第五单元数学广角

合集下载

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。

人教版六年级下册数学第五单元《数学广角》鸽巢问题

人教版六年级下册数学第五单元《数学广角》鸽巢问题
有有55个苹果要放入个苹果要放入44个抽屉中那么总有一抽屉中那么总有一个抽屉里面至少会放个抽屉里面至少会放22个苹100991如果把6个苹果放入4个抽屉中至少有几个苹果被放到同一个抽2如果把8个苹果放入5个抽屉中至少有几个苹果被放到同一个抽1如果把9个苹果放入4个抽屉中总有一个抽屉里至少放了个苹果
人教版六年级下册数学第五单元《数学广角 》
2)如果把158个苹果放进 3个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果?
精品课件
抽屉原理(二)
把 a 个 物 体 放 进 n 个 抽 屉,若a÷n=b……c
(c≠0 ,c<n )
则一定有一个抽屉至少 放了______ 个物体。 精品课件
比一比:两个抽屉原理有 何区别?
“原理1”和“原理2”的区别 是:原理1苹果多,抽屉少,数 量比较接近;原理2虽然也是 苹果多,抽屉少,但是数量相 差较大,苹果个数比抽屉个数 的几倍还多几。
2、从任意5双手套中任取6只,其中至少有2只 恰为一双手套 ,对吗?
3、从数1,2,。。。,10中任取6个数,其中 至少有2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球, 某班 50名同学来仓库拿球,规定每个人至少拿 1个球,至多拿2个球,问至少有几名同学所 拿的球种类是一致的?
精品课件
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3 +1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份精数品课件 其中一个多1
鸽巢问题 (二)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)一、单选题1.王东玩掷骰子游戏,要保证掷出的骰子点数至少有两次相同,他最少应掷()次。

A. 5B. 6C. 7D. 82.把7本书放进2个抽屉,总有一个抽屉至少放()本书。

A. 3B. 4C. 53.把红、黄、蓝三种颜色的球各5个放进一个盒子里,至少取()个球可以保证取到两个颜色相同的球.A. 4B. 5C. 6二、判断题4.有7本书放入2个抽屉,有一个抽屉至少放4本书。

()5.张叔叔参加飞镖比赛,投了4镖,总成绩是33环,且每一镖的成绩都是整数环。

张叔叔至少有一镖不低于9环。

()6.11只鸽子飞进了5个鸽笼,总有一个鸽笼至少飞进了3只鸽子。

()三、填空题7.有红、黄、蓝3种颜色的球各5个,放在同一个盒子里,至少取出________个,可以保证取到2个颜色相同的球。

8.把10颗糖果分给4个小朋友,总有一个小朋友至少分到________颗糖果。

9.盒子里有同样大小的红、蓝、黄、黑四种颜色的球各10个,要想摸出的球一定有4个是相同颜色的,至少要摸出________个球。

四、解答题10.有26位小朋友,他们当中至少有3位小朋友属同一生肖,这个观点对吗?为什么?11.六(1)班有40名同学表演节目,老师为他们准备了一些气球,至少要准备多少个气球,才能保证至少有一个同学能拿到两个或两个以上的气球为什么?12.假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?13.某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?五、应用题14.布袋里有4种不同颜色的球,每种都有10个.最少取出多少个球,才能保证其中一定有4个球的颜色一样?15.一副扑克有4种花色,每种花色13张,从中任意抽牌,至少从中抽出多少张牌,才能保证有花色相同的牌至少4张?为什么?参考答案一、单选题1.【答案】C【解析】【解答】6+1=7(次)。

第五单元 数学广角-2018-2019学年六年级下学期数学同步课件(人教版) (共19张PPT) 课件

第五单元 数学广角-2018-2019学年六年级下学期数学同步课件(人教版) (共19张PPT) 课件

十四、因为值得,所以等待;因为深爱 ,所以 追求; 直到拥 有,必 定珍惜 ;你若 不离, 我定不 弃。环 境影响 下,公 司面临 改革, 需要裁 员,高 学历出 身的她 赫然在 列。
彼时才发现,面临初出茅庐的年轻人 ,自己 的体力 和脑力 都已经 拼不过 ,几年 来累积 下来的 阅历和 经验没 有转化 成核心 竞争力 。

五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。

六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。

七、最让人羡慕的,不是被很多人追, 而是遇 见一个 不管怎 样,都 不会放 弃你的 人;纵 然知道 活不会 这么轻 易,但 我希望 你在我 的未来 里,余 生都是 你。

二、抱歉啊,不能为你金戈铁马,也不 能许你 一世繁 华,不 过我能 给你一 个小家 ,里面 温了杯 暖茶。

三、从晨昏到日暮,从清贫到富足,从 少年到 老迈, 从相遇 到余生 ,只想 和你十 指相扣 ,从此 再不分 开。

四、你的名字,是我读过最短的情诗。 我很喜 欢你, 像春去 秋来, 海棠花 开。

三、从晨昏到日暮,从清贫到富足,从 少年到 老迈, 从相遇 到余生 ,只想 和你十 指相扣 ,从此 再不分 开。

四、你的名字,是我读过最短的情诗。 我很喜 欢你, 像春去 秋来, 海棠花 开。

五、秒回的人应该很温柔吧,因为一直 在等喜 欢的人 ,也舍 不得让 喜欢的 人等。

六、多想和你有一个长久的未来,陪你 走完这 一生。 让所有 人祝福 我们, 彼此温 暖,互 不辜负 。
11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只鸽子。为什么?

六年级下数学广角-鸽巢问题知识点

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题【知识点一】“鸽巢原理”(一)“鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且m>n),那么一定有一个鸽巢中至少放进了2个物体。

【知识点二】“鸽巢原理”(二)“鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数),那么一定有一个鸽巢中至少放进了(k+1)个物体。

【知识点三】应用“鸽巢原理”解决简单的实际问题应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢)和分放的物体。

(2)设计“鸽巢”的具体形式。

(3)运用原理得出某个“鸽巢”中至少分放的物体个数,最终解决问题。

【误区警示】误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个抽屉里至少放5本书。

(√)错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)”计算了,应该是“3(商)+1”。

错解改正×误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的?5×3÷3=5(个)错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是与问题要求不符。

本题属于已知鸽巢数量(3中颜色即3个鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的),求要分放物体的数量,各种颜色小球的数量并与参与运算。

错解改正3+1=4(个)【方法运用】运用逆推法解决鸽巢问题典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中有(平均每个鸽巢里所放物体的数量+1)个物体。

此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数,要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至少要比鸽巢数的(5-1)倍多1个。

第五单元数学广角—鸽巢问题应用题(应用题)人教版六年级下册数学

第五单元数学广角—鸽巢问题应用题(应用题)人教版六年级下册数学

第五单元数学广角——鸽巢问题应用题(试题)六年级下册数学一、解答题1.扑克牌里学数学:一副扑克牌(取出两张王牌)。

(1)在剩下的52张牌中任意抽出9张,至少有多少张是同花色的?(2)扑克牌一共有4种花色,每种花色都有13张牌,问至少要抽出几张牌才能保证有一张是红桃?(3)至少要抽出多少张才能保证有5张牌是同一花色的?2.在一个直径为2m的圆形花坛周围放上7盆花,那么至少有2盆花之间的距离不超过1米,为什么?(提示:可以通过计算后画图说明)3.从13个连续的自然数中,一定可以找到两个数,它们的差是12的倍数。

任意取多少个连续的自然数,才能保证至少有两个自然数的差是7的倍数?4.国王让阿凡提在8×8的国际象棋棋盘的每个格子里放米粒。

结果每个格子里至少放一粒米,无论怎么放都至少有3个格子里的米粒一样多,那么至多有多少个米粒?5.植树节,育才小学有41名老师和381名学生参加义务植树活动。

参加植树的老师至少有4人是同一个月出生的。

参加植树的学生至少有2人的生日是同一天。

他们说得对吗?6.有25个小朋友要乘6只小船游玩,总有一只船上至少坐几个小朋友?7.纸箱里杂乱地放着黑、白、红、绿、黄五种颜色的袜子各50只,规格都相同。

在黑暗中至少要取出多少只袜子,才能保证有15双颜色相同的袜子?试卷第1页,共3页8.把10个红球、9个黄球、8个绿球、3个蓝球混合后放到一个布袋里,一次至少摸出多少个球才能保证有2个红球?9.一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?10.六(1)班有45名同学,把他们分成6个学习小组。

不管怎么分,总有一个学习小组至少有8人,为什么?11.体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?12.一个布袋里有红、黑、白三种颜色的彩笔各8支。

人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计

人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计
单元整体教学设计
年 级
六年级
单元名称
人教版六年级下册第五单元
《数学广角——鸽巢问题》
一、单元教学设计说明
教材分析
教材编排的“抽屉原理”涉及三种基本的形式:第一种,只要物体的数量比抽屉多,那么一定有一个抽屉放进了至少两个物体。第二种,即是“把多于kn(k是正整数)个元素放入n个集合,总有一个集合里至少有(k+1)元素”。若k为1,就是第一种情况,可见第一种情形实际是第二种情形的特例。第三种情况是把无限多个物体(如红球、蓝球各4个)放进有限多个抽屉(两种颜色),那么一定有一个抽屉放进了无限多个物体(至少2个同色的球)。
在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍可在学生学习过程中用直观的方式进行就事论事的探讨。在学习中,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。
(二)有意识地培养学生模型思想
抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能否解决该问题的范畴。建议在活动思考过程中,引导渗透如何寻找隐藏在背后的抽屉问题的一般模型。
(三)要恰当把握教学要求
抽屉原理的应用广泛并且灵活多变,因此,用抽屉原理来解决实际问题时,有时要找到实际问题与抽屉问题之间的联系并不容易。因此学习时,不必过于追求学生说理的严密性,只能结合具体问题把大致意思说出来就可以了,更允许学生借助实物操作等直观方式进行猜想验证。
三、单元整体教学思路
单元结构图及课时安排
课标要求
《义务教育数学课程标准(2022年版)》在“课程目标”的“第三学段”中提出:“尝试在真实的情境中发现和提出问题,探索运用基本的数量关系,以及几何直观、逻辑推理和其他学科的知识、方法分析和解决问题,形成模型意识和初步的应用意识、创新意识。”“对数学具有好奇心和求知欲,主动参与数学学习活动。在解决问题的过程中,体验成功的乐趣,相信自己能够学好数学,感受数学的价值,体验并欣赏数学美”。

六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案

六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案

六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限第五单元数学广角――鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

第 1 页共 14 页六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课标实验教材六年级下册数学园地
五.数学广角
宜接写得数。

1131
3 48&y T
2 —2=2 2一 = 315- X5=
7 77 7T¥
2X 44-2 X =0.25 4- =+—
T T y
1 x i 一1 = 1.05X4=2684-14X0=
y 3 ?
(+ —)X30= 306-16= 5.1+0.09 =
二]"^番□
1、6 2 7可以摆出()个不同的三位数。

2、六(1)班有28人参加了语文和数学竞赛。

参加语文竞赛
的有15人,参加数学竞赛的有18人,语数竞赛都参加的有(
)人。

3、48名学生做游戏,大家围成一个正方形,每边人数相等,
四个顶点都有人,每边各有()名学生。

4、时钟6时敲响6下,10秒钟敲完。

10时敲响10下,需要
()秒。

5、9个零件中有1件是次品(次品轻一些),用天平称,至少
()次就一定能找出次品来。

7、有黄、红两种颜色的球各4个,放到同一个盒子里,至少取()
个球可以保证取到2个颜色相同的球。

8、把5颗梨放在4个盘子里,总有()个盘子至少要放2 颗梨。

9、一串彩灯按照“红、黄、蓝、绿”的规律排列着,第8个
彩灯是()颜色,第25个彩灯是()色。

10、两个点可以连成()条线段,三个点可以连成()条线段。

三、按要求完成下而各题。

1、按下图方式摆放桌子和椅子。

一张桌子可坐6人,两张桌子可坐()人。

⑵按上图的方式继续摆桌子,完成下表。

2、列表。

学校组织了象棋、绘画和舞蹈兴趣小组,小A、小B和小C 分别参加了其中二项。

小A不喜欢象棋,小B不是舞蹈小组的,小C喜欢绘画。

画一个表来帮忙,把信息记录下来,再进行推理。

小A参加()组,小B参加()组,小C参加
()组
四、解决问题。

1、7个人住进5个房间,至少要有两个人住同一间房。

为什么?
(请你用图示的方法说明理由)
2、把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什
么?
3、希望小学有367人,请问有没有两个学生的生H是同一天?为什
么?
4、一个盒子里装有黑口两种颜色的跳棋各10枚,从中最少摸出几
枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?
※五、智惠屋。

1、一副扑克有4种花色,每种花色13张,从中任意抽牌,最少要
抽多少张才能保证有4张牌是同一花色?为什么?
2、用分数表示各图中的涂色部分。

相关文档
最新文档