电力电子技术——第二章 电力电子器件

合集下载

电力电子技术第2章 习题 - 答案

电力电子技术第2章 习题 - 答案

班级姓名学号第2/9章电力电子器件课后复习题第1部分:填空题1. 电力电子器件是直接用于主电路中,实现电能的变换或控制的电子器件。

2. 主电路是在电气设备或电力系统中,直接承担电能变换或控制任务的电路。

3. 电力电子器件一般工作在开关状态。

4. 电力电子器件组成的系统,一般由控制电路、驱动电路、主电路三部分组成,由于电路中存在电压和电流的过冲,往往需添加保护电路。

5. 按照器件能够被控制的程度,电力电子器件可分为以下三类:不可控器件、半控型器件和全控型器件。

6.按照驱动电路信号的性质,电力电子器件可分为以下分为两类:电流驱动型和电压驱动型。

7. 电力二极管的工作特性可概括为单向导电性。

8. 电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。

9. 普通二极管又称整流二极管多用于开关频率不高,一般为1K Hz以下的整流电路。

其反向恢复时间较长,一般在5ms以上。

10.快恢复二极管简称快速二极管,其反向恢复时间较短,一般在5ms以下。

11.肖特基二极管的反向恢复时间很短,其范围一般在10~40ns之间。

12.晶闸管的基本工作特性可概括为:承受反向电压时,不论是否触发,晶闸管都不会导通;承受正向电压时,仅在门极正确触发情况下,晶闸管才能导通;晶闸管一旦导通,门极就失去控制作用。

要使晶闸管关断,只能使晶闸管的电流降至维持电流以下。

13.通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。

选用时,一般取为正常工作时晶闸管所承受峰值电压2~3 倍。

14.使晶闸管维持导通所必需的最小电流称为维持电流。

晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流称为擎住电流。

对同一晶闸管来说,通常I L约为I H的称为2~4 倍。

15.晶闸管的派生器件有:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管。

16. 普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10微秒左右。

《电力电子技术》第2章 电力电子器件

《电力电子技术》第2章 电力电子器件
电力电子器件是基础 电能进行变换和控制是核心
2/89
上节课内容回顾
• 二、电力电子器件
1、概念:是指可直接用于处理电能的主电路中,实现 电能的变换或控制的电子器件。
2、特性:大功率、开关特性、驱动电路、损耗大,加散热
3、组成:主电路、控制电路、检测电路。。。。
4、分类:
1)控制程度:不控器件、半控器件、全控器件
12/89
2.1.3 电力电子器件的分类
■按照载流子参与导电的情况 ◆单极型器件 ☞由一种载流子参与导电。 ◆双极型器件 ☞由电子和空穴两种载流子参与导电。 ◆复合型器件 ☞由单极型器件和双极型器件集成混合而成, 也称混合型器件。
13/89
2.1.4 本章内容和学习要点
■本章内容 ◆按照不可控器件、半控型器件、典型全控型器件和其 它新型器件的顺序,分别介绍各种电力电子器件的工作 原理、基本特性、主要参数以及选择和使用中应注意的 一些问题。
检测

电路

保护

电路

驱动ቤተ መጻሕፍቲ ባይዱ
电路
V1 LR
V2
主电路
电气隔离
图2-1 电力电子器件在实际应用中的系统组成
10/89
2.1.3 电力电子器件的分类
■按照能够被控制电路信号所控制的程度 ◆半控型器件 ☞主要是指晶闸管(Thyristor)及其大部分派生器件。 ☞器件的关断完全是由其在主电路中承受的电压和电 流决定的。 ◆全控型器件 ☞目前最常用的是 IGBT和Power MOSFET。 ☞通过控制信号既可以控制其导通,又可以控制其关 断。 ◆不可控器件 ☞电力二极管(Power Diode) ☞不能用控制信号来控制其通断。
■学习要点 ◆最重要的是掌握其基本特性。 ◆掌握电力电子器件的型号命名法,以及其参数和特性 曲线的使用方法。 ◆了解电力电子器件的半导体物理结构和基本工作原理。 ◆了解某些主电路中对其它电路元件的特殊要求。

电力电子技术课后习题答案

电力电子技术课后习题答案

m
第四章 直流-直流变换技术
4-1 答:主要元器件有开关元件、电容器、电感器和快恢复二极管。基本原理是利用对电感的定时地间隙储能及 释放,实现电能的转移和变换。
2-2 答: 使晶闸管导通的条件是:晶闸管处于正向偏置电压时,给门极施加足够功率的触发电压;当晶闸管处于 导通状态时只要将导通的电流减小到小于维持电流,或者直接施加反向电压就可。 2-3 答: 1)


IdVT
IT ( AV )
2)
IdVT
4
IVT

1
i dt
2 4 0
相电压之间通过 VT3 及短路的 VT1 发生短路,从而又烧毁 VT3。
ww
3-12 答:设α=30º 1)单相半波:IdVT=Id=30A,IVT=kf*IdVT=1.606﹡30=48.2A。 2)单相桥式:IdVT=Id/2=15A,IVT=kf*IdVT=1.606﹡15=24.1A。 上述两题均可采用式 3-7(根号中的 sinα应为 sin2α)计算 Kf 3) 提示:三相半波电阻性负载时需要先推出一个晶闸管流过电流(1/3 周期)的有效值计算式和平均值计算 式,获得波形系数 Kf,然后根据一个晶闸管流过电流平均值(是负载电流的 1/3)计算有效值。
da
1/2
后 答
w.
3-11 答:一个晶闸管不能导通时,会导致输出波形缺波头。例如 VT1 不导通,则 输出将直接从
uCb 降为 0。一个晶闸管短路问题将十分严重,例如 VT
w.
uab,uac 的波头将失去,此处
VT3 时,会导致
1 短路,当触发
案 网
1)由 Ud 0.9U 2
1 cos 得: Ud=0.9*220(1+0.866)/2=184.7V 2

电力电子技术总复习

电力电子技术总复习

电力电子技术总复习第一章绪论1、电子开关型电力电子变换有哪四种基本类型?2、第二章课本P6电力电子的应用:要知道是何种电力电子技术的应用。

第二章电力电子器件1、器件按控制方式分为:什么是半控器件?晶闸管是:它的派生类包括:什么是全控器件?它包括:全控器件中,开关频率最高的是:应用最广泛的是:大功率场合广泛应用的是:存在二次击穿现象的器件是:驱动功率小的器件是:2、器件按驱动方式分:SCR、GTR、GTO是:IGBT、MOSFET是:3、SCR在门极开路的情况下正向导通的原因是:在实际应用中为保证SCR的可靠导通脉冲宽度由那个参数决定?用万用表如何区分SCR的三个极?SCR门极所加最高电压、电流、或平均功率超过允许值时会发生:门极所加最高反向电压超过10V以上会造成:第三章整流电路1、什么是控制角?导通角?相位控制方式?2、阻性负载下单相半波、单相桥式、单相全波、三相半波、三相桥式整流电路的移相范围为:阻感负载下为:3、三相桥式整流电路的共阴极组的三只管子脉冲互差:同一相的两个管子脉冲互差:管子的导通顺序为:每只管子工作多少度:4、掌握各种整流电路的计算公式:U d、I d I VT I TA V U FM I2掌握u d i d i vt1u vti的波形画法5、掌握三相桥式整流电路考虑变压器漏抗下的计算:ΔU d、I d U d6、单相半波、单相桥式、单相全波、三相半波、三相桥式整流电路整流输出电压脉动次数分别为:如果脉动次数是12那么,输出电压的最低次谐波是:交流侧最低次谐波是:脉动次数越高,最低次谐波的次数就越,可使尺寸及体积减小。

7、整流电路多重化的主要目的是什么?如何实现?8、何为逆变失败?最小逆变角是:第四章逆变电路1、有源逆变和无源逆变电路有何不同?2、什么是换流?换流方式有哪些?各有何特点?3、什么是电压逆变型和电流逆变型电路?两者各有何特点?4、会画三相电压型桥式逆变电路的工作波形。

电力电子技术_洪乃刚_第二章电力电子器件

电力电子技术_洪乃刚_第二章电力电子器件

返回
2、晶闸管的电流参数 通态平均电流和额定电流 通态平均电流IAV国际规 定是在环境温度为40°C和在规定冷却条件下,稳定结 温不超过额定结温时,晶闸管允许流过的最大正弦半 波电流的平均值。晶闸管以通态平均电流标定为额定 电流。 当通过晶闸管的电流不是正弦半波时,选择额定 电流就需要将实际通过晶闸管电流的有效值IT折算为 正弦半波电流的平均值,其折算过程如下: 通过晶闸管正弦半波电流的平均值 :
晶闸管开通和关断过程
晶闸管在受反向电压关断时,反向阻断恢复时间 trr,正向电压阻断能力恢复的这段时间称为正向阻断 恢复时间tgr,晶闸管的关断时间toff=trr+tgr,约为 数百微秒。 (2)dv/dt和di/dt限制 晶闸管在断态时,如果加在阳极上的正向电压上 升率dv/dt很大会使晶闸管误导通,因此,对晶闸管正 向电压的dv/dt需要作一定的限制。 晶闸管在导通过程中,如果电流上升率di/dt很 大 会引起局部结面过热使晶闸管烧坏,因此,在晶闸 管导通过程中对di/dt也要有一定的限制。
返回
二、电力二极管的伏安特性
当施加在二极管上的正向电压大于UTO 时, 二极管导通。当二极管受反向电压时,二极管仅 有很小的反向漏电流(也称反向饱和电流)。
二极管的伏安特性
返回
三、电力二极管的主要参数
A、额定电压 B、额定电流 C、结温
电力二极管实物图
返回
A、电力二极管的额定电压 反向重复峰值电压和额定电压: 额定电压即是能够反复施加在二极管上,二极 管不会被击穿的最高反向重复峰值电压URRM,该电压 一般是击穿电压UB的2/3。在使用中额定电压一般取 二极管在电路中可能承受的最高反向电压(在交流 电路中是交流电压峰值),并增加一定的安全裕量。

电力电子技术第2章习题_答案解析

电力电子技术第2章习题_答案解析

班级姓名学号第2/9章电力电子器件课后复习题第1部分:填空题1. 电力电子器件是直接用于主电路中,实现电能的变换或控制的电子器件。

2. 主电路是在电气设备或电力系统中,直接承担电能变换或控制任务的电路。

3. 电力电子器件一般工作在开关状态。

4. 电力电子器件组成的系统,一般由控制电路、驱动电路、主电路三部分组成,由于电路中存在电压和电流的过冲,往往需添加保护电路。

5. 按照器件能够被控制的程度,电力电子器件可分为以下三类:不可控器件、半控型器件和全控型器件。

6.按照驱动电路信号的性质,电力电子器件可分为以下分为两类:电流驱动型和电压驱动型。

7. 电力二极管的工作特性可概括为单向导电性。

8. 电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。

9. 普通二极管又称整流二极管多用于开关频率不高,一般为1K Hz以下的整流电路。

其反向恢复时间较长,一般在5μs以上。

10.快恢复二极管简称快速二极管,其反向恢复时间较短,一般在5μs以下。

11.肖特基二极管的反向恢复时间很短,其范围一般在10~40ns之间。

12.晶闸管的基本工作特性可概括为:承受反向电压时,不论是否触发,晶闸管都不会导通;承受正向电压时,仅在门极正确触发情况下,晶闸管才能导通;晶闸管一旦导通,门极就失去控制作用。

要使晶闸管关断,只能使晶闸管的电流降至维持电流以下。

13.通常取晶闸管的U DRM和U RRM中较小的标值作为该器件的额定电压。

选用时,一般取为正常工作时晶闸管所承受峰值电压2~3 倍。

14.使晶闸管维持导通所必需的最小电流称为维持电流。

晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流称为擎住电流。

对同一晶闸管来说,通常I L约为I H的称为2~4 倍。

15.晶闸管的派生器件有:快速晶闸管、双向晶闸管、逆导晶闸管、光控晶闸管。

16. 普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10微秒左右。

电力电子技术2.1-2.2

电力电子技术2.1-2.2
转换为可以被主电路所接收的信息。
5)保护电路:用于保证电力电子器件和整个电力电子系 统正常可靠工作。 因为主电路中有电压和电流的冲击,而电力电子器 件一般比主电路中的普通器件昂贵,但承受过电压和过 电流的能力却要差一些,所以保护电路的存在是非常必 要的。 6)电气隔离:将主电路和控制电路等进行安全隔离,而 通过光、磁等来传递信号。 因为主电路中电流和电压较大,而控制电路中的元 器件只能承受较小的电压和电流,因此在主电路和控制 电路连接的路径上需要进行电气隔离。例如:驱动电路 与主电路的连接处、与控制信号的连接处,主电路与检 测电路的连接处。
④PN结的电容效应 PN结的电荷量随外加电压的变化而变化,呈现电容效应,称 为结电容CJ,又称为微分电容。 结电容按其产生的机制和作用的差别分为以下两类: A—势垒电容CB: 它只在外加电压变化时才起作用,外加电压频率越高,其作 用越明显。 它的大小与PN结的截面积成正比,与阻挡层厚度成反比。 B—扩散电容CD: 它仅在正向偏置时起作用。 在正向偏置时,当正向电压较低时,势垒电容为结电容的主 要成份,正向电压较高时,扩散电容为结电容的主要成份。 注意:结电容影响PN结的工作频率,特别是在高速开关的状态 下,可使其单向导电性变差,甚至不能工作,应用时要注意。
4 电力电子器件的分类
(1)按照器件的开关控制特性分类:分为三类 ①不可控器件:器件本身没有导通、关断控制功能,而是需要根据 电路条件决定其导通、关断状态的器件称为不可控器件。 如:电力二极管。 ②半控型器件:通过控制信号只能控制其导通,不能控制其关断的 电力电子器件称为半控型器件。 如:晶闸管及其大部分派生器件。 ③全控型器件:通过控制信号既可控制其导通又可控制其关断的器 件,称为全控型器件。 如:门极可关断晶闸管(GTO)、功率晶体管GTR、功率场效应晶 体管(MOSFET)、绝缘栅双极型晶体管(IGBT)等。

电力电子技术第二章

电力电子技术第二章







2.2 电力电子器件基础
1.PN结的形成
完全纯净的、结构完整的半导体晶体称为本征半导体。在常温下,本征 半导体可以激发出少量的自由电子,并出现相应数量的空穴,这两种不同极 性的带电粒子统称为载流子。 用适当的方法在本征半导体内掺入微量的杂质,会使半导体的导电能力 发生显著的变化,这种半导体称为杂质半导体。因掺入杂质化合价的不同, 杂质半导体分为电子型(N型)半导体和空穴型(P型)半导体两类。 N型半导体的杂质为五价元素,在半导体晶体中能给出一个多余的电子, 故N型半导体内自由电子数远大于空穴数,则自由电子称为多数载流子(简 称多子),空穴称为少数载流子(简称少子)。而P型半导体中的杂质为三 价元素,能在半导体晶体中接受电子,使晶体中产生空穴,即P型半导体中 的空穴数远大于自由电子数,则空穴称为多数载流子,自由电子称为少数载 流子。






2.2.2电力电子器件的封装
图2-2是电力电子器件几种常见的封装形式
TO-220
TO-247
SOT-227
TO-64
TO-209






2.3 功率二极管
功率二极管(Power Diode) 属于不可控电力电子器件,是20世 纪最早获得应用的电力电子器件, 它在整流、逆变等领域都发挥着重 要的作用。基于导电机理和结构的 不同,二极管可分为结型二极管和 肖特基势垒二极管。 二极管的基本结构是半导体 PN结,具有单向导电性,正向偏 臵时表现为低阻态,形成正向电流, 称为正向导通;而反向偏臵时表现 为高阻态,几乎没有电流流过,称 为反向截止。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 全控器件 通过控制信号既可控制其导通又可控制其关断。GTO、 GTR、功率MOSFET、IGBT等均属于全控型器件。
2.1.2 按载流子类型分
1. 单极型器件 由一种载流子参与导电的器件,称为单极型器件, 如功率MOSFET、静电感应晶体管SIT等。
2. 双极型器件 由电子和空穴两种载流子参与导电的器件,称为 双极型器件,如PN结整流管、普通晶闸管、电力 晶体管等。
第2章 电力电子器件
2.1 电力电子器件分类 2.2 晶闸管原理与特性 2.3 特殊用途晶闸管 2.4 常用全控型器件
第2章 电力电子器件
电力电子器件是构成电力电子设备的基本元器件, 是电力电子技术的基础,其原理、特性和应用方 法及典型电路决定着电力电子电路及应用系统的 性能、价格和可靠性。 本章介绍电力电子器件的概念、分类、特点,以 及各种常用电力电子器件的工作原理、基本特性、 主要参数及其选择和使用中应注意的一些问题。 本章要求掌握电力电子器件的分类、基本电力电 子器件的结构、原理、特性,以及使用方法。
3. 混合型器件 由单极型和双极型两种器件组成的复合型器件, 称为混合型器件,如IGBT、MCT等。
2.1.3 按控制信号性质分
1. 电流控制型器件 此类器件采用电流信号来实现导通或关断控制,代表器件如晶闸管、 电力晶体管等。 电流控制型器件的特点是:①在器件体内有电子和空穴两种载流子导 电,由导通转向阻断时,两种载流子在复合过程中产生热量,使器件 结温升高。过高的结温限制了工作频率的提高,因此,电流控制型器 件比电压控制型器件的工作频率低。②电流控制型器件具有电导调制 效应,使其导通压降很低,导通损耗较小。③电流控制型器件的控制 极输入阻抗低,控制电流和控制功率较大,电路也比较复杂。
2.2.1 晶闸管基本结构
(a)螺栓形 (b)平板形 (c) 塑封形 (d)集成封装形 (e)模块形 (f)结构 (g)电气图形符号 图2.1 晶闸管的外形、结构和电气图形符号
2.2.2 晶闸管工作原理
1. 导通/关断实验
V
R
UU RRK
A
S 2
G
VU AK

K 反
E
G
IIAK
A
R W


E A
2) 反向伏安特性 晶闸管承受反向阳极电压时,由于J1、J3结处于反向偏置 状态,晶闸管流过的电流仅由各区少数载流子形成,只有 极小的反向漏电流通过,这就是器件的反向阻断状态。 随着反向电压的增加,穿过J2结的少数载流子稍有增加, 反向漏电流逐渐增大。
2.2.3 晶闸管基本特性
3) 晶闸管的门极特性 该门极伏安特性被划分为三个区 域,一个是不触发区,一个是不 可靠触发区,一个是可靠触发区。 不触发区是为了使晶闸管具有一 定的抗干扰能力。 不可靠触发区触发电路所提供的 触发信号值若在此范围时,该批 晶闸管不会全部都被触发导通。 可靠触发区则是为了保证晶闸管 可靠安全的触发,门极触发电路 应提供的触发电压、触发电流和 功率及应受到限制的区域。
2.2.2 晶闸管工作原理
2. 晶闸管的基本工作原理 1) 阻断状态分析
当门极开路、给晶闸管加正向阳极电压(阳极电位高于阴 极电位)时,则J1和J3结承受正向电压;而J2结承受反向 电压、处于反向偏置状态,器件A、K两端之间处于阻断 状态,只能流过很小的漏电流,称为晶闸管的正向阻断状 态。 当给晶闸管加反向电压(阴极电位高于阳极电位)时,J1和 J3结反偏,虽然J2结承受正向电压,但晶闸管也不能导通, 称为反向阻断状态,也仅有极小的反向漏电流通过。 当门极G开路时,无论在A、K间加正向电压还是反向电压, 均至少有一个PN结处于反偏,故其不会导通(正、反向均 处于阻断状态),此时晶闸管具有正向和反向阻断能力。
S1
图2.2 晶闸管导通/关断实验电路
2.2.2 晶闸管工作原理
归纳以上实验结果,可见: 1) 晶闸管导通的条件
阳极加正向电压,同时门极加合适的正向触发电压。 2) 晶闸管关断的条件
使流过晶闸管的阳极电流小于维持电流或突加反向电压。 3) 晶闸管的特点
① 单向导电性; ② 属半控型半导体器件; ③ 属电流控制器件。
2. 电压控制型器件 此类器件采用场控原理对其通/断状态进行控制,代表器件如功率 MOSFET、IGBT等。 电压控制型器件的特点是:①输入阻抗高,控制功率小,控制线路简 单。②工作频率高。③工作温度高,抗辐射能力强。
2.2 晶闸管原理与特性
2.2.1 晶闸管基本结构 2.2.2 晶闸管工作原理 2.2.3 晶闸管基本特性 2.2.4 晶闸管的主要参数
2.2.2 晶闸管工作原理
2) 导通状态分析 晶闸管导通的工作原理可以用双晶体管模型来解 释,如图2.3所示。
(a)双晶体管模型 (b)工作原理 图2.3 晶闸管的双晶体管模型及其工作原理
2.2.2 晶闸管工作原理
S闭合前:IG=0→Ib2=0→Ic2=0→Ib1=0→Ic1=0 , 三极管V1和V2均处于截止状态,晶闸管处于正向 阻断状态。 开关S闭合,则外电路向门极注入电流IG,也就 是注入驱动电流,该电流最初就是晶体管V2的基 极电流Ib2,即产生集电极电流Ic2,它又是晶体 管Vl的基极电流,经V1放大后产生集电极电流Ic1, 而Ic1此时等于β1β2Ib2,比最初的驱动电流IG大 了许多。使V2的基极电流进一步增大,如此形成 强烈的正反馈,最后V1和V2完全进入饱和状态, 即晶闸2.1.1 按受控方式分 2.1.2 按载流子类型分 2.1.3 按控制信号性质分
2.1.1 按受控方式分
1. 不可控器件 器件本身没有导通、关断控制能力,需要根据电路条件决 定其导通、关断状态。这类器件包括普通整流二极管,肖 特基(Schottky)整流二极管等。
2. 半可控器件 通过控制信号只能控制其导通,不能控制其关断。这类器 件包括普通晶闸管,快速、光控、逆导、双向晶闸管等。
2.2.3 晶闸管基本特性
1. 晶闸管静态伏安特性
图2.4 晶闸管的伏安特性
2.2.3 晶闸管基本特性
1) 正向伏安特性 晶闸管在门极开路(IG=0)的情况下,在阳极与阴极间施加 一定的正向阳极电压,器件也仍处于正向阻断状态,只有 很小的正向漏电流流过。 外加的阳极正向电压在其转折电压以下时,只要在门极注 入适当的电流(一般为毫安级),器件也会立即进入正向导 通状态 。
相关文档
最新文档