复变函数于是便函数的区别与联系
实变函数论与复变函数论的联系与差异

实变函数论与复变函数论的联系与差异实变函数论和复变函数论是数学分析中两个重要的分支,它们都探讨了函数的性质和行为,但是在研究对象和方法上存在一些差异。
下面将详细讨论实变函数论和复变函数论的联系与差异。
一、联系1. 函数的定义:实变函数论和复变函数论都研究函数的性质和行为。
实变函数论研究的是定义在实数域上的函数,而复变函数论研究的是定义在复数域上的函数。
2. 极限:实变函数论和复变函数论都涉及函数的极限概念。
实变函数论中,函数的极限是指函数在某一点处的趋近情况;复变函数论中,函数的极限是指函数在复平面上的趋近情况。
3. 连续性:实变函数论和复变函数论都研究函数的连续性。
实变函数论中,函数在某一点连续意味着在该点的极限存在且等于该点的函数值;复变函数论中,函数在某一点连续意味着在该点的极限存在且与函数值无关。
4. 导数:实变函数论和复变函数论都涉及函数的导数概念。
实变函数论中,导数表示函数在某一点的变化率;复变函数论中,导数表示函数在某一点处的线性逼近。
5. 积分:实变函数论和复变函数论都研究函数的积分。
实变函数论中,积分是通过对函数进行区间分割求和的方式求得;复变函数论中,积分是通过对函数在曲线上进行线积分求得。
二、差异1. 定义域和值域:实变函数论研究的是定义在实数域上的函数,其定义域和值域都是实数集;复变函数论研究的是定义在复数域上的函数,其定义域和值域都是复数集。
2. 解析函数:在复变函数论中,解析函数是指在其定义域上处处可导的函数。
而实变函数论中并没有类似的概念。
3. 复数域的性质:复数域具有复平面的几何结构,而实数域没有这样的结构。
因此,在复变函数论中可以讨论复数函数的奇点、留数等概念,这些在实变函数论中是不存在的。
4. 应用领域:实变函数论主要应用于物理学、经济学等实际问题的建模和分析;复变函数论则主要应用于电磁场、量子力学、流体力学等领域。
总结起来,实变函数论和复变函数论都研究函数的性质和行为,但是在定义域、值域、解析函数概念、复数域的性质和应用领域上存在一些差异。
1.复变函数与实变函数定义区别与联系有哪些

1.复变函数与实变函数定义的区别与联系有哪些?复变函数的定义从文字叙述上看与实变函数的定义几乎是一样的。
设A 是一个复数集,如果对A 中的任一复数z ,通过一个确定的规则f 有唯一的或若干个复数w 与之对应,就说在复数集A 上定义了一个复变函数,记为)(z f w =。
而实变函数的定义为:设A 是一个实数集,如果对A 中的任一实数x ,通过一个确定的规则f 有唯一的实数y 与之对应,就说在实数集A 上定义了一个实变函数,记为)(x f y =。
从定义上看,除了几个字母表示不一样外(对数学来说,采用什么记号表示不是本质区别),还有就是复变函数对对应法则的要求相对宽松,产生了多值函数,但在实际处理问题中,往往都是把多值函数处理成单值函数来看(因此这也可以看成不是本质的区别)。
如果只是把复变函数的定义用文字叙述的方法讲解,初学者往往会产生思维定势,把数学分析或高等数学中学习的实变函数的概念照搬过来理解,这就产生了错误,没有把握住二者的本质区别。
但是如果从几何上利用对比教学法对这两个概念进行比较,就会生动形象,使差异性做到了可视化,两个概念的区别被直观放大,这对学生会产生视觉震撼,印象深刻。
具体演示如下:w1w2z2z1学生通过图形演示对二者的区别会有充分把握:二者定义虽然从文字上看类似,但是具体的对应形式发生了根本变化,简单来说就是,实变函数可以看成是把一维实数区间映射成一维实数区间的函数,而复变函数则是把二维平面区域映射成二维平面区域的函数。
而至于复变函数的定义域和值域分别画在两个不同的复平面上则纯粹是为了方便和避免混淆。
这就把握住了二者的本质区别,同时也加强了学生对复数的理解。
2.复变函数里的极限定理和数学分析中极限定义的区别与联系有哪些?正确理解了复变函数的定义后,接着复变函数的极限又是一个对初学者容易产生错误理解的重要概念。
同样,复变函数的极限定义从文字叙述或符号表示上看也与实变函数的极限定义几乎是一模一样的。
复变函数2 解析函数

⎧ ⎪Δu = ux Δx + uy Δy + o ( ρ ) = ⎡ ⎣( aΔx − bΔy ) + o ( ρ ) ⎤ ⎦ ⇒⎨ ⎪ ⎣( bΔx + aΔy ) + o ( ρ ) ⎤ ⎦ ⎩ Δv = vx Δx + vy Δy + o ( ρ ) = ⎡
⎧ ux = vy = a , ⇒ f ′(z) = ux +ivx = vy −iuy . ⇒⎨ ⎩ v x = −u y = b .
当且仅当 x = y = 0时, u x = v y , u y = − v x , 因而函数仅在z = 0可导, 但在复平面内任何地方都不 解析.
例题3 f ( z ) = u + iv是区域D内的解析函数, 且 f ′( z ) ≠ 0
u ( x, y ) = C1 , v( x, y ) = C2 ( C1 , C2为任意常数 )
( ⇐ ) 设 u(x,y) 与 v(x,y) 在点 (x,y)∈ D 可微,
并且满足柯西-黎曼(Cauchy-Riemann)方程。 于是
Δu = u x Δx + u y Δy + ε1Δx + ε 2 Δy Δv = vx Δx + v y Δy + ε 3Δx + ε 4 Δy
(Δx,Δy→0时,εk→0, (k=1,2,3,4))
u x = 1, u y = 0 , v x = 0 , v y = − 1 ⇒ u x ≠ v y u y ≠ − v x
故 w = z 在复平面内处处不可导, 处处不解析;
2) 由w = z Re(z) = x2 + ixy, 得u = x2, v = xy, 所以
第2章复变函数与解析函数精品PPT课件

①在 z
(分母在 z 0
0不连为续0的)在两z个0 处函连数续f(z;)与g(z)的和,差,积,商
②若函数 hg(z)在点 z 0 处连续,函数 w f(h)
在 h0 g(z0连) 续,则复合函数 wf[g(z)]
在 z 0 处连续(证略).
例3 求 lim z 1 zi z 2
解: 因为 z 1 在点zi 处连续,故 z2
注:连续的条件:
(1) 在z 0处有定义;
(2) z 0 处的极限值等于该点的函数值.
2)连续充要条件: 定理 函数 f(z) u (x ,y ) i(v x ,y ),在 z0 x0iy0 处连续的充要条件是u(x, y) 和 v(x, y) 都 在点(x0, y0)处连续.
3)连续函数性质:
x2 y2
x2 y2
化为一个复变函数.
解 设 zxiy ,wuiv, 则 wuiv 2xiy x2 y2
将 x 1 (z z) ,y 1 (z z) 以及 x2 y2 zz 得 2 w312i (z0)
2z 2z
二.复变函数的极限与连续性 1.极限:
1)定义 设函数f(z) 在 z 0 的去心邻域内有定义,若对任
2. 可导与连续的关系
若函数wf(z)在点z 0 处可导,则 f (z)在点 z 0 处必
连续.反之不一定.
3.用定义求导的步骤 1)求增量比; 2)求增量比的极限.
例1 求 f ( z) z 2 的导数.
二.解析函数的概念及求导法则
1. 解析函数的定义
1) 点处解析: 如果f(z)不仅在点 z 0处可导,且在点 z 0 的某邻域内的处处可导,则称f(z)在点 z 0处解析;
3)运算法则:类似于实函数极限的运算法则. 例
复变函数1

数学物理方法
特 殊 函 数 篇
数 学 物 理 方 程 篇
复 变 函 数 篇
第一篇 复变函数论
复变函数论
微分 积分
傅里叶积分变换 拉普拉斯积分变换
柯西积分定理 柯西积分公式
留数定理 留数和定理
圆域内泰勒 级数 环 域内的 罗朗级数
《复变函数论》 主要内容
主要包括以下几方面的内容: 一、复变函数 二、复变函数的积分 三、幂级数展开 四、留数定理 五、傅里叶变换 六、拉普拉斯变换
x cos y sin
x2 y 2 y arctan x
复数的数学表达式: (1)代数式:z=x+iy (2) 三角式: z= cos i sin (3) 指数式:z= ei
0
y 虚轴
y
Z (x , y )
i (1 2 )
复数的商: z1 x1+iy1 ( x1+iy1 )( x2 -iy2 ) x1 x2 y1 y2 x2 y1 x1 y2 = = +i 2 2 2 2 z2 x2+iy2 ( x2+iy2 )( x2 -iy2 ) x2 y2 x2 y2 z1 1 (cos 1 i sin 1 ) 1 [cos(1 2 ) i sin(1 2 )] z2 2 (cos 2 i sin 2 ) 2
1 i ( e 2
1
2)
利用数学归纳法可以将上式推广到 n 个复数相 乘的三角形式与指数形式 z1 z2 zn rr2 rn [cos(1 2 n ) isin(1 2 n )] 1
2. 复数的三角表示 (1).复数的辐角 定义 辐角 辐角的主值 复数 z x i y对应的点 ( x, y ) 的极坐标为 r 和 ,当
实变函数与复变函数的异同

[ 关键词 ] 极限 ; 基本初 等函数 ; 导数及其几何 意义 ; 积分; 零点; 级数 ; 中值定理 [ 中图分类号 ] T 1 M1 [ 文章标识码 ] A [ 文章编号 ] 1 7— 04 (0 2 0 —04 6 15 0 2 1 ) 1 0 4—0 5
tn ino n mb rd m i o s e pi t ema e t r n h s u h a :m t e t s, ie e t q a in , n y i i s ec. Th o l xf n t n e s f u e o ng e e ot t mai b a c e ,s c s a h mai df r n i e u t s a a ssst , t o a d n h h c c l a o l u ec mp e c i u o p t mp a i n su yn n lssf n t n i ih i e l a t n s a t r ne r ltd i s a fi d p n e t T i c r s t ef n a na u e h sso t d i g a ay i ci nwh c t r a r d f ep r e it reae n t d o e e d n . h sf t u o s p a l a a e n a ma k d me t l h u ds n t nb t e ea a y i f n t n a d ter a u c in S men t n mb d e nr a n t nc ud b s d t ov o l xf n t n q e t n , i c i ewe nt n s s u ci n h l f n t . o o i se e d i l f ci o l eu e s l ec mp e ci u si s i t o h l o e o o d e u o o u o o
复变函数与解析函数

复变函数与解析函数复变函数是数学中一个非常重要的分支,也是其它自然科学中涉及到复数的问题所必须掌握的基础知识。
它的研究对象是由复变量组成的函数,在复平面上有非常丰富的性质和应用。
解析函数是复变函数中的一个重要概念,是指在某个区域内可导的复变函数,它在物理、工程、数学等领域中有着广泛的应用。
一、复变函数基础复数包含实数和虚数两个部分,即 $z=a+b i$,其中 $a$ 和$b$ 是实数,$i$ 是虚数单位,满足 $i^2=-1$。
复平面可使用一个点 $(a,b)$ 表示一个复数 $z=a+b i$,其中向上为正方向,向右为正方向。
我们可以将复平面分为实轴和虚轴两部分,实轴上的点是实数 $a$,虚轴上的点是复数 $b i$。
对于一个复变量 $z=x+y i$,可以分别表示为实部 $x$ 和虚部$y$,即 $x=Re(z), y=Im(z)$。
其中,共轭复数(conjugate complex)的实部不变、虚部相反,即 $z^* = x - yi$。
绝对值定义为模长(modulus)或者复数的模数(magnitude):$|z|=\sqrt{x^2+y^2}$。
表示复数 $z$ 在复平面上到原点的距离。
二、复变函数的概念在实数域上,函数是由一个或多个自变量构成的表达式或规则,对应一个或多个因变量。
像$y=f(x)$ 这样的表达式就是一个函数。
在复数域上,一个函数 $f(z)$ 由一个复变量 $z=x+y i$ 构成,可看作 $(x,y)$ 上的某种标量函数。
即对于 $x,y \in \mathbb{R}$,$z=x+y i \in \mathbb{C}$,$f(z)$ 可以表示为$f(x+yi)=u(x,y)+v(x,y)i$ 的形式,其中 $u(x,y)$ 和 $v(x,y)$ 是实函数。
我们可以把 $\mathbb{C}$ 中的点 $z$ 对应到复平面上,把点$z$ 对应的函数值 $f(z)$,对应到复平面上的另一个点 $w$。
复变函数与实变函数的区别与联系

复变函数与实变函数的区别与联系
复变函数与实变函数的区别主要在于定义域和值域的不同。
1. 定义域:实变函数的定义域是实数集,而复变函数的定义域是复数集。
2. 值域:实变函数的值域也是实数集,而复变函数的值域是复数集。
3. 解析性:复变函数具有解析性,即满足柯西-黎曼方程,因
此可以进行复数的微积分运算,如导数和积分。
而实变函数不一定具有解析性,例如绝对值函数的导数在某些点处是不存在的。
联系:
1. 实变函数是复变函数的一种特殊情况,即定义域和值域都是实数集的复变函数就是实变函数。
2. 复数集可以看作是实数集的扩充,因此复变函数可以看作是实变函数在复数集上的推广。
3. 实变函数与复变函数在函数的取值和性质上有很多相似之处,例如连续性、可微性和可积性等。
总之,复变函数是对实变函数的推广,通过引入复数,可以更加广泛地描述和研究数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数与实变函数的联系与区别华中师范大学物理学院2008213421 路丽珍摘要:数的扩展:正数→负数→实数→…在实数范围内:方程当时,没有实根。
→扩大数域,引进复数,由实变函数学习到复变函数,它们有着紧密的联系,也有着巨大的区别。
关键词:复变函数实变函数联系与区别正文:在中学我们主要了解学习了实变函数,与大学期间,我们又更加深入的学习研究了实变函数,与此同时,也开始复变函数的学习。
由此我们看到了:“数的扩展:正数→负数→实数→…在实数范围内:方程当时,没有实根。
→扩大数域,引进复数”。
这样容易给人一种由浅入深、由简入繁、由特殊到一般的感觉,他们有很深的联系,然而事实上,他们有很大的不同,有很大的区别。
下面我们从几个方面来说明实变函数与复变函数的联系与区别。
1.自变量的不同以实数作为自变量的函数就做实变函数;即实数→实变量→实变函数。
以复数作为自变量的函数就叫做复变函数;即复数→复变量→复变函数。
2.实变函数与复变函数的联系区别(1)因为z=x+yi,所以复变函数y=f(z)的实部与虚部都是x,y的函数,即w= f(z)=u(x,y)+iv(x,y),由此可以看成:一个复变函数是两个实变函数的有序组合。
这样,实变函数的许多定义、公式,定理可直接移植到复变函数中。
然而同时,由于复变函数的虚部,实变函数的许多定义、公式,定理也不再是用于复变函数。
(2)对于复变函数与实变函数,我们分别学习了两者的点集、序列、极限、连续性、可微性、积分等性质与应用。
然而同时,由于复变函数的虚部,所要求的点集、序列、极限、连续性、可微性、积分等性质与应用的定义也不尽相同。
实分析(实变函数)与复分析(复变函数)(2010-10-02 13:47:52)/s/blog_4b700c4c0100m95r.html实分析实分析或实数分析是处理实数及实函数的数学分析。
专门研究数列,数列极限,微分,积分及函数序列,以及实函数的连续性,光滑性以及其他相关性质。
实分析常以基础集合论,函数概念定义等等开始。
实变函数以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。
它是微积分学的进一步发展,它的基础是点集论。
所谓点集论,就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。
比如,点集函数、序列、极限、连续性、可微性、积分等。
实变函数论还要研究实变函数的分类问题、结构问题。
实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。
产生微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。
数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。
也正是在那个时候,数学家逐渐发现分析基础本身还存在着学多问题。
比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。
以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。
又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。
十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。
后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都没有导数。
这个证明使许多数学家大为吃惊。
由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。
人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。
这些都促使数学家考虑,我们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。
比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?……上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。
内容以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。
它是微积分学的进一步发展,它的基础是点集论。
什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。
也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。
比如,点集函数、序列、极限、连续性、可微性、积分等。
实变函数论还要研究实变函数的分类问题、结构问题。
实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。
这里我们只对它的一些重要的基本概念作简要的介绍。
实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。
由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度。
什么实测度呢?简单地说,一条线段的长度就是它的测度。
测度的概念对于实变函数论十分重要。
集合的测度这个概念实由法国数学家勒贝格提出来的。
为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。
1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。
波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。
勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。
无界函数勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的。
从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了。
也可以看出,实变函数论所研究的是更为广泛的函数类。
自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。
这样,在实变函数论的领域里又出现了逼近论的理论。
什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。
如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。
逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况。
和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。
和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。
总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征。
实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响。
图书信息书名: 实变函数作者:张建平,丘京辉出版社:东南大学出版社出版时间: 2009-5-1 ISBN: 9787564115340 开本: 16开定价: 18.00元内容简介本书在n维欧氏空间中建立Lebesgue测度和积分的理论,突出体现实变函数的基本思想。
全书包括:集合、点集、Lebesgue测度、可测函数、Lebesgue 积分、微分与不定积分、Lp空间共七章。
每一小节讲述概念、定理与例题后,均附有精心挑选的配套基本习题,每一章后均附有整整一节的例题选讲,介绍实变函数解题的各种典型方法与重要技巧,每一章后还列出大量的习题供读者去研究与探索。
本书可作为高等院校数学专业的教材,也可供相关专业人员参考。
图书目录1 集合 1.1 集合及其运算 1.2 映射 1.3 对等与基数1.4 可数集 1.5 连续基数 1.6 例题选讲习题一 2 点集2.1 n维欧氏空间 2.2 开集与内点 2.3 闭集与极限点 2.4 闭集套定理与覆盖定理 2.5 函数连续性 2.6 点集间的距离 2.7 Cantor集 2.8 稠密性 2.9 例题选讲习题二 3 Lebesgue测度3.1 广义实数集 3.2 外测度 3.3 可测集 3.4 可测集类3.5 不可测集 3.6 例题选讲习题三 4 可测函数4.1 可测函数的定义及性质 4.2 Egoroff(叶果洛夫)定理 4.3 依测度收敛性4.4 Lusin(鲁津)定理 4.5 例题选讲习题四 5 Lebesgue积分5.1 非负可测简单函数的积分 5.2 非负可测函数的积分 5.3 一般可测函数的积分 5.4 控制收敛定理 5.5 可积函数与连续函数 5.6 Lebesgue积分与Riemann积分 5.7 重积分与累次积分 5.8 例题选讲习题五 6 微分与不定积分 6.1 单调函数的可微性 6.2 有界变差函数 6.3 不定积分的微分 6.4 绝对连续函数 6.5 例题选讲习题六7 Lp空间7.1 Lp空间的定义与有关不等式7.2 Lp空间(1≤p≤∞)的完备性7.3 Lp空间(1≤p<∞)的可分性7.4 例题选讲习题七复分析复分析是研究复函数,特别是亚纯函数和复解析函数的数学理论。
这些函数定义在复平面上,其值为复数,而且可微。
复函数的可微性有比实函数的可微性更强的性质。
例如:每一个正则函数在其定义域中的每个开圆盘都可以幂级数来表示:。
特别地,全纯函数都是无限次可微的,这性质对实可微函数而言普遍不成立。
大部分初等函数(多项式、指数函数、三角函数)都是全纯函数。
复变函数以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。
解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
起源复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。
在很长时间里,人们对这类数不能理解。
但随着数学的发展,这类数的重要性就日益显现出来。
复数的一般形式是:a+bi,其中i是虚数单位。
发展简况复变函数论产生于十八世纪。
1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。
而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。
因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。
到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。
复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。
当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。