几种常见的概率分布

合集下载

几种常见的概率分布律

几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16

ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为

ϕ
3
(1

ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。

6个常见分布的分布律或密度函数

6个常见分布的分布律或密度函数

1.均匀分布(Uniform Distribution): 这种分布的密度函数是一条平行于坐标轴的直线,表示所有取值的概率相同。

2.正态分布(Normal Distribution): 这种分布又称高斯分布,是一种对称的分布,其概率密度函数是一个钟形曲线。

3.指数分布(Exponential Distribution): 这种分布的密度函数是一条指数形的曲线,常用来描述随机事件的发生时间间隔。

4.卡方分布(Chi-square Distribution): 这种分布常用于统计检验,其概率密度函数是一条单峰曲线。

5.t分布(t Distribution): 这种分布常用于统计检验,其概率密度函数是一条单峰曲线,但比卡方分布的峰值低。

6.F分布(F Distribution): 这种分布常用于统计检验,其概率密度函数是一条双峰曲线。

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。

正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。

1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。

其 中,.0为尺度参数。

指数分布的无记忆性:Plx s t|X = P{X t}。

f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。

概率论常见的几种分布

概率论常见的几种分布

概率论常见的几种分布常见的几种概率分布概率论是研究随机现象的数学理论,其中涉及到许多常见的概率分布。

概率分布描述了随机变量在不同取值上的概率分布情况。

本文将介绍几种常见的概率分布,包括均匀分布、正态分布、泊松分布和指数分布。

一、均匀分布均匀分布是最简单的概率分布之一,也被称为矩形分布。

在均匀分布中,随机变量在一定的取值范围内的概率是相等的。

例如,抛一枚公正的硬币,正面朝上和反面朝上的概率都是1/2。

均匀分布通常用于模拟随机数发生器的输出,或者在一定范围内随机选择一个数值。

二、正态分布正态分布是最重要的概率分布之一,也被称为高斯分布。

在正态分布中,随机变量在取值范围内的概率密度函数呈钟形曲线状。

正态分布具有许多重要的性质,例如均值、标准差等。

正态分布在自然界和社会科学中广泛应用,例如身高、体重、考试成绩等都符合正态分布。

三、泊松分布泊松分布描述了单位时间或空间内事件发生的次数的概率分布情况。

泊松分布的特点是,事件之间相互独立且平均发生率恒定。

泊松分布通常用于描述稀有事件的发生情况,例如单位时间内的电话呼叫次数、单位面积内的交通事故次数等。

四、指数分布指数分布描述了连续随机变量首次达到某一值的时间间隔的概率分布情况。

指数分布的特点是,事件之间相互独立且事件发生的概率与时间间隔成反比。

指数分布通常用于模拟随机事件的发生时间间隔,例如单位时间内的电话呼叫间隔、单位距离内的交通事故间隔等。

除了上述几种常见的概率分布外,还有许多其他概率分布,例如二项分布、伽玛分布、贝塔分布等。

每种概率分布都有其特定的应用场景和数学性质,对于不同的问题可以选择适合的概率分布进行建模和分析。

总结起来,概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。

这些分布在各自的领域有着广泛的应用,可以帮助我们理解和解决许多随机现象和问题。

对于研究概率论和统计学的人来说,熟悉这些常见的概率分布是非常重要的。

概率论中几种常用重要分布

概率论中几种常用重要分布

概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。

其在实际中的应用。

关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。

它是一种“定性”类型的概念。

为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。

称这种变数为随机变数。

本章内将讨论取实值的这种变数—— 一维随机变数。

定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P Xx x=∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。

它是一个普通的函数。

成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。

更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。

称它的分布为离散型分布。

【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。

一个退化分布可以用一个常数a 来确定。

(2)X 可能取的值只有两个。

确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。

如果([])P X b p ==,那么,([])1P X a p ===-。

因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。

概率论八大分布

概率论八大分布

概率论八大分布概率论是统计学的一个重要分支,它探究随机变量及其关联性,研究不同的现象的结果和概率分布之间的关系,提供量化的度量工具以确保实际应用的准确性。

概率论八大分布是概率论中应用最为广泛的几个分布,它们提供了研究各种随机现象的基础,影响了大量的现实问题的解决方案,其实质是根据大量试验获得的数据来拟合出不同类型的概率分布。

首先,概率论八大分布中首先涉及的是正态分布。

是一种最常见的概率分布,也称作高斯分布。

正态分布的图形可以表示为一个双峰的曲线,其特点是只有两个参数:均值μ和标准差σ,它可以用来描述平均值的概率密度分布情况,即随机变量的取值可能会靠近均值μ。

其次,另一个重要的概率分布是均匀分布。

均匀分布是一种两个参数(下限a和上限b)的概率分布,这两个参数分别代表了随机变量可能取值的范围,即该变量只能在a和b之间取值,其中每一个结果都有相同的概率。

第三,指数分布是另一种广泛使用的分布,它具有唯一的参数λ,该参数代表了随机变量的变化率。

指数分布的特性是,它可以用来衡量发生某种事件的时间间隔,以及研究受试者遭受某种不利影响的持续时间。

接下来,椭圆分布(又称偏态分布)是一种广泛应用的概率分布,它可以用来描述数据集中对称性差异。

椭圆分布有三个参数:均值μ、标准差σ和偏度γ,其中偏度γ决定了数据集中偏斜程度。

接着,卡方分布是一种常常用来拟合实验数据的分布,它用一个参数k来描述数据的分布形状。

卡方分布是一种双峰分布,它的参数k决定了其双峰形状陡峭程度。

此外,t-分布是一种密度比较大的分布,它是一种卡方分布的变种,但具有更大的连续性。

t-分布有两个参数,即自由度ν和不同的中心值μ,它主要用于检验两个样本之间的差异和单样本的参数估计。

接着,F-分布是t-分布的多变量拓展,如果两个样本是来自不同的总体,那么可以使用F-分布来检验这两个样本的差异。

F-分布的参数为两个自由度,即自由度1和自由度2,它最常用于在两个样本之间检验方差的差异。

几种常见的概率分布及应用

几种常见的概率分布及应用

几种常见的概率分布及应用常见的概率分布有很多种,在统计学和概率论中,这些分布被广泛应用于各种领域,包括自然科学、工程、经济和社会科学等。

下面是几种常见的概率分布及其应用:1. 均匀分布(Uniform Distribution):均匀分布是最简单的概率分布之一,它的概率密度函数在一个给定的区间内是常数。

这种分布广泛应用于统计推断、模拟和随机数生成等领域。

2. 二项分布(Binomial Distribution):二项分布适用于具有两个可能结果的离散试验,如抛硬币、打靶等。

在二项分布中,每个试验都是独立的,并且具有相同的概率。

二项分布在实验研究和贝叶斯统计等领域有广泛的应用。

3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间或空间内稀有事件发生次数的概率分布。

它在复杂事件模型、风险评估和可靠性分析等领域有广泛的应用。

4. 正态分布(Normal Distribution):正态分布是最常见的连续概率分布之一,也被称为高斯分布。

它具有对称的钟形曲线,广泛应用于自然科学、社会科学和工程等领域。

正态分布在统计推断、回归分析、贝叶斯统计等方面发挥着重要作用。

5. 指数分布(Exponential Distribution):指数分布适用于描述事件发生之间的时间间隔的概率分布。

它在可靠性工程、队列论、生存分析等领域有广泛的应用。

6. γ分布(Gamma Distribution):γ分布是一类连续概率分布,用于描述正数随机变量的分布,如等待时间、寿命和利润等。

它在贝叶斯统计、过程控制和金融分析等领域被广泛使用。

7. t分布(T-Distribution):t分布是一种用于小样本情况下的概率分布,它类似于正态分布,但考虑了样本容量较小的情况。

t分布在统计推断和假设检验等方面有广泛的应用。

8. χ²分布(Chi-Square Distribution):χ²分布是一种用于度量变量之间的独立性和相关性的概率分布。

d 几种常见的概率分布律

d  几种常见的概率分布律

三、服从二项分布的随机变量的特征数
平均数: μ=nφ
方差: σ2=nφ(1-φ)
随着样本含量的增加,偏斜度和峭度趋 向于0,二项分布逐渐接近于正态分布。
四、二项分布应用实例
例:3.2 例:3.3 例:3.4
【例3.4】
用 棕 色 正 常 毛 (bbRR) 的 家 兔 和 黑 色 短 毛 (BBrr)兔杂交,杂种F1为黑色正常毛长的 家兔,F1雌、雄兔近亲交配,问最少需要 多少只F2代的家兔,才能以99%的概率至 少得到一只棕色短毛兔?
二、二项分布概率函数表达式:
p( y) Cny y (1)ny , y 0,1,2,, n
n=试验次数(或样本含量) y=在n次试验中事件A出现的次数 φ=事件A发生的概率(每次试验都是恒定的) 1-φ=事件A的对立事件发生的概率 p(y)=Y的概率函数=P(Y=y)
例:3.1
从雌雄各半的100只动物中做一抽样试验。第一次从这100只动 物中随机抽取一只,记下性别后放回,再做第二次抽取。共 做了10次抽样,计算抽中3只和3只以下雄性动物的概率。
(5)曲线和X坐标轴所夹的面积等于1。 (6)正态分布表查出的φ(u)的值表示随机变量
U落入区间(-∞, u)的概率。 (7)累积分布函数图形的特点是围绕点
(0, 0.5)对称。 (8)正态分布的偏斜度γ1=0 ,峭度γ2=0。
5. 一些重要值
68.27%
68.27%
95.00%
95.00%
99.00%
解: n=10 y=3,2,1,0 φ=1/2 p( y) Cny y (1)ny
p(3) 10! ( 1 )3 ( 1 )7 120 (210 ) 0.1171876 3!(10 3)! 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种常见的概率分布
离散型概率分布
1.二项分布
n次独立的贝努利实验,其实验结果的分布(一种结果出现x次的概率是多少的分布)即为二项分布
应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的
平均数:\二E(Y)二叩
方差与标准差:▽ X = np(1- P) ; = J np(1- p)
特例:(0-1 )分布
若随机变量x的分布律为
p(x = k) = p k(1 - p)1* k=o,i ;0<p<i,
则称X服从参数p的(0-1 )分布
2.泊松分布
泊松分布是一种用来描述一定的空间和时间里稀有事件发生次数的概率分布泊松分布变量x只取零和正整数:0、1、2…..其概率函数为:
p(x) e_
x!
泊松分布的平均数:」二E(x)=」
泊松分布的方差和标准差:二2二'L、二二」
3.超几何分布
C k C n —k C M C N -M
P(X=k) =C n 记X~ (N,M,n) C N
P=M
N
期望:E(X)=np
方差:D(X)=n p(1-p)

适用范围:多次完全相同并且相互独立的重复试验,如果在有限总体中不重
复抽样,抽样成功的次数X的概率分布服从超几何分布,如福利彩票
二、连续型概率分布
1•均匀分布
若随机变量X具有概率密度函数
f(X)二
则称X在区间(a,b)上服从均匀分布,记为X〜U(a,b)在区间(a,b)上服从均匀分布的随机变量X的分布函数为
x v a
F(x)X— ,a 乞x b
b — a
, X x
2指数分布
若随机变量X具有概率密度函数f(X)= e ' x - 0其中0是常数,
0,x< 0
则称X服从以’为参数的指数分布,记作X〜E(' ),X的分布函数为
F(x)=」1 -e ,x 色0 j 0,x<0
3.正态分布
正态随机变量X的概率密度函数的形式如下:
1
f (x) e 2 $ ,—:::: x :::
式中,」为随机变量X的均值;、;2为随机变量X的方差通常对具有均值卩,方差为62的正态概率分布,记为N (卩,62)。

于是有正态随机变量X~N ( '2)。

如果从标准正态分布N (0, 1)的总体中得到n个随机变量分别为X i,X2,•…,X n 时,则由a X2得到的分布叫做自由度为n的2分布,记为X~ 2(n)
2
X ~ (n)。

2分布的数学期望和方差分别为:
E(X)= n, D(X)=2n
关于2分布的加法定理。

设X1,X2,....X k,是相互独立的随机变量,且
2
X i ~ (n i),i =1,2,....k,则
k
' X i ~ 2(n i n2 …nJ
i丄
&分布与N (0,1)分布有如下关系:
设X i,X2,...X n是相互独立的随机变量,并且X i ~ (0,1),i=1,2,…n,则n
' X i2〜2(n)
i =1
5.t分布
设X~N (0,1),Y〜E2(n) ,X与Y相互独立,则随机变量
X
遵从n个自由度的t分布,记为t^^ ———〜t(n)。

°Y/n
t分布的数学期望和方差如下:
当n>2 时,E(t)=O,D(t)=亠
n —2
t分布的图形是对称的。

当n<30时,t分布的分散程度比标准正态分布大,密度函数曲线比较平缓,随着n的增大,t分布逐渐逼近标准正态分布。

当n》二时,t分布渐近标准正态分布。

设随机变量X〜I nj ,Y〜/2(n2),且X与Y相互独立,则称随机变量
X/n i
F =
Y/压
遵从自由度为g,n2)的F分布,记作F~F(n「n2)
F分布的形状为正偏态分布状,但随着n i, n2的增大,其概率密度曲线的偏斜度虽有所缓减却仍保持偏态分布,并不以正态分布为其极限分布形式。

如果t ~t(n),则t2~ F(1,n)
…1
如果F ~ F(n「n2),贝U ~ F (n2,nj 。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的支持)。

相关文档
最新文档