蛋白酶还能降解与核酸结合的蛋白质,促进核酸的分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 乙醇沉淀乙醇沉淀乙醇沉淀乙醇沉淀DNA原理是什么原理是什么原理是什么原理是什么????乙醇能够消除核酸的水化层,使带负电荷的磷酸基团暴露出来。

Na+之类的平衡离子能够与这些带电基团结合,在沉淀形成部位降低多核苷酸链之间的排斥作用。

因此只有在阳离子的量足以中和暴露的磷酸残基的电荷时才会发生乙醇沉淀。

最常用的阳离子:1)醋酸铵:贮存液10.0mol/L 终浓度 2.0~2.5mol/L 常用于减少多余的杂质(如DNTP及多糖)与核酸的共沉淀。

例如在2mol/L醋酸铵存在的情况下连续两次DNA沉淀可从DNA制品中除去>99%的dNTP。

在通过琼脂糖酶消化琼脂糖之后沉淀核酸时,使用醋酸铵也是最佳选择,这种阳离子可以减少寡糖消化产物共沉淀的可能性。

然而若用沉淀的核酸进行磷酸化时,就不要用醋酸铵沉淀核酸,因为铵离子能够抑制T4噬菌体多核苷酸激酶。

2)氯化锂:贮存液8.0mol/L 终浓度0.8mol/L 常用于需高浓度乙醇进行的沉淀(如沉淀RNA)。

LiCl在乙醇溶液中的溶解度很高而且不随核酸共沉淀。

小分子RNA(如tRNA及5S RNA)在高离子强度下(没有乙醇时)是可溶的,而大分子RNA则不溶。

可以利用这个差异在高浓度LiCl(0.8mol/L)中纯化大分子RNA。

3)氯化钠:贮存液 5.0mol/L 终浓度0.2 mol/L (0.2 mol/L)用于DNA样品中存在SDS时。

这种去污剂在70%乙醇中仍为可溶。

4)醋酸钠:贮存液 3.0mol/L(ph5.2)终浓度0.3 mol/L (0.3mol/L,ph5.2)在DNA和RNA的常规沉淀中最为常用。

2. 乙醇沉淀乙醇沉淀乙醇沉淀乙醇沉淀DNA和异丙醇沉淀和异丙醇沉淀和异丙醇沉淀和异丙醇沉淀DNA的区别是什么的区别是什么的区别是什么的区别是什么????
异丙醇和酒精都是有机溶剂,一般来讲,提取质粒的时候一开始都要用异丙醇沉淀,因为异丙醇沉淀的效果要好一些,如二楼所讲,但最后大多用酒精沉淀,因为酒精容易挥发,对下游的实验影响小。

异丙醇比较疏水,能很更好地沉淀核酸,用乙醇的目的是去盐,它比异丙醇更亲水,所以能去掉一些盐离子。

有时还用70%的乙醇洗样品也是为了增加盐的溶解度。

在沉淀核酸时可用乙醇与异丙醇,乙醇的极性要强于异丙醇,所以一般用2倍体积乙醇沉淀,但在多糖、蛋白含量高时,用异丙醇沉淀可部分克服这种污染,尤其用异丙醇在室温下沉淀对摆脱多糖、杂蛋白污染更为有效。

异丙醇沉淀核酸时,高浓度盐存在将使大量多糖存在在溶液中,从而可达到去多糖的作用。

但高浓度的盐存在会影响核酸的进一步操作,因此必须用乙醇多次洗涤脱盐。

异丙醇沉淀核酸:优点:为所需容积小且速度快,适用于浓度低,而体积大DNA样品的沉淀。

0.54~1.0倍体积的异丙醇可选择性沉淀DNA和大分子rRNA和mRNA;但对5sRNA、tRNA和多糖产物不产生沉淀,一般不需要在低温条件下长时间放置。

缺点:易使盐类(如NaCl、蔗糖)与DNA共沉淀;在DNA沉淀中异丙醇难以挥发除去,所以常规需要用70%的乙醇漂洗DNA沉淀数次。

乙醇沉淀核酸:沉淀DNA乙醇是首选的有机溶剂,对盐类沉淀少,DNA沉淀中所含的衡量乙醇易蒸发去处,不影响以后的实验。

在适当的盐浓度下,2倍样品容积的95%乙醇可有效沉淀DNA,对于RNA则需要将乙醇量增加至2.5倍. 缺点是总体积较大。

需在-20度放置很长时间,30分钟-1小时。

同样需要70%乙醇洗涤
“蛋白质的变性”是指蛋白质分子中的次级键被破坏。

主要是氢键和离子键。

甲醇、乙醇、丙酮等有机溶剂可以提供自己的羟基或羰基上的氢或氧去形成氢键,从而破坏了蛋白质中原有的氢键,使蛋白质变性。

而引起蛋白质沉淀的原因一方面是由于甲醇、乙醇、丙酮等有机溶剂加入水中使溶剂介电常数降低,增加了相反电荷的吸引力,另一方面是因为这些有机溶剂是强亲水试剂,争夺蛋白质分子表面的水化水,破坏蛋白质胶体分子表面的水化层而使分子聚集沉淀。

多糖分级沉淀
主要原理是通过降低水溶液的介电常数使多糖脱水从而产生沉淀来分离多糖,几乎适用于所有水溶性多糖,虽然不同多糖可在不同浓度乙醇的条件下分步沉淀,但特异性不高,导致对所需多糖的分离选择性较差,要提高多糖的纯度需经反复
的极性而改变混合组分溶液中某些成分的溶解度,使其从溶液中析出。

如在含有糖类或蛋白质的水溶液中,分次加入乙醇,使含醇量逐步增高,逐级沉淀出分子量段由大到小的蛋白质、多糖、多肽在含皂苷的乙醇溶液中分次加入乙醚或丙酮可使极性有差异的皂苷逐段沉淀出来等。

沉淀物的结构不仅与乙醇浓度等有关,还与加乙醇的顺序有关。

如先加乙醇后加料分子较大,先加料后加乙醇则分子较
极性也就增大根据相似相溶就是极性的有机物易容于极性的溶剂,极性小的易溶于极性小或非极性溶剂多糖极性较大在水中的溶解性很好不过在醇的溶解性很低所以将醇加到含有多糖的水溶液中可以改变的水溶液的极性极性大的多糖最先溶出来极性下的最后溶出来做到了分级纯化其实这也是浓缩
糖进行提取。

相关文档
最新文档