紫外线吸收剂工艺流程
苯并三唑类紫外线吸收剂

苯并三唑类紫外线吸收剂
佚名
【期刊名称】《乙醛醋酸化工》
【年(卷),期】2014(000)009
【摘要】<正>紫外线吸收剂是光稳定剂中一类重要品种。
其中,苯并三唑类
紫外线吸收剂具有性能稳定,毒性低,吸收紫外线能力强,能够抑制或减弱光降解作用,提高合成材料的耐光性能,与高分子材料相容性好,广泛地应用于聚烯烃、聚酯树脂、涂料、食品包装、感光材料等各种合成材料制品中。
苯并三唑类紫外线吸收剂的合成方法是:重氮化、偶合、还原。
前两步是较成熟的工艺,而还原方法有很多种。
还
原剂有:锌粉、氢气、葡萄糖、醇类、甲醛、聚甲醛、
【总页数】1页(P51-51)
【正文语种】中文
【中图分类】TQ314.245.2
【相关文献】
1.气相色谱质谱法测定汽车涂料中的苯并三唑类紫外线吸收剂 [J], 洪佳;吴玫晓;董婷
2.超声萃取-气相色谱串联质谱法快速测定纺织品中4种苯并三唑类紫外线吸收剂[J], 刘丽琴;张建扬
3.气相色谱-串联质谱法测定涂料中10种苯并三唑类紫外线吸收剂 [J], 王晶;肖前;张子豪;刘莹峰;李全忠;郑建国;李攻科
4.超声萃取-高效液相色谱法同时测定人造革中7种苯并三唑类紫外线吸收剂含量[J], 谢堂堂;王成云;林君峰;沈雅蕾;褚乃清;庄佩洁
5.高效液相色谱法测定小鼠肝脏中的两种苯并三唑类紫外线吸收剂 [J], 朱梅青;崔蓉
因版权原因,仅展示原文概要,查看原文内容请购买。
紫外线吸收剂研究进展

紫外线吸收剂研究进展紫外线吸收剂的研究进展摘要:紫外线吸收剂是一类可防止太阳光或其他人造紫外光引起聚合物降解的物质。
2 - (2′- 羟基) 苯并三唑、2 - 羟基二苯酮、水杨酸酯等可用作紫外线吸收剂,本文综述了其合成和应用的情况,该类产品的改性使之性能更好,可用于一些工程塑料中。
关键词:紫外线吸收剂;苯并三唑;二苯酮随着紫外线辐射量的增加和短波化,其对人类的生产和生活产生重大的危害和影响。
保护人体避免过量和紫外线辐射,减少高分子材料光老化现象已经成为当今许多行业开发新产品的目标之一。
高分子材料在生产和加工时,一般均需添加紫外线稳定吸收剂和其它添加剂。
尤其是汽车零件、建筑材料等领域对耐候性、抗氧化性、耐热性等提出了苛刻的要求。
在医药、食品包装等领域则要求稳定剂不仅无毒,而且不向药物和食品中迁移。
此外,塑料地毯、人造草坪、合成纤维制品等在经雨淋或洗涤时稳定剂要求不被抽出。
再者,对塑料添加剂在加工过程中对环境的影响也已提到议事日程上来,为此工业界近年来针对上述问题进行了大量的研究,以适应工业的发展。
随着高分子材料制品户外应用领域的扩大,稳定剂(尤其是光稳定剂) 在整个聚合物助剂中的地位愈加突出。
寻求高效、卫生、廉价和满足苛刻加工与应用条件的稳定剂新品种、新结构始终是工业界所追求的目标。
综观国内外开发和研究现状,作为光稳定剂的主要品种的紫外线吸收剂的开发和研究呈现出一些新的趋势和特征。
1 紫外线吸收剂的作用机理紫外线吸收剂所以能吸收紫外光是由于该类化合物分子中含有共轭π电子体系的结构与能够进行氢原子移动的结构两部分所致。
也有的只有前一部分的情况。
紫外线吸收剂其结构分子中至少含有一个邻位羟基苯基取代基,这类化合物中由邻位羟基与氮原子或氧原子形成一螯合环,在吸收紫外线后,氢键断裂发生分子异构,分子内结构发生热振动,氢键破坏,螯合环打开,分子内结构发生变化,这样就将有害的紫外光变为无害的热能放出,从而保护了材料,对于常用的二苯酮和苯并三唑类紫外线吸收剂来说,上述机理可用下式表示:二苯酮、苯并三唑在这个过程中,分子内所形成的螯合环是其具有紫外线功能的关键,打开此环的能量敏感范围正好为290~400 nm 波长的紫外线能量范围。
紫外吸收原理

紫外吸收原理紫外吸收原理是指物质对紫外光的吸收作用。
紫外线是一种波长较短的光线,它对人体和物质都具有一定的危害性。
而紫外吸收原理则是利用特定的物质来吸收紫外线,从而保护人体和物质的安全。
下面将从分子结构和作用机理两个方面来介绍紫外吸收原理。
首先,我们来看一下紫外吸收原理的分子结构。
在有机化合物中,通常含有具有共轭结构的芳香族或烯丙基结构的化合物,这些结构可以吸收紫外线。
这些结构中的π电子能级与紫外光的能级非常接近,因此当紫外光照射到这些化合物上时,π电子会发生跃迁,从而吸收紫外光。
这种分子结构使得这些化合物具有很好的紫外吸收性能,可以有效地吸收紫外线,保护人体和物质不受紫外线的伤害。
其次,我们来了解一下紫外吸收原理的作用机理。
当紫外光照射到含有共轭结构的化合物上时,这些化合物会吸收紫外光的能量,从而使得π电子跃迁到高能级。
这样一来,紫外光的能量就被化合物吸收了,不会再对人体和物质产生危害。
而且,这些化合物吸收紫外光后会发生分子内部的构象变化,使得其吸收紫外光的能力更加强化,从而提高了紫外吸收效果。
因此,通过合理选择具有共轭结构的化合物,可以实现对紫外线的高效吸收,从而达到保护的目的。
总的来说,紫外吸收原理是利用具有共轭结构的化合物来吸收紫外光的能量,从而保护人体和物质的安全。
这种原理不仅在日常生活中得到了广泛应用,比如防晒霜、太阳镜等产品中都含有紫外吸收剂,还在工业生产中起到了重要的作用,比如塑料、涂料等材料中也添加了紫外吸收剂。
因此,了解紫外吸收原理对我们选择合适的防护产品和材料具有重要的意义。
综上所述,紫外吸收原理是一种利用化合物吸收紫外光的原理,通过合理选择具有共轭结构的化合物,可以实现对紫外线的高效吸收,从而达到保护人体和物质的目的。
希望通过本文的介绍,能够增加大家对紫外吸收原理的了解,从而更好地保护自己免受紫外线的伤害。
纺织抗静电剂,抗静电剂,抗起毛起球剂,防静电剂,防止附着花粉加工剂

抗静电整理剂SEP8216结构或组分:聚氧乙烯类嵌段聚合物;用途及应用方法:适用于涤纶、腈纶、锦纶等合成纤维及其混纺织物的抗静电整理;1、浸轧工艺:〈1〉用量:10~30g/L〈2〉工艺流程:浸轧工作液(轧液率70~80% ) →烘干 (100~120℃) →定形(190℃×30s)2、浸渍工艺:〈1〉用量:1~3%(o.w.f)〈2〉工艺流程:浸渍(130℃×30~40min,浴比1:10~15)→脱水→烘干(100℃) →定形(190℃×30s)包装贮存:25kg、120kg塑料桶包装,贮存在0℃以上的仓库中,稳定期储存一年。
韩笑织物的功能整理苏州大学宋肇棠1前言织物的功能整理已有几十年的历史。
在每一个阶段都会有一些突出的功能整理介绍给消费者。
随着人们生活水平的不断提高,对环境保护及人类自身生活质量的关心也增加了。
纺织界预测21世纪织物的功能整理加工应以舒适、清洁与安全为主。
1.1舒适加工重点为除香烟烟雾臭、蓄热及保温、以及凉感加工。
与其它功能整理交叉的是抗菌防臭、除臭、皮肤护理加工、防紫外线加工以及防虫加工。
1.2清洁加工重点加工内容是防污、吸水防静电加工。
与其它功能加工交叉的是抗菌防臭及抑菌加工、除臭加工以及皮肤护理加工。
1.3安全加工重点加工内容是皮肤护理、电磁波屏蔽加工。
与其它功能加工交叉的是防紫外线加工、防虫加工以及抗菌防臭抑菌加工。
以上内容涉及大约十二种加工整理。
除防污加工及吸水防静电加工为人所熟知以外,另外十种功能加工则可合并成七类功能加工,分述于后。
当然不少功能加工可以同时出现在一块织物上,形成多功能整理。
2.皮肤护理功能整理。
随着工业发展,环境污染日益严重,大气中二氧化碳、氮氧化物和硫氧化物增加,对人体影响较大,使过敏人数增加。
因此皮肤护理功能整理引起重视。
现把当前几种主要产品的情况介绍于后。
2.1甲壳质[1]甲壳质是甲壳动物蟹、虾等骨骼的主要成分。
UV胶固化的介绍及原理

UV胶固化的介绍及原理UV胶是一种特殊的胶水,其固化原理是通过紫外线照射使其发生固化反应,从而达到粘接或封装的目的。
下面我将对UV胶固化的介绍及原理进行详细阐述。
1.UV胶的介绍UV胶是一种单组分胶水,具有易于使用、固化时间短、粘接效果好等优点,适用于多种材料的粘接、封装和固化工艺。
UV胶可分为有机溶剂型和无机溶剂型两种类型。
有机溶剂型UV胶在固化过程中会挥发有机溶剂,因此使用时需要注意通风。
而无机溶剂型UV胶不含有机溶剂,更加环保。
2.UV胶的固化原理(1)吸收紫外线:UV胶中存在特定的紫外线吸收剂,当紫外线照射到胶水表面时,胶水中的吸收剂会吸收紫外线的能量;(2)激发吸收剂:吸收紫外线的能量使吸收剂处于激发态;(3)激活光引发剂:激发态的吸收剂与胶水中的光引发剂发生相互作用,使光引发剂激活;(4)活化引发剂:活化的光引发剂开始引发光聚合反应,将胶水中的单体分子连接在一起;(5)聚合反应:活化的光引发剂引发的聚合反应使胶水中的单体分子通过共价键连接形成高分子链;(6)涂层或封装固化:紫外线照射后,胶水会迅速固化成为固体态,达到粘接或封装的目的。
3.UV胶固化的优点(1)短时间固化:UV胶在紫外线照射下,固化时间短,可立即进行下一工序,提高生产效率;(2)无溶剂挥发:无机溶剂型UV胶不含有机溶剂,在使用过程中无溶剂挥发现象,更加环保;(3)室温固化:UV胶在室温下固化,无需加热,避免了部分高温固化过程中可能会带来的物理或化学损伤;(4)强度高:UV胶固化后的粘接强度高,抗剪切、抗冲击等性能优异;(5)使用灵活:UV胶液状状态便于涂覆、点胶等操作,可粘接多种材料,如金属、玻璃、塑料等。
4.UV胶固化的应用领域UV胶广泛应用于电子、电器、光学、装饰等领域。
具体应用包括:(1)电子及电器:UV胶常用于电路板上的电子元器件固定、固化及保护封装;(2)光学:UV胶可用于光学器件的粘接、封装,如光学透镜、光纤连接器等;(3)包装:UV胶用于包装领域,如纸盒封胶、透明塑料包装袋等;(4)汽车:UV胶可用于汽车零部件的固定、封装,如车灯、仪表盘等;(5)制鞋:UV胶可用于鞋垫、鞋底的固定与粘接。
紫外线吸收剂测定

紫外线吸收剂测定1. 简介紫外线吸收剂是一类常用于化妆品、防晒用品、塑料制品等领域的化学物质,能够吸收紫外线辐射,起到保护皮肤和物品的作用。
为了确保产品的质量和安全性,需要对紫外线吸收剂的含量进行测定。
本文将介绍紫外线吸收剂测定的原理、方法和实验步骤。
2. 原理紫外线吸收剂测定的原理基于紫外线光谱的吸收特性。
紫外线吸收剂分子能够吸收特定波长范围的紫外线光,产生吸收峰。
测定紫外线吸收剂的含量,可以通过测量吸收峰的强度来推算。
常用的紫外线吸收剂有苯甲酸类、水杨酸类、二苯甲酮类等。
每种吸收剂在紫外线光谱上都有特定的吸收峰,因此需要根据具体吸收剂的特性选择合适的波长范围进行测定。
3. 方法3.1 仪器和试剂•紫外可见分光光度计•石英比色皿•紫外线吸收剂标准品•乙醇3.2 样品准备将待测样品溶解于乙醇中,制备一定浓度的溶液。
3.3 测定步骤1.打开紫外可见分光光度计,预热10分钟。
2.在石英比色皿中加入待测样品溶液,放入光度计样品室。
3.选择合适的波长范围,设置光谱扫描范围。
4.开始测量,记录吸收峰的强度。
5.重复步骤2-4,测量不同浓度的标准品溶液,建立吸收峰强度与浓度的标准曲线。
6.根据待测样品的吸收峰强度,利用标准曲线计算出样品中吸收剂的含量。
4. 注意事项1.实验过程中要注意避免光源的干扰,保证测量结果的准确性。
2.样品溶液的浓度需要适当调整,以保证吸收峰的强度在合适的范围内。
3.测定过程中要注意操作规范,避免交叉污染。
4.为了保证实验结果的可靠性,建议重复测量多次,取平均值作为最终结果。
5. 结论紫外线吸收剂测定是一种常用的分析方法,通过测量吸收峰的强度可以确定样品中吸收剂的含量。
本文介绍了紫外线吸收剂测定的原理、方法和实验步骤,并提醒了一些注意事项。
通过正确操作和合理控制实验条件,可以获得准确可靠的测定结果,保证产品质量和安全性。
参考文献:1.张三,李四,王五. 紫外线吸收剂测定方法研究[J]. 化学分析与检测,20XX,(X):XX-XX.2.防晒用品技术规范(GB/T XXXX-XXXX).3.国家药典(XXX版). 化妆品中紫外线吸收剂测定方法.注:本文仅供参考,具体实验操作请参考实验室的操作规程和相关标准方法。
紫外线吸收剂名词解释

紫外线吸收剂名词解释紫外线吸收剂,也被称为紫外线吸收剂或紫外线滤光剂,是一种特殊的光稳定剂,用于抑制或延迟塑料、油墨和其他高分子材料在太阳光中紫外线的照射下发生老化的化学物质。
由于太阳光中紫外线的能量较高,长时间暴露可能导致塑料等高分子材料发生降解,导致颜色褪色、表面龟裂、强度下降等问题,因此需要添加紫外线吸收剂来提高这些材料的耐久性。
紫外线吸收剂的工作原理主要是通过吸收紫外线并将其转换为热能,从而阻止紫外线对高分子材料的破坏作用。
当太阳光中的紫外线辐射到含有紫外线吸收剂的材料表面时,紫外线吸收剂会吸收紫外线的能量并将其转换为热能,从而减少紫外线对高分子材料的破坏作用。
紫外线吸收剂的种类繁多,主要可分为有机和无机两类。
有机紫外线吸收剂主要有水杨酸酯类、苯酮类、苯并三唑类等,它们具有较好的吸收波长范围和较高的吸收效率。
无机紫外线吸收剂如氧化锌和二氧化钛等,也常用于某些特殊场合。
在选择紫外线吸收剂时,需要根据具体的应用场景和需求进行选择。
例如,需要根据所保护的高分子材料的类型、使用环境和所需防护的紫外线波长范围等因素进行选择。
同时,还需要考虑紫外线吸收剂与其他组分的相容性、稳定性、耐热性以及成本等因素。
除了在塑料和油墨等领域的应用外,紫外线吸收剂还广泛应用于涂料、胶粘剂、织物处理等领域。
例如,在涂料中添加紫外线吸收剂可以延缓涂层的老化,保持涂料的颜色和光泽;在织物处理中添加紫外线吸收剂可以增加织物的抗紫外线性能,防止织物褪色和变脆。
需要注意的是,虽然紫外线吸收剂可以提高高分子材料的耐久性,但并不能完全阻止其老化。
因此,在实际应用中,还需要综合考虑其他因素如材料的耐热性、耐氧化性、抗水解性等,以及合理的使用和维护方法。
此外,由于不同国家和地区对塑料等材料中添加剂的使用有不同的法规和标准限制,因此在使用紫外线吸收剂时还需要遵守相关法律法规和标准要求。
同时,为了满足环保和可持续发展的要求,开发高效环保的紫外线吸收剂也是当前研究的热点之一。
二氧化钛吸收紫外线原理

二氧化钛吸收紫外线原理二氧化钛是一种常见的无机化合物,具有吸收紫外线的能力。
它在许多领域中被广泛应用,如防晒霜、涂料、塑料等。
本文将介绍二氧化钛吸收紫外线的原理及其在实际应用中的重要性。
我们来了解一下什么是紫外线。
紫外线是太阳光中的一种电磁辐射,波长较短,能量较高。
它分为UVA、UVB和UVC三种类型,其中UVC被大气层吸收,不会到达地球表面,而UVA和UVB则能够穿透大气层,对人体和环境造成一定的伤害。
二氧化钛具有良好的吸收紫外线的性能,这得益于其特殊的电子结构。
二氧化钛的晶体结构中,钛原子与氧原子形成了一种三维网状结构。
在这个结构中,钛原子与氧原子之间存在着共价键和离子键。
当紫外线照射到二氧化钛表面时,它会激发二氧化钛中的电子。
这些被激发的电子会跃迁到较高的能级,形成激发态。
在激发态下,二氧化钛会发生一系列的电子和原子的相互作用过程,从而将紫外线能量转化为其他形式的能量。
最终,二氧化钛会将紫外线能量转化为热能,使其被吸收。
二氧化钛吸收紫外线的过程可以用能带结构来解释。
在二氧化钛的能带结构中,存在着导带和价带。
导带是指在晶体中电子能量较高的能级,而价带是指电子能量较低的能级。
当紫外线照射到二氧化钛表面时,它会提供足够的能量,使得部分电子从价带跃迁到导带。
这样一来,二氧化钛就吸收了紫外线的能量。
二氧化钛吸收紫外线的特性使其在许多领域中得到了广泛应用。
首先,它被广泛用于防晒霜中。
防晒霜中的二氧化钛能够吸收紫外线,从而保护皮肤免受紫外线的伤害。
其次,二氧化钛也被用作涂料和塑料中的紫外线吸收剂。
这些产品在户外环境中会暴露在紫外线下,如果不进行保护,就会发生颜料褪色、材料老化等问题。
通过添加二氧化钛,可以有效地吸收紫外线,延长产品的使用寿命。
在实际应用中,二氧化钛的吸收紫外线性能也受到一些因素的影响。
首先,二氧化钛的晶体结构和纯度会影响其吸收紫外线的能力。
晶体结构越完整,纯度越高,二氧化钛吸收紫外线的效果就越好。