2018—2019学年下学期期末水平质量检测七年级数学试卷及答案
2018-2019学年度七年级下学期期末试卷数学试题卷

2018-2019学年度七年级下学期期末试卷数学试题卷一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算正确的是()A.a2+a2=2a4B.3a3﹣a=2a2C.﹣a3•2a4=﹣2a12 D.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直4.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm5.如图,AD和BE是△ABC的两条中线,设△ABD的面积为S1,△BCE的面积为S2,那么()A.S1>S2B.S1=S2C.S1<S2D.不能确定6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C二.填空题(本大题共6小题,每小题3分,共18分)7.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.8.若x2+mx+16是完全平方式,则m的值是.9.如图,直线AB、CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=131°,则∠EOC=°.10.过去的一年里中国的精准脱贫推进有力,农村贫困人口减少1386万.其中数据13860000用科学记数法表示为.11.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片张.12.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论:①BD平分∠ABC;②D是AC的中点;③AD=BD=BC;④△BDC的周长等于AB+BC,其中正确的序号是三.(本大题共5小题,每小题6分,共30分)13.(1)|﹣3|+(﹣1)2013×(π﹣3)0﹣(﹣)﹣3(2)a3•a3+(2a3)2+(﹣a2)3.14.先化简再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.15.如图,点B是△ADC的边AD的延长线上一点,若∠C=50°,∠BDE=60°,∠ADC=70°.试说明:DE∥AC.16.如图是7×6的正方形网格,点A、B、C在格点上,在图中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(三个图形各不相同).17.一个不透明袋中有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍.已知从袋中摸出一个球是红球的概率为.(1)求绿球的个数;(2)若从袋中拿出4个黄球,求从袋中随机摸出一个球是黄球的概率.四.(本大题共3小题,每小题8分,共24分)18.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车邮箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数.(2)若∠C>∠B,试探求∠DAE、∠B、∠C之间的数量关系.20.如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.(1)请你判断BF与CD的位置关系,并说明理由;(2)求∠3的度数.五.(本大题共2小题,每小题9分,共18分)21.回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.22.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)试说明:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.六.(本大题共12分)23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.2018-2019学年度七年级下学期期末试卷数学试题卷参考答案与试题解析一.选择题(共6小题)1.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.【解答】解:(A)原式=2a2,故A错误;(B)原式=3a3﹣a,故B错误;(C)原式=﹣2a7,故C错误;故选:D.3.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:B.4.【解答】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3<6,不能组成三角形.故选:B.5.【解答】解:如图,∵AD和BE是△ABC的两条中线,∴△ABD面积=△ACD面积,△BCE面积=△ABE面积,即S1+S4=S2+S3①,S2+S4=S1+S3②,①﹣②得:S1﹣S2=S2﹣S1,∴S1=S2.故选:B.6.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.二.填空题(共6小题)7.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.8.【解答】解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.9.【解答】解:∵∠AOD=131°,∴∠COB=131°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=131°﹣90°=41°,故答案为:41.10.【解答】解:数据1386 0000用科学记数法表示为1.386×107.故答案为:1.386×107.11.【解答】解:(2a+b)×(3a+2b)=6a2+7ab+2b2,则需要C类卡片7张.故答案为:7.12.【解答】解:∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠CBD=∠ABD=36°,即BD平分∠ABC;故①正确;∴∠BDC=∠C=72°,∴BC=BD,∴BC=BD=AD,故③正确;∴△BDC的周长为:BC+CD+BD=BC+C+AD=AC+BC=AB+BC;故④正确;∵CD<BD,∴CD<AD,∴D不是AC中点.故②错误.故答案为:①③④三.解答题(共11小题)13.【解答】解:(1)原式=3+(﹣1)×1﹣(﹣2)3=3﹣1+8=10;(2)原式=a6+4a6﹣a6,=4a6.14.【解答】解:原式=(2x2﹣2xy)÷2x=x﹣y,当x=3,y=1时,原式=3﹣1=2.15.【解答】证明:∵∠BDE=60°,∠ADC=70°.∴∠CDE=180°﹣60°﹣70°=50°,∵∠C=50°,∴∠C=∠CDE,∴AC∥DE.16.【解答】解:如图所示,点D即为所求.17.【解答】解:(1)∵从袋中摸出一个球是红球的概率为,∴红球的个数是:36×=12(个),设绿球的个数为x个,根据题意得:x+2x=36﹣12=24,解得:x=8,答:绿球的个数是8个;(2)根据题意得:黄球的个数是:2×8﹣4=12(个),则从袋中随机摸出一个球是黄球的概率为:=.18.【解答】解:(3)由(2)可知:Q=100﹣6t故答案为:(1)t;Q(2)100;619.【解答】解:(1)∵∠B=38°,∠C=70°,∴∠BAC=72°,∵AE是∠BAC平分线,∴∠BAE=36°,∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,∴∠DAE=∠BAD﹣∠BAE=16°;(2)∠DAE=(∠C﹣∠B),如图:∠BAC=180°﹣∠B﹣∠C,∵AE是∠BAC平分线,∴∠EAC=(180°﹣∠B﹣∠C),又∵Rt△ACD中,∠DAC=90°﹣∠C,∴∠DAE=∠EAC﹣∠DAC=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠B).20.【解答】解:(1)结论:BF∥CD.理由如下:在三角形ABC中,∠B+∠1+∠2=180°,∴42°+∠2+∠2+10°=180°,∴∠2=64°,又∵∠ACD=64°,∴∠2=∠ACD,∴BF∥CD.(2)∵∠ACD=64°,CE平分∠ACD,∴∠DCE=×64°=32°,由(1)知BF∥CD,∴∠3=180°﹣∠DCE=148°.21.【解答】解:(1)2、2.(2)23.(3)∵a2﹣3a+1=0两边同除a得:a﹣3+=0,移向得:a+=3,∴a2+=(a+)2﹣2=7.22.【解答】(1)证明:∵△ACB和△DCE都是等腰直角三角形,∴CD=CE,CA=CB,∵∠ACB=90°,∠DCE=90°,∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:∵△ACD≌△BCE,∴AD=BE,∵DB=AB=3cm,∴BE=2×3cm=6cm;(3)解:BE与AD垂直.理由如下:∵△ACD≌△BCE,∴∠1=∠2,而∠3=∠4,∴∠EBD=∠ECD=90°,∴BE⊥AD.23.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
2018-2019学年江苏省镇江市七年级(下)期末数学试卷+解析

,并把解集在数轴上表示出来.
21.(8 分)如图,在1010 的正方形网格中,每个小正方形的边长为 1 个单位长度.ABC
的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得
到△ ABC ,点 C 的对应点是直线上的格点 C .
(1)画出△ ABC .
(2)若连接 AA 、 BB ,则这两条线段之间的关系是 .
过 1000 元时,超出的部分需支付 0.1% 的手续费,以后每次提现支付的手续费均为提现金额
的 0.1% , (1)小明用自己的微信账户第一次提现金额为 1500 元,需支付手续费
元.
(2)小丽使用微信至今,用自己的微信账户共提现三次,提现金额和手续费如下:
第一次
第二次
第三次
提现金额
a
b
2a 3b
②如图 2, NAM PBP 180 ,即12t 180 4(12 t) 180 ,解得 t 19.5 ;
综上所述,满足条件的 t 的值为 6 或 19.5.
故答案为:6 秒或 19.5 秒.
二、选择题(本大题共有 5 小题,每小题 3 分,共 15 分.在每小题所给出的四个选项中,恰
有一项符合题目要求,)
第 4 页(共 17 页)
N ①此时 的范围是 ; ② 1 与 2 度数的和是否变化?若不变,求出 1 与 2 度数和;若变化,请说明理由; ③若使得 2 21,求 的范围.
第 5 页(共 17 页)
2018-2019 学年江苏省镇江市七年级(下)期末数学试卷
参考答案与试题解析
一、填空题(本大题共有 12 小题,每小题 2 分,共 24 分) 1.(2 分)红细胞的直径约为 0.0000077m ,0.0000077 用科学记数法表示为 7.7 106 . 【解答】解: 0.0000077 7.7 10 6 , 故答案为: 7.7 106 . 2.(2 分)计算: 3x 2xy 6x2 y . 【解答】解: 3x 2xy 3 2 (x x) y 6x2 y .
北师大版2018-2019学年重庆市重庆一中七年级(下)期末数学试卷含解析

2018-2019学年重庆一中七年级(下)期末数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡中对应的位置.1.(4分)的相反数是()A.﹣B.C.﹣2D.2.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(4分)计算:(a2b)3的结果是()A.a6b B.a6b3C.a5b3D.a2b34.(4分)下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.打开电视正在播放甲型H1N1流感的相关知识C.某射击运动员射击一次,命中靶心D.在只装有5个红球的袋中摸出1球,是红球5.(4分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间6.(4分)下列长度的三根木棒首尾相接,能做成三角形框架的是()A.13cm、7cm、5cm B.5cm、7cm、3cmC.7cm、5cm、12cm D.5cm、15cm、9cm7.(4分)要使函数y=有意义,自变量x的取值范围是()A.x≥1B.x≤1C.x>1D.x<18.(4分)如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定9.(4分)已知:(x+y)2=12,(x﹣y)2=4,则x2+3xy+y2的值为()A.8B.10C.12D.1410.(4分)如图是由一些长度相等的小木棍组成的图形,图(1)(2)(3)需要的小木棍数量分别为3根、7根、15根,按照这种方式摆下去,第(6)个图形需要的木棍数量为()A.60根B.63根C.127根D.130根11.(4分)如图,∠A=∠EGF,点F为BE、CG的中点,DB=4,DE=7,则EG长为()A.1.5B.2C.3D.5.512.(4分)当x=2+时,代数式x3﹣4x2+4x的值为()A.0B.4+2C.4+4D.2二、填空题:(本题共6个小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.(4分)计算:+(3﹣π)0=.14.(4分)前不久我市共有319000人参加了中考,数据319000用科学记数法表示为.15.(4分)如图,随机向“4×5”的长方形内丢一粒豆子(将豆子看做点),那么这粒豆子落入阴影部分的概率为.16.(4分)如图,在△ABC中,DE垂直平分BC,交BC、AB分别于D、E,连接CE,BF 平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB=度.17.(4分)如图,在△ABC中,D是AC上一点,AD=3CD,将△BCD沿BD翻折,得到△BFD,BF交AC于E,连接AF,若BE=2FE,△ABC的面积为2,则△AEF的面积为.18.(4分)如图,Rt△ABC中,AB=10,AC=8,BC=6,∠C=90°,AD平分∠BAC,点E为AC上一点,且AE=3CE,在AC上找一点F,AD上找一点P,连接EP、FP,则EP+FP的最小值为.三、解答题;(本大题共3个小题,每小题8分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.(8分)计算:(1)(﹣)×2(2)[(x﹣y)2﹣3y(y﹣x)﹣(x+y)(x﹣y)].20.(8分)如图,AB∥CD,GE=GF,∠NFG=110°,EG平分∠BEF,求∠DFG的度数.21.(8分)重庆一中初一年级在“六一儿童节”举行了“礼成人生,礼达天下”的成长仪式,随后在本年级学生中进行了满意度调查,采取随机抽样的调查方式进行问卷调查,问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D;并根据调查结果绘制如图两幅不完整统计图:(1)这次一共调查了名学生,并将条形统计图补充完整;(2)请在参与调查的这些学生中,随机抽取一名学生,求抽取到的学生对这次成长仪式满意度是“比较喜欢”或“感觉一般”的概率.四、解答题:(本大题共3个小题,每小题10分,共30分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.22.(10分)如图,点A,C,D在同一条直线上,BC与AF交于点E,AF=AC,AD=BC,AE=EC.(1)求证:FD=AB(2)若∠B=50°,∠F=110°,求∠BCD的度数.23.(10分)甲从A地出发,匀速步行到B地,同时,乙从B地出发,匀速步行到A地,甲乙两人与A地的距离S(米)与出发时间t(分钟)的关系如图:(1)直接写出甲、乙两人与A地距离S(米)与出发时间t(分钟)的关系式;(2)当两人相距2500米时,t为多少分钟?24.(10分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB 上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC 于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17“明三礼”数(填“是”或“不是”);721是“明礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.26.(12分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D、E在边BC 上,连接AD、AE,且∠DAE=45°.(1)如图1,若∠BAD=20°,求∠AED的度数;(2)如图2,若∠BAD=15°,证明:DE=2BD;(3)如图3,过点C作CF⊥AC交AE延长线于点F,再过点F作MF⊥CF交BC于点M,证明:BD=MD.2018-2019学年重庆一中七年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡中对应的位置.1.(4分)的相反数是()A.﹣B.C.﹣2D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得的相反数是﹣.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(4分)计算:(a2b)3的结果是()A.a6b B.a6b3C.a5b3D.a2b3【分析】根据幂的乘方和积的乘方,即可解答.【解答】解:(a2b)3=a6b3,故选:B.【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方.4.(4分)下列事件中,必然事件是()A.任意掷一枚均匀的硬币,正面朝上B.打开电视正在播放甲型H1N1流感的相关知识C.某射击运动员射击一次,命中靶心D.在只装有5个红球的袋中摸出1球,是红球【分析】找到一定会发生的事件的选项即可.【解答】解:A、任意掷一枚均匀的硬币,可能正面朝上,也可能反面朝上,是随机事件;B、打开电视,可能正在播放甲型H1N1流感的相关知识,也可能正在播放其它内容,是随机事件;C、某射击运动员射击一次,可能命中靶心,也可能脱靶,是随机事件;D、在只装有5个红球的袋中摸出1球,是红球,是必然事件.故选:D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.①必然事件指在一定条件下一定发生的事件;②不可能事件是指在一定条件下,一定不发生的事件;③不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.6.(4分)下列长度的三根木棒首尾相接,能做成三角形框架的是()A.13cm、7cm、5cm B.5cm、7cm、3cmC.7cm、5cm、12cm D.5cm、15cm、9cm【分析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:A、5+7<13,不能组成三角形,故本选项错误;B、5+3>7,能组成三角形,故本选项正确;C、5+7=12,不能能组成三角形,故本选项错误;D、5+9<15,不能能组成三角形,故本选项错误.故选:B.【点评】考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.7.(4分)要使函数y=有意义,自变量x的取值范围是()A.x≥1B.x≤1C.x>1D.x<1【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【解答】解:根据题意得:x﹣1≥0,解得,x≥1,故选:A.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.8.(4分)如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定【分析】先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.【解答】解:∵∠A=80°,∠1=15°,∠2=40°,∴∠OBC+∠OCB=180°﹣∠A﹣∠1﹣∠2=180°﹣80°﹣15°﹣40°=45°,∵∠BOC+(∠OBC+∠OCB)=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°.故选:C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.9.(4分)已知:(x+y)2=12,(x﹣y)2=4,则x2+3xy+y2的值为()A.8B.10C.12D.14【分析】由于(x+y)2=12,(x﹣y)2=4,两式相加可得x2+y2的值,两式相减可得xy 的值,再整体代入计算即可求解.【解答】解:∵(x+y)2=12①,(x﹣y)2=4②,∴①+②得2(x2+y2)=16,解得x2+y2=8,①﹣②得4xy=8,解得xy=2,∴x2+3xy+y2=8+3×2=14.故选:D.【点评】考查了完全平方公式.关键是根据已知条件两式相加求得x2+y2的值,两式相减得xy的值.10.(4分)如图是由一些长度相等的小木棍组成的图形,图(1)(2)(3)需要的小木棍数量分别为3根、7根、15根,按照这种方式摆下去,第(6)个图形需要的木棍数量为()A.60根B.63根C.127根D.130根【分析】由图(1)中木棍数3=1+2,图(2)中木棍数7=1+2+2×2,图(3)中木棍数15=1+2+2×2+2×2×2,得出图(6)中木棍数为1+2+22+23+24+25+26=127.【解答】解:∵图(1)中木棍数3=1+2,图(2)中木棍数7=1+2+2×2,图(3)中木棍数15=1+2+2×2+2×2×2,……∴图(6)中木棍数为1+2+22+23+24+25+26=127,故选:C.【点评】此题考查图形的变化规律,从简单入手,找出图形蕴含的规律,利用规律解决问题.11.(4分)如图,∠A=∠EGF,点F为BE、CG的中点,DB=4,DE=7,则EG长为()A.1.5B.2C.3D.5.5【分析】先证明△ADG和△ABC是等腰三角形,再证明△EGF≌△BCF(SAS),设AD =x,则DG=x,根据DE=7,列方程可得结论.【解答】解:∵∠A=∠EGF,∠AGD=∠EGF,∴∠A=∠AGD,∴AD=DG,设AD=x,则DG=x,在△EGF和△BCF中,∵,∴△EGF≌△BCF(SAS),∴BC=EG,∠E=∠EBC,∴EG∥BC,∴∠AGD=∠C=∠A,∴BC=AB=x+4=EG,∵DE=7,∴x+x+4=7,x=,∴EG=x+4==5.5.故选:D.【点评】本题考查全等三角形的判定和性质、等腰三角形的判定,熟练掌握全等三角形的判定方法是解决问题的关键.12.(4分)当x=2+时,代数式x3﹣4x2+4x的值为()A.0B.4+2C.4+4D.2【分析】根据题目中的x的值,可以求得所求代数式的值.【解答】解:∵x=2+,∴x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2=(2+)×(2+﹣2)2=(2+)×2=4+2,故选:B.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.二、填空题:(本题共6个小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上.13.(4分)计算:+(3﹣π)0=3.【分析】直接利用立方根的性质和零指数幂的性质化简得出答案.【解答】解:原式=2+1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(4分)前不久我市共有319000人参加了中考,数据319000用科学记数法表示为 3.19×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据319000用科学记数法表示为3.19×105.故答案为:3.19×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)如图,随机向“4×5”的长方形内丢一粒豆子(将豆子看做点),那么这粒豆子落入阴影部分的概率为.【分析】根据题意,判断概率类型,分别算出长方形面积和阴影面积,再利用几何概型公式加以计算,即可得到所求概率.【解答】解:阴影面积=,长方形面积=4×5=20,这粒豆子落入阴影部分的概率为,故答案为:【点评】本题给出丢豆子的事件,求豆子落入指定区域的概率.着重考查了长方形、三角形面积公式和几何概型的计算等知识,属于基础题.16.(4分)如图,在△ABC中,DE垂直平分BC,交BC、AB分别于D、E,连接CE,BF 平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB=60度.【分析】根据等腰三角形的性质和三角形内角和解答即可.【解答】解:∵DE垂直平分BC,∴BE=EC,∵BE=AC,∴CE=AC,∴△ACE是等腰三角形,∵∠ACE=20°,∴∠AEC=∠A=80°,∵BE=CE,∴∠EBC=∠ECB=,∵BF平分∠ABC,∴∠EBF=,∴∠EFB=∠AEC﹣∠EBF=80°﹣20°=60°,故答案为:60【点评】此题考查等腰三角形的性质,关键是根据等腰三角形的性质和三角形内角和解答.17.(4分)如图,在△ABC中,D是AC上一点,AD=3CD,将△BCD沿BD翻折,得到△BFD,BF交AC于E,连接AF,若BE=2FE,△ABC的面积为2,则△AEF的面积为.【分析】依据AD=3CD,△ABC的面积为2,可得S△BFD=S△DBC=,依据BE=2FE,可得S△BDE=S△BFD=,S△BCE=,S△ABE=2﹣=,再根据BE=2FE,即可得到S△AEF=S△ABE=.【解答】解:∵AD=3CD,△ABC的面积为2,∴S△BCD=S△ABC=×2=,由折叠可得,S△BFD=S△DBC=,又∵BE=2FE,∴S△BDE=S△BFD=×=,∴S△BCE=,∴S△ABE=2﹣=,又∵BE=2FE,∴S△AEF=S△ABE=×=,故答案为:.【点评】本题主要考查了折叠问题,翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.(4分)如图,Rt△ABC中,AB=10,AC=8,BC=6,∠C=90°,AD平分∠BAC,点E为AC上一点,且AE=3CE,在AC上找一点F,AD上找一点P,连接EP、FP,则EP+FP的最小值为 3.6.【分析】如图,作EH⊥AB于H,交AD于G,作F关于AD的对称点F′,连接PF′.因为PF+PE=PE+PF′,根据垂线段最短可知,当F′与H重合,P与G重合时,PE+PF′最短.【解答】解:如图,作EH⊥AB于H,交AD于G,作F关于AD的对称点F′,连接PF′.∵PF+PE=PE+PF′,根据垂线段最短可知,当F′与H重合,P与G重合时,PE+PF′最短.在Rt△ABC中,AC===8,∵AE=3EC,∴AE=6,∵∠EAH=∠BAC,∠EHA=∠C=90°,∴△AEH∽△ABC,∴=,∴=,∴EH=3.6,∴PF+PE的最小值为3.6.故答案为3.6.【点评】本题考查轴对称﹣最短问题,角平分线的性质、垂线段最短、相似三角形的判定和性质等知识,解题的关键是学会利用对称,根据垂线段最短解决最值问题,属于中考常考题型.三、解答题;(本大题共3个小题,每小题8分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.(8分)计算:(1)(﹣)×2(2)[(x﹣y)2﹣3y(y﹣x)﹣(x+y)(x﹣y)].【分析】(1)先把二次根式化为最简二次根式,然后根据二次根式的乘除法则计算;(2)先利用乘法公式计算,然后把括号内合并后进行整式的除法运算.【解答】解:(1)原式=(4﹣3)÷+2=÷+2=1+2;(2)原式=(x2﹣2xy+y2﹣3y2+3xy﹣x2+y2)÷=(﹣y2+xy)÷=﹣2y+2x.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了整式的混合运算.20.(8分)如图,AB∥CD,GE=GF,∠NFG=110°,EG平分∠BEF,求∠DFG的度数.【分析】先根据等腰三角形的性质,得到∠EFG=70°=∠FEG,再根据EG平分∠BEF,即可得出∠BEM=40°,再根据AB∥CD,可得∠DFE=∠BEM=40°,最后根据∠DFG =180°﹣∠DFE﹣∠NFG进行计算即可.【解答】解:∵GE=GF,∠NFG=110°,∴∠EFG=70°=∠FEG,又∵EG平分∠BEF,∴∠BEF=2∠FEG=140°,∴∠BEM=40°,∵AB∥CD,∴∠DFE=∠BEM=40°,∴∠DFG=180°﹣∠DFE﹣∠NFG=180°﹣40°﹣110°=30°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,解题时注意:两直线平行,同位角相等.21.(8分)重庆一中初一年级在“六一儿童节”举行了“礼成人生,礼达天下”的成长仪式,随后在本年级学生中进行了满意度调查,采取随机抽样的调查方式进行问卷调查,问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D;并根据调查结果绘制如图两幅不完整统计图:(1)这次一共调查了50名学生,并将条形统计图补充完整;(2)请在参与调查的这些学生中,随机抽取一名学生,求抽取到的学生对这次成长仪式满意度是“比较喜欢”或“感觉一般”的概率.【分析】(1)根据统计图中的数据可以求得本次调查的学生数,计算出选择C的学生数,从而可以将统计图补充完整;(2)根据统计图中的数据可以分别求得抽取到的学生对这次成长仪式满意度是“比较喜欢”或“感觉一般”的概率.【解答】解:(1)由题意可得,本次调查的学生是:15÷30%=50(名),故答案为:50,选择C的学生有:50﹣15﹣20﹣5=10,补全的条形统计图如右图所示;(2)由题意可得,比较喜欢的概率是:,感觉一般的概率是:,答:抽取到的学生对这次成长仪式满意度是“比较喜欢”的概率是0.4,“感觉一般”的概率是0.2.【点评】本题考查概率公式、全面调查与抽样调查、扇形统计图、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.四、解答题:(本大题共3个小题,每小题10分,共30分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.22.(10分)如图,点A,C,D在同一条直线上,BC与AF交于点E,AF=AC,AD=BC,AE=EC.(1)求证:FD=AB(2)若∠B=50°,∠F=110°,求∠BCD的度数.【分析】(1)根据SAS即可证明;(2)利用全等三角形的性质,求出∠BAC,根据∠BCD=∠B+∠BAC即可解决问题;【解答】(1)证明:∵EA=EC,∴∠EAC=∠ECA,在△AFD和△CAB中,,∴△AFD≌△CAB,∴FD=AB.(2)解:∵△AFD≌△CAB,∴∠BAC=∠F=110°,∴∠BCD=∠B+∠BAC=50°+110°=160°.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.(10分)甲从A地出发,匀速步行到B地,同时,乙从B地出发,匀速步行到A地,甲乙两人与A地的距离S(米)与出发时间t(分钟)的关系如图:(1)直接写出甲、乙两人与A地距离S(米)与出发时间t(分钟)的关系式;(2)当两人相距2500米时,t为多少分钟?【分析】(1)根据题意和函数图象中的数据可以分别求出甲、乙两人与A地距离S(米)与出发时间t(分钟)的关系式;(2)根据题意可以得到相应的方程,从而可以解答本题.【解答】解:(1)设甲与A地距离S(米)与出发时间t(分钟)的关系式是S=kt,20k=3000,得k=150,即甲与A地距离S(米)与出发时间t(分钟)的关系式是S=150t,设乙与A地距离S(米)与出发时间t(分钟)的关系式是S=at+b,,得,即乙与A地距离S(米)与出发时间t(分钟)的关系式是S=﹣100t+3000;(2)由题意可得,|150t﹣(﹣100t+3000)|=2500,解得,t1=2,t2=22,∵当t=20时,甲到达A地,∴将S=500代入S=﹣100t+3000,得t=25,答:当两人相距2500米时,t为2分钟或25分钟.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质和数形结合的思想解答.24.(10分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB 上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC 于F.(1)求△CDE的面积;(2)证明:DF+CF=EF.【分析】(1)在Rt△ACD中,求出CD即可解决问题;(2)在EF上取一点M,使得EM=DF,只要证明△MCF是等边三角形即可解决问题.【解答】(1)解:在Rt△ADC中,∵AD=2,∠ADC=60°,∴∠ACD=30°,∴CD=CE=2AD=4,∵EC⊥CD,∴∠ECD=90°,∴S△ECD=•CD•CE=×4×4=8.(2)证明:在EF上取一点M,使得EM=DF,∵EC=CD,∠E=∠CDF=45°,∴△ECM≌△DCF,∴CM=CF,∵∠ADC=60°,∠FDB=180°﹣60°﹣45°=75°,∴∠DFB=∠CFM=180°﹣75°﹣45°=60°,∴△CFM是等边三角形,∴CF=MF,∴EF=EM+MF=DF+CF.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题:(本大题共2个小题,每小题12分,共24分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.25.(12分)材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17不是“明三礼”数(填“是”或“不是”);721是“明六礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.【分析】本题是一道材料阅读题,解答时只需紧扣材料中“明N礼”数的定义和表示方法即可.【解答】解:(1)17÷3=5余2,故不是“明三礼”数.721÷2=360余1,721÷3=240余1,721÷4=180余1,721÷5=144余1,721÷6=120余1,721÷7=103,故721是“明六礼”数.(2)可知3和2的最小公倍数是6,故设此“明三礼”数为6n+1,其中n是正整数.当它是最小的三位数时,则满足:6n+1≥100,从而可得:n≥16.5,∴满足上述条件的最小正整数是17.所以,最小的三位“明三礼”数是6×17+1=103.(3)3和2的最小公倍数是6,3、2的最小公倍数是12,故设这个“明三礼”数为6m+1,“明四礼”数为12n+1,其中m,n为正整数.∵它们的和是32,∴6m+1+12n+1=32,∴m+2n=5,又∵m和n是正整数,∴m=1,n=2或m=3,n=1,∴这个“明三礼”数为7,“明四礼”数为25 或“明三礼”数为19,“明四礼”数为13.【点评】本题重点考查学生对阅读材料的理解和运用,只要把握“明N礼”数的定义和表示方法,便可解决问题.26.(12分)如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D、E在边BC 上,连接AD、AE,且∠DAE=45°.(1)如图1,若∠BAD=20°,求∠AED的度数;(2)如图2,若∠BAD=15°,证明:DE=2BD;(3)如图3,过点C作CF⊥AC交AE延长线于点F,再过点F作MF⊥CF交BC于点M,证明:BD=MD.【分析】(1)求出∠EAC,根据∠AED=∠C+∠EAC计算即可;(2)如图2中,将△AEC绕点A顺时针旋转90°得到△ABK,连接DK.由△DAK≌△DAE,推出∠ADE=∠ADK=∠ABD+∠BAD=60°,DK=DE,推出∠KDB=60°,由∠ABK=∠ABC=45°,推出∠KBD=90°,推出∠BKD=30°,可得DK=2BD,由此即可解决问题;(3)延长FM交AB于H,连接DF、DH.只要证明△AHD≌△FMD即可解决问题;【解答】(1)解:如图1中,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠DAE=45°,∠BAD=20°,∴∠EAC=90°﹣20°﹣45°=25°,∴∠AED=∠C+∠EAC=25°+45°=70°.(2)证明:如图2中,将△AEC绕点A顺时针旋转90°得到△ABK,连接DK.∵∠BAK+∠BAD=∠BAD+∠EAC=90°﹣45°=45°,∴∠DAK=∠DAE,∵AD=AD,AK=AE,∴△DAK≌△DAE,∴∠ADE=∠ADK=∠ABD+∠BAD=60°,DK=DE,∴∠KDB=60°,∵∠ABK=∠ABC=45°,∴∠KBD=90°,∴∠BKD=30°,∴DK=2BD,∵DK=DE,∴DE=2BD.(3)证明:如图3中,延长FM交AB于H,连接DF、DH.∵CF⊥AC,∴∠ACF=90°,∴∠ACB=∠FCE=45°,∵∠DAE=45°,∴∠DAE=∠FCE,∵∠AED=∠CEF,∴△AED∽△CEF,∴=,∴=,∵∠AEC=∠DEF,∴△AEC∽△DEF,∴∠DFE=∠ACE=45°,∴∠DAF=∠DFE=45°,∴△ADF是等腰直角三角形,∴∠ADF=90°,AD=DF,∵FM⊥CF,易证四边形AHCF是矩形,∴AH=CF=FM,∠AHF=∠ADF,易证∠HAD=∠DFM,∴△AHD≌△FMD,∴DH=DM,∵∠DMH=∠FMC=45°,∴△DHM是等腰直角三角形,∴HD⊥BM,∵∠B=45°,∴BD=DH=DM,【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质和判定,矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年七年级下学期期末考试数学试卷含答案解析

20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
七年级下册数学期末试卷人教版含答案免费

2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
2018-2019学年江西省南昌三中教育集团七年级下学期期末数学试卷 (解析版)

2018-2019学年江西省南昌三中教育集团七年级第二学期期末数学试卷一、选择题(共8小题).1.9的算术平方根是()A.81B.±3C.﹣3D.32.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体B.总体C.样本容量D.总体的样本3.已知a>b,下列不等式变形不正确的是()A.a+2>b+2B.a﹣2>b﹣2C.2a>2b D.2﹣a>2﹣b 4.不等式组的解集在数轴上的表示正确的是()A.B.C.D.5.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.已知巧克力口味冰淇淋一天售出100份,那么芒果口味冰淇淋天售出的份数是()A.10B.20C.40D.156.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3 7.3月12日植树节,某校七年级1班参加义务植树活动,规则是女生每2人用1根竹杠挑1棵树,男生每人用1根竹杠挑2棵树,现有竹杠30根,树种50棵.如果设有x个女生,y个男生,则可列方程组是()A.B.C.D.8.对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.40二、填空题(本大题共6小题,每小题3分,满分18分)9.若点A(a,3)在y轴上,则点B(a﹣3,a+2)在第象限.10.如图折叠宽度相等的长方形纸条,若∠2=48°,则∠1=.11.已知关于x、y的二元一次方程组的解满足x+y=4,则m的值为.12.不等式2ax+x>2a+1的解集为x<1,则a的取值范围为.13.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽,每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色游泳帽是红色游泳帽的2倍,则男孩人.14.若关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为.三、解答题(本大题共4小题,每小题6分,共24分)15.计算﹣14﹣|1﹣|++.16.解方程组:17.解方程组:18.解不等式组.四、解答题(本大题共4小题,每小题6分,共24分)19.△ABC在方格中位置如图,A点的坐标为(﹣3,1).(1)写出B、C两点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1;(3)在x轴上存在点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.20.某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占%,选择小组合作学习的占%.(4)根据调查结果,估算该校1800名学生中大约有人选择小组合作学习模式.21.对m、n定义一种新运算“◇”,规定:m◇n=am﹣bn+5(其中a、b均为非零常数),等式右边的勺运算是通常的四则运算,例女口:5◇6=5a﹣6b+5(1)已知2◇3=1,3◇(﹣1)=10.①求a、b的值;②若关于x的不等式组,有且只有一个整数解,试求字母t的取值范围.(2)若运算“◇”满足加法的交换律,即对于我们所学过的任意数m,n,结论“m◇n =n◇m”都成立,试探索a、b所应满足的关系式.22.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?参考答案一、选择题(共8小题).1.9的算术平方根是()A.81B.±3C.﹣3D.3解:∵32=9,∴9的算术平方根是3.故选:D.2.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体B.总体C.样本容量D.总体的样本解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选:C.3.已知a>b,下列不等式变形不正确的是()A.a+2>b+2B.a﹣2>b﹣2C.2a>2b D.2﹣a>2﹣b 解:A、由a>b知a+2>b+2,此选项变形正确;B、由a>b知a﹣2>b﹣2,此选项变形正确;C、由a>b知2a>2b,此选项变形正确;D、由a>b知﹣a<﹣b,则2﹣a<2﹣b,此选项变形错误;故选:D.4.不等式组的解集在数轴上的表示正确的是()A.B.C.D.解:由①得x≥﹣1,由②得x≤2,不等式组的解集为﹣1≤x≤2.故选:C.5.某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.已知巧克力口味冰淇淋一天售出100份,那么芒果口味冰淇淋天售出的份数是()A.10B.20C.40D.15解:由统计图可得,巧克力味的占25%,∴芒果味的占的百分比为:1﹣50%﹣25%﹣15%=10%,∴芒果口味冰淇淋天售出的份数是:100÷25%×10%=40,故选:C.6.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选:B.7.3月12日植树节,某校七年级1班参加义务植树活动,规则是女生每2人用1根竹杠挑1棵树,男生每人用1根竹杠挑2棵树,现有竹杠30根,树种50棵.如果设有x个女生,y个男生,则可列方程组是()A.B.C.D.解:设有x个女生,y个男生,可得:故选:D.8.对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.40解:有题意得:,解不等式①得:x>16,解不等式②得:x≤26,不等式组的解集为16<x≤26,20符合x的取值范围.故选:B.二、填空题(本大题共6小题,每小题3分,满分18分)9.若点A(a,3)在y轴上,则点B(a﹣3,a+2)在第二象限.解:∵点A(a,3)在y轴上,∴a=0,∴点B的坐标为(﹣3,2),∴点B(﹣3,2)在第二象限.故答案为:二.10.如图折叠宽度相等的长方形纸条,若∠2=48°,则∠1=66°.解:根据折叠的性质得:∠BEF=∠GEF,∵∠2=48°,∠BEF+∠GEF+∠2=180°,∴∠BEF=66°,∵四边形ABCD是长方形,∴AB∥CD,∴∠1=∠BEF=66°,故答案为:66°11.已知关于x、y的二元一次方程组的解满足x+y=4,则m的值为.解:,①﹣②得:x+y=3m﹣6,∵x+y=4,∴3m﹣6=4,解得:m=,故答案为:.12.不等式2ax+x>2a+1的解集为x<1,则a的取值范围为a<﹣.解:2ax+x>2a+1,(2a+1)x>2a+1,∵要使不等式2ax+x>2a+1的解集为x<1,必须2a+1<0,解得:a<﹣,故答案为a<﹣.13.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽,每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色游泳帽是红色游泳帽的2倍,则男孩4人.解:设男孩有x人,女孩有y人,依题意,得:,解得:.故答案为:4.14.若关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为﹣2≤m <﹣1或1≤m<2.解:解不等式组得:﹣3≤x≤m,∵关于x的不等式组的所有整数解的和为﹣5,∴可以是﹣3+(﹣2)=﹣5,﹣3+(﹣2)+(﹣1)+0+1=﹣5,∴﹣2≤m<﹣1或1≤m<2,故答案为:﹣2≤m<﹣1或1≤m<2.三、解答题(本大题共4小题,每小题6分,共24分)15.计算﹣14﹣|1﹣|++.解:原式=﹣1﹣(﹣1)+3﹣3=﹣1﹣+1+3﹣3=﹣.16.解方程组:解:,把②代入①得:2(1﹣y)+3y=5,解得:y=3,把有代入②得:x=1﹣3,解得:x=﹣2,故方程组的解为.17.解方程组:解:由②得:3x﹣2(x﹣y)=6,整理得:x+2y=6③,③×2﹣①得:7y=7,解得:y=1,把y=1代入③得:x=4,则方程组的解为.18.解不等式组.解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<,则不等式组的解集为:四、解答题(本大题共4小题,每小题6分,共24分)19.△ABC在方格中位置如图,A点的坐标为(﹣3,1).(1)写出B、C两点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1;(3)在x轴上存在点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.解:(1)B(﹣2,4),C(1,1);(2)△A1B1C1如图所示;(3)△DB1C1的面积=×C1D×3=3,解得C1D=2,点D在C1的左边时,OD=3﹣2=1,此时,点D(1,0),点D在C1的右边时,OD=3+2=5,此时,点D(5,0),综上所述,点D(1,0)或(5,0).20.某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了500名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占10%,选择小组合作学习的占30%.(4)根据调查结果,估算该校1800名学生中大约有540人选择小组合作学习模式.解:(1)由题意可得,本次调查的学生有:300÷60%=500(名),故答案为:500;(2)由题意可得,教师传授的学生有:500﹣300﹣150=50(名),补全的条形统计图如右图所示;(3)由题意可得,选择教师传授的占:=10%,选择小组合作学习的占:=30%,故答案为:10,30;(4)由题意可得,该校1800名学生中选择合作学习的有:1800×30%=540(名),故答案为:540.21.对m、n定义一种新运算“◇”,规定:m◇n=am﹣bn+5(其中a、b均为非零常数),等式右边的勺运算是通常的四则运算,例女口:5◇6=5a﹣6b+5(1)已知2◇3=1,3◇(﹣1)=10.①求a、b的值;②若关于x的不等式组,有且只有一个整数解,试求字母t的取值范围.(2)若运算“◇”满足加法的交换律,即对于我们所学过的任意数m,n,结论“m◇n =n◇m”都成立,试探索a、b所应满足的关系式.解:(1)①∵2◇3=1,3◇(﹣1)=10,∴,解得:a=1,b=2;②∵,a=1,b=2,∴xa﹣(2x﹣3)b+5=﹣3x+11<9,3xa﹣(﹣6)b+5=3x+17≤t,即,解得:,∵关于x的不等式组,有且只有一个整数解,∴1≤<2,解得:20≤t<23,即字母t的取值范围是20≤t<23;(2)∵m◇n=n◇m,∴ma﹣nb+5=na﹣mb+5,∴ma﹣nb﹣na+mb=0,∴m(a+b)﹣n(a+b)=0,∴(a+b)(m﹣n)=0,∵m、n为任意数,∴m﹣n不一定等于0,∴a+b=0,即a、b所应满足的关系式是a+b=0.22.4月的某天小欣在“A超市”买了“雀巢巧克力”和“趣多多小饼干”共10包,已知“雀巢巧克力”每包22元,“趣多多小饼干”每包2元,总共花费了80元.(1)请求出小欣在这次采购中,“雀巢巧克力”和“趣多多小饼干”各买了多少包?(2)“五•一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.①请问“五•一”期间,若小欣购物金额超过100元,去哪家超市购物更划算?②“五•一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?解:(1)设“雀巢巧克力”和“趣多多小饼干”各买了x包和y包,根据题意得:,解得:,答:雀巢巧克力”和“趣多多小饼干”各买了3包和7包;(2)①设小欣购物金额为m元,当m>100时,若在A超市购物花费少,则50+0.9(m﹣50)<100+0.8(m﹣100),解得:m<150,若在B超市购物花费少,则50+0.9(m﹣50)>100+0.8(m﹣100),解得:m>150,如果购物在100元至150元之间,则去A超市更划算;如果购物等于150元时,去任意两家购物都一样;如果购物超过150元,则去B超市更划算;②设小欣在B超市购买了n包“雀巢巧克力”,平均每包价格不超过20元,根据题意得:100+(22n﹣100)×0.8≤20n,解得:n≥8,据题意x取整数,可得x的取值为9,所以小欣在B超市至少购买9包“雀巢巧克力”,平均每包价格不超过20元.。
2018-2019学年重庆市九龙坡区七年级(下)期末数学试卷(含解析)
2018-2019学年重庆市九龙坡区七年级(下)期末数学试卷(考试时间:120分钟 满分:150分)一选择题:本大题共12小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上. 1.在实数,0,﹣,﹣33,﹣中,最小的实数是( )A .B .0C .﹣.﹣3 3D .﹣2.在平面直角坐标系中,点(﹣.在平面直角坐标系中,点(﹣11,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知a <b ,则下列不等式中不正确的是( )A .B .ac ac<<bcC .﹣.﹣4a 4a 4a>﹣>﹣>﹣4b 4bD .a ﹣4<b ﹣44.下列调查中,最适合全面调查的是( )A .了解重庆电视台新闻频道的收视率B .了解九龙坡区所有初一学生的视力情况C .重庆市食品安全监察局对某品牌的粽子进行质量检测D .对乘坐重庆到北京川航3U8829的乘客所携带的物品5.如图,下列条件中能判定直线l 1∥l 2的是( )A .∠.∠11=∠=∠2 2B .∠.∠1+1+1+∠∠3=180180°°C .∠.∠11=∠=∠5 5D .∠.∠33=∠=∠5 56.下列说法中,正确的是( )A .如果两条直线被第三条直线所截,那么所得同位角相等.如果两条直线被第三条直线所截,那么所得同位角相等B .联结直线外一点到直线上各点的所有连线中,垂线最短.联结直线外一点到直线上各点的所有连线中,垂线最短C .经过平面上一点,有且只有一条直线与已知直线平行D .经过平面上一点,有且只有一条直线与已知直线垂直7.关于x 的不等式组的解集为x <3,则m 的取值范围为( )A .m ≤3B .m <3C .m >3D .m ≥3 8.关于x 、y 的方程组的解是,则的平方根是( ) A .﹣.﹣3 3 B .±.±3 3 C .± D .9.已知两点A (﹣(﹣33,m ),B (n ,4),AB AB⊥⊥y 轴,轴,AB AB AB==9,则m ﹣n 的值为( )A .﹣.﹣2 2B .﹣.﹣16 16C .﹣.﹣22或﹣或﹣16 16D .﹣.﹣22或161010.某单位在一快餐店订了.某单位在一快餐店订了22盒盒饭,共花费280元,盒饭共有甲、乙、丙三种,它们的单价分别为16元、元、1010元、元、88元,那么可能的不同订餐方案有( )A .4种B .3种C .2种D .1种 1111.已知.已知a ﹣b =2,a ﹣c =,则(,则(b b ﹣c )3﹣3(b ﹣c )+的值为( )A .B .0C .D .﹣1212.已知关于.已知关于x 的不等式组有且只有7个整数解,则a 的取值范围是( ) A .﹣.﹣44≤a <﹣<﹣3 3 B .﹣.﹣44<a <﹣<﹣3 3C .﹣.﹣44<a ≤﹣≤﹣3 3D .﹣.﹣44≤a <﹣<﹣3 3 二.填空题:本大题6个小题,每小题4分,共24分.请把答案填写在答题卡相应的位置上.1313.计算:.计算:(﹣(﹣22)2+|1+|1﹣﹣﹣= .1414.命题“如果.命题“如果.命题“如果|x+1||x+1||x+1|==1+x 1+x,那么,那么x ≥0”是 命题.(选填“真”或“假”) 1515.如图,.如图,.如图,AB AB AB∥∥CD CD,,CB 平分∠平分∠ABD ABD ABD,若∠,若∠,若∠C C =5050°,则∠°,则∠°,则∠D D = 度.1616.一种饮料有两种包装,.一种饮料有两种包装,.一种饮料有两种包装,66大盒,大盒,44小盒共装104瓶:瓶:44大盒,大盒,99小盒共装120瓶;大盒和小盒每盒各装多少瓶?设一个大盒装x 瓶,一个小盒装y 瓶,则可列方程组为 .1717.如图,两个直角三角形重叠在一起,将△.如图,两个直角三角形重叠在一起,将△.如图,两个直角三角形重叠在一起,将△ABC ABC 沿点B 到点C 的方向平移到△的方向平移到△DEF DEF 的位置,的位置,AB AB AB==1212,,DH DH==5,平移距离为6,则图中阴影部分的面积为 .1818.如图,.如图,.如图,AC AC AC⊥⊥BD 于点C ,E 是AB 上一点,上一点,CE CE CE⊥⊥CF CF,,DF DF∥∥AB AB,,EH 平分∠平分∠BEC BEC BEC,,DH 平分∠平分∠BDG BDG BDG,若∠,若∠,若∠H H =5555°,°,则∠则∠ACF ACF 的度数为 .三.解答题:本大题7个小题,每小题10分,共70分.解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.1919..(10分)解方程组: (1); ((2);2020..(10分)解不等式组,并把解集在数轴上表示出来.2121..(10分)在如图所示的正方形网格中,每个小正方形的边长均为1. (1)在所给的平面直角坐标系中描出点A (﹣(﹣33,4),B (﹣(﹣11,1),C (1,3),并画出△,并画出△ABC ABC ABC;;(2)将△)将△ABC ABC 向右平移4个单位长度,再向下平移6个单位长度,得到△个单位长度,得到△A A 1B 1C 1请画出△请画出△A A 1B 1C 1并分别写出点A 1,B 1,C 1的坐标;(3)求△)求△ABC ABC 的面积.2222..(10分)在平面直角坐标系中,有A (0,a ),B (b ,0)两点,且a ,b 满足b = (1)求A ,B 两点的坐标;(2)若点P 在x 轴上,且△轴上,且△PAB PAB 的面积为6,求点P 的坐标.2323..(10分)某校七年级的大课间活动,有四类活动项目:分)某校七年级的大课间活动,有四类活动项目:A A .跑步;.跑步;B B .跳绳;.跳绳;C C .健身操;.健身操;D D .踢毽.学校规定:每位学生都必须参加大课间活动且只能选择一类活动项目七年级的张老师随机抽取了本年级部分学生选择大课间的活动项目进行了调查统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)请求出张老师随机抽取调查的学生人数,并将条形统计图补充完整;(2)扇形统计图中B 对应的圆心角是 度;(3)若该年级共有1000名学生,请估计该年级参加跑步活动项目的学生人数比参加跳绳活动项目的学生人数多多少人?2424..(10分)如图,已知CD CD⊥⊥AB 于点D ,DE DE∥∥AC 交BC 点E ,EF EF⊥⊥AB 于点F ,DG DG∥∥BC 交AC 于点G ,且∠,且∠DEF DEF =∠=∠BEF BEF BEF,求证:∠,求证:∠,求证:∠GDC GDC GDC=∠=∠=∠GCD GCD GCD..2525..(10分)某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元.(1)求甲、乙型号手机每部进价各为多少元?(2)该店计划购进甲乙两种型号的手机销售,预计用不多于5.52万元且不少于5.28万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若甲型号手机的售价为4500元,乙型号手机的售价为4200元,为了促销,无论采取哪种进货方案,公司决定每售出一台乙型号手机,返还顾客相同现金a 元,而甲型号手机售价不变,要使(元,而甲型号手机售价不变,要使(22)中所有方案获利相同,求a 的值.四.解答题:本大题8分•解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.2626..(10分)已知点A 在平面直角坐标系中第一象限内,将线段AO 平移至线段BC BC,其中点,其中点A 与点B 对应.(1)如图1,若A (1,3),B (3,0),连接AB AB,,AC AC,在坐标轴上存在一点,在坐标轴上存在一点D ,使得S △AOD =2S △ABC , 求点D 的坐标;(2)如图2,若∠,若∠AOB AOB AOB==6060°,点°,点P 为y 轴上一动点(点P 不与原点重合),请直接写出∠,请直接写出∠CPO CPO 与∠与∠BCP BCP 之间的数量关系(不用证明).参考答案与试题解析一.选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的代号填涂在答题卡上.>﹣33,1.【解答】解:∵>0>﹣>﹣∴所给的各数中,最小的实数是﹣33.∴所给的各数中,最小的实数是﹣故选:C C.故选:【解答】解:点(﹣11,2)在第二象限.2.【解答】解:点(﹣故选:B B.故选:【解答】解:A A、不等式的两边都除以一个正数,不等号的方向不变,故A正确;3.【解答】解:B、不等式的两边都乘以c,由于c不确定是正数或0或负数,不等号的方向不变或改变不确定,故B不正确;C、不等式的两边都乘以同一个负数,不等号的方向改变,故C正确;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D正确;故选:B B.故选:【解答】解:A A.了解重庆电视台新闻频道的收视率的调查适合抽样调查;4.【解答】解:B.了解九龙坡区所有初一学生的视力情况的调查适合抽样调查;C.重庆市食品安全监察局对某品牌的粽子进行质量检测的调查适合抽样调查;D.对乘坐重庆到北京川航3U8829的乘客所携带的物品的调查适合全面调查.故选:D D.故选:5.【解答】解:=∠22不能推出l1∥l2,故本选项错误;、根据∠11=∠【解答】解:A A、根据∠°能推出l1∥l2,故本选项正确;180°能推出∠3=180B、根据∠、根据∠1+1+1+∠=∠55不能推出l1∥l2,故本选项错误;C、根据∠、根据∠11=∠=∠55不能推出l1∥l2,故本选项错误;D、根据∠、根据∠33=∠故选:B B.故选:【解答】解:A A.如果两条平行直线被第三条直线所截,那么所得同位角相等,故本选项错误; 6.【解答】解:B.联结直线外一点到直线上各点的所有连线中,垂线段最短,故本选项错误;.经过直线外一点,有且只有一条直线与已知直线平行,故本选项错误;C.经过直线外一点,有且只有一条直线与已知直线平行,故本选项错误;D.经过平面上一点,有且只有一条直线与已知直线垂直,故本选项正确;故选:D D.故选:7.【解答】解:不等式组变形得:, 由不等式组的解集为x <3,得到m 的范围为m ≥3,故选:故选:D D .8.【解答】解:把代入方程组得:, 则==3,3的平方根是±,故选:故选:C C .9.【解答】解:∵【解答】解:∵A A (﹣(﹣33,m ),B (n ,4),AB AB⊥⊥y 轴,轴,AB AB AB==9,∴m =4,n =6或n =﹣=﹣121212,,当m =4,n =6时,时,m m ﹣n =﹣=﹣22;当m =4,n =﹣=﹣1212时,时,m m ﹣n =1616;;综上,综上,m m ﹣n =﹣=﹣22或1616,,故选:故选:D D .1010..【解答】解:设甲盒饭、乙盒饭分别有x 盒、盒、y y 盒,则丙盒饭有(盒,则丙盒饭有(222222﹣﹣x ﹣y )盒. 根据题意,得16x+10y+816x+10y+8((2222﹣﹣x ﹣y )=)=280280280,,整理,得8x+2y 8x+2y==104104,,所以所以 y y y==5252﹣﹣4x 4x..又 0 0<<x <2222,,0<y <2222,,0<2222﹣﹣x ﹣y <2222,,则7.57.5<<x <1313,且,且x 、y 为整数,则x =8,9,1010,,1111,,1212..当x =8时,时,y y =2020,,2222﹣﹣x ﹣y =﹣=﹣66,不符合题意,舍去.当x =9时,时,y y =1616,,2222﹣﹣x ﹣y =﹣=﹣33,不符合题意,舍去.当x =10时,时,y y =1212,,2222﹣﹣x ﹣y =0,不符合题意,舍去.当x =11时,时,y y =8,2222﹣﹣x ﹣y =3,符合题意.当x =12时,时,y y =4,2222﹣﹣x ﹣y =6,符合题意所以,可能的不同订餐方案有2种.故选:故选:C C .1111..【解答】解:∵【解答】解:∵a a ﹣b =2,a ﹣c =,∴(∴(a a ﹣c )﹣()﹣(a a ﹣b )=)=b b ﹣c =, ∴原式=(∴原式=(b b ﹣c )[(b ﹣c )2﹣3]+=×(﹣3)+=+=,故选:故选:C C .1212..【解答】解:解不等式x ﹣a ≥0,得x ≥a , 解不等式5﹣2x 2x>﹣>﹣>﹣33,得x <4,∵不等式组只有7个整数解,∴不等式组的整数解为3、2、1、0、﹣、﹣11、﹣、﹣22、﹣、﹣33,则﹣则﹣44<a ≤﹣≤﹣33,故选:故选:C C .二.填空题:本大题6个小题,每小题4分,共24分.请把答案填写在答题卡相应的位置上.1313..【解答】解:原式=【解答】解:原式=4+4+﹣1﹣3 =.故答案为:. 1414..【解答】解:∵【解答】解:∵|x+1||x+1||x+1|==1+x 1+x,,∴x+1x+1≥≥0,∴x ≥﹣≥﹣11,∴原命题是假命题,故答案为:假.1515..【解答】解:∵【解答】解:∵CB CB 平分∠平分∠ABD ABD ABD,,∴∠∴∠ABC ABC ABC=∠=∠=∠CBD CBD CBD,,∵AB AB∥∥CD CD,,∴∠∴∠ABC ABC ABC=∠=∠=∠C C ,∴∠∴∠CBD CBD CBD=∠=∠=∠C C =5050°,°,故答案为:故答案为:808080.. 1616..【解答】解:设一个大盒装x 瓶,一个小盒装y 瓶,则可列方程组为:.故答案为:. 1717..【解答】解:∵将△【解答】解:∵将△ABC ABC 沿点B 到点C 的方向平移到△的方向平移到△DEF DEF 的位置, ∴S △ABC =S △DEF ,∴S 阴=S 梯形ABEH =×(×(12+1212+1212+12﹣﹣5)×)×66=5757,,故答案是:故答案是:575757..1818..【解答】解:延长EC EC,交,交DH 于K ,∵∠∵∠EKD EKD EKD=∠=∠=∠HEC+HEC+HEC+∠∠H ,∠,∠ECD ECD ECD=∠=∠=∠EKD+EKD+EKD+∠∠HDC HDC,,∴∠∴∠ECD ECD ECD=∠=∠=∠HEC+HEC+HEC+∠∠HDC+HDC+∠∠H ,∵DF DF∥∥AB AB,,∴∠∴∠B B =∠=∠BDG BDG BDG,,∵EH 平分∠平分∠BEC BEC BEC,,DH 平分∠平分∠BDG BDG BDG,∠,∠,∠H H =5555°,°,∴∠∴∠HEC HEC HEC==∠BEC BEC,∠,∠,∠HDC HDC HDC==∠B ,∵∠∵∠BEC BEC BEC=∠=∠=∠A+A+A+∠∠ACE ACE,,∴∠∴∠HEC HEC HEC==∠A+∠ACE ACE,,∴∠∴∠ECD ECD ECD==∠A+∠ACE+∠B+B+∠∠H ,∵AC AC⊥⊥BD BD,,∴∠∴∠A+A+A+∠∠B =9090°,°,∴∠∴∠ECD ECD ECD==4545°°+∠ACE+55ACE+55°,°,∵AC AC⊥⊥BD BD,,∴∠∴∠ECD ECD ECD==9090°°+∠ACE ACE,,∴9090°°+∠ACE ACE==4545°°+∠ACE+55ACE+55°,°,∴∠∴∠ACE ACE ACE==2020°,°,∵CE CE⊥⊥CF CF,,∴∠∴∠ACF ACF ACF==9090°﹣∠°﹣∠°﹣∠ACE ACE ACE==7070°,°,三.解答题:本大题7个小题,每小题10分,共70分.解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.1919..【解答】解:(1),①+②得:②得:7x 7x 7x==7,解得:解得:x x =1,把x =1代入①得:代入①得:y y =﹣,则方程组的解为; (2)方程组整理得:,①×①×8+8+8+②×②×②×55得:得:47x 47x 47x=﹣=﹣=﹣141141141,,解得:解得:x x =﹣=﹣33,把x =﹣=﹣33代入②得:代入②得:y y =2,则方程组的解为. 2020..【解答】解:,由不等式①得,由不等式①得,x x <,由不等式②得,由不等式②得,x x ≥0,在数轴上表示如下:所以,不等式组的解集是0≤x <.2121..【解答】解:(1)如图所示,△)如图所示,△ABC ABC 即为所求.(2)如图所示,△)如图所示,△A A 1B 1C 1即为所求,其中A 1(1,﹣,﹣22),B 1(3,﹣,﹣55),C 1(5,﹣,﹣33);(3)△)△ABC ABC 的面积为×(×(2+32+32+3)×)×)×44﹣×2×3﹣×2×2=5.2222..【解答】解:(1)依题意,得:,解得a =﹣=﹣22;则b =﹣=﹣33.所以A (0,﹣,﹣22),B (﹣(﹣33,0);(2)设P (x ,0),由题意知,|x+3||x+3|××2=6.解得x =3或x =﹣=﹣99.所以点P 的坐标(的坐标(33,0)或(﹣)或(﹣99,0). 2323..【解答】解:(1)张老师随机抽取调查的学生人数1414÷÷35%35%==4040(人)(人), D 项目人数为4040﹣(﹣(﹣(14+12+1014+12+1014+12+10)=)=)=44(人), 补全图形如下:(2)扇形统计图中B 对应的圆心角是360360°×°×=108108°,°,故答案为:故答案为:108108108;;(3)估计该年级参加跑步活动项目的学生人数比参加跳绳活动项目的学生人数多10001000××=50(人). 2424..【解答】证明:∵【解答】证明:∵CD CD CD⊥⊥AB AB,,EF EF⊥⊥AB AB,,∴CD CD∥∥EF EF,,∴∠∴∠11=∠=∠DEF DEF DEF,∠,∠,∠22=∠=∠BEF BEF BEF,,又∵∠又∵∠DEF DEF DEF=∠=∠=∠BEF BEF BEF,,∴∠∴∠11=∠=∠22,∵DE DE∥∥AC AC,,DG DG∥∥BC BC,,∴∠∴∠11=∠=∠GCD GCD GCD,∠,∠,∠22=∠=∠GDC GDC GDC,,∴∠∴∠GDC GDC GDC=∠=∠=∠GCD GCD GCD..2525..【解答】解:(1)设甲型号手机每部进价为x 元,乙型号手机每部进价为y 元,依题意,得:,解得:. 答:甲型号手机每部进价为3000元,乙型号手机每部进价为2400元.(2)设购进甲型号手机m 部,则购进乙型号手机(部,则购进乙型号手机(202020﹣﹣m )部,依题意,得:, 解得:解得:88≤m ≤1212,,∵m 为整数,∴m =8,9,1010,,1111,,1212,,∴共有5种进货方案.(3)设获得的利润为w 元,依题意,得:依题意,得:w w =(=(450045004500﹣﹣30003000))m+m+((42004200﹣﹣24002400﹣﹣a )(2020﹣﹣m )=()=(a a ﹣300300))m+36000m+36000﹣﹣20a 20a,,∵w 的值与m 无关,∴a ﹣300300==0,解得:,解得:a a =300300..答:答:a a 的值为300300..四.解答题:本大题8分•解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.2626..【解答】解:(1)由线段平移,)由线段平移,A A (1,3)平移到B (3,0), 即向右平移2个单位,再向下平移3个单位,点O (0,0)平移后的坐标为()平移后的坐标为(22,﹣,﹣33), 可得出C (2,﹣,﹣33), 所以S △ABC =,∴S △AOD =9,而△,而△AOD AOD 的高是1,∴△∴△AOD AOD 的底为1818..∴D (6,0)或D (﹣(﹣66,0)或()或(00,﹣,﹣181818)或()或()或(00,1818)); (2)延长BC 交y 轴于E 点,利用OA OA∥∥BC 及∠及∠AOB AOB AOB==6060°,°,∴∠∴∠AOY AOY AOY=∠=∠=∠BEY BEY BEY==3030°,再用三角形的内角和为°,再用三角形的内角和为180180°,°,分三种情况可求:①当P 在y 轴的正半轴上时:∠轴的正半轴上时:∠BCP BCP BCP=∠=∠=∠CPO+30CPO+30CPO+30°.°.②当P 在y 轴的负半轴上时:ⅰ:若P 在E 点上方(含与E 点重合)时,∠点重合)时,∠BCP+BCP+BCP+∠∠CPO CPO==210210°.°.ⅱ:若P 在E 点下方时,∠点下方时,∠BCP BCP BCP=∠=∠=∠CPO+150CPO+150CPO+150°.°.综合可得:∠CPO 与∠与∠BCP BCP 的数量关系是:∠BCP BCP=∠=∠=∠CPO+30CPO+30CPO+30°或∠°或∠°或∠BCP+BCP+BCP+∠∠CPO CPO==210210°或∠°或∠°或∠BCP BCP BCP=∠=∠=∠CPO+150CPO+150CPO+150°.°.。
2018-2019学年上海市浦东新区七年级(下)期末数学试卷(五四学制)
2018-2019学年上海市浦东新区七年级(下)期末数学试卷(五四学制)一、选择题(本大题共6小题,每小题3分,满分18分)1.(3分)是()A.整数B.分数C.有理数D.无理数2.(3分)下列说法中不正确的是()A.﹣1的立方是﹣1B.﹣1的立方根是﹣1C.﹣1的平方是1D.﹣1的平方根是﹣13.(3分)如图,可以推断AB∥CD的是()A.∠2=∠3B.∠1=∠4C.∠BCD=∠BAD D.∠B+∠4+∠5=180°4.(3分)下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形5.(3分)平面直角坐标系中,到x轴距离为2,y轴距离为2的点有()个.A.1B.2C.3D.46.(3分)如果一个三角形的三边a、b、c满足ab+bc=b2+ac,那么这个三角形一定是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形二、填空题(本大题共13空,每空2分,满分26分)7.(2分)11的平方根是.8.(2分)比较大小:﹣(填“<“”或“=“”或“>”)9.(2分)平面直角坐标系中点P(3,﹣2)关于x轴对称的点的坐标是.10.(4分)点M(4,3)向(填“上”、“下”、“左”、“右”)平移个单位后落在y轴上.11.(2分)等腰三角形的周长是15,其中一条边的长度为3,那么它的腰长是.12.(2分)等腰三角形中,角平分线、中线、高的条数一共最多有条.(重合的算一条)13.(2分)在不等边三角形△ABC中,已知两条边长分别为2、3,第三条边长为整数,那么它的长度为.14.(2分)如图,直线l1∥l2,∠1=43°,∠2=72°,则∠3的度数是度.15.(2分)如图,已知EF∥GH,AC⊥CD,∠DCG=143°,则∠CBF=度.16.(2分)用直尺和圆规作一个角等于已知角的示意图如图,则可说明∠A′O′B′=∠AOB,其中判断△COD≌△C′O′D′的依据是.17.(2分)如图,在△ABC中,AB=AC,高BD,CE交于点O,连接AO并延长交BC 于点F,则图中共有组全等三角形.18.(2分)如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.三、简答题(本大题共5小题,每小题5分,满分25分)19.(5分)计算:(﹣8)﹣﹣(﹣π)0+()﹣320.(5分)利用幂的性质计算:÷﹣21.(5分)已知点A(a﹣3,1﹣a)在第三象限且它的坐标都是整数,求点A的坐标.22.(5分)如图,已知CD∥BE,且∠D=∠E,试说明AD∥CE的理由.23.(5分)如图,△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B求证:ED=EF.证明:∵∠DEC=∠B+∠BDE()且∠DEC=∠DEF+∠FEC(如图所示)∴∠DEF+∠FEC=∠B+∠BDE(等量代换)又∵∠DEF=∠B(已知)∴∠BDE=∠(等式性质)在△EBD与△FCE中,∠BDE=∠(已证)BD=CE(已知)∠B=∠C(已知)∴△EBD≌△FCE()∴ED=EF()四、解答题(本大题共4题,24题每小题5分,共5分,25-27题每题6分,满分23分)24.(5分)如图,在直角坐标平面内,已知点A的坐标是(0,3),点B的坐标是(﹣3,﹣2)(1)图中点C的坐标是.(2)三角形ABC的面积为.(3)点C关于x轴对称的点D的坐标是(4)如果将点B沿着与x轴平行的方向向右平移3个单位得到点B′,那么A、B′两点之间的距离是.(5)图中四边形ABCD的面积是.25.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.26.(6分)已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.27.(6分)公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB ∥CD ,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE =CF ,M 是BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.(提示:可通过证明∠EMF =180°)五、能力题(满分8分)28.(8分)在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 和CB (或它们的延长线)于E ,F .(1)当DE ⊥AC 于E 时(如图1),可得S △DEF +S △CEF = S △ABC ;(2)当DE 与AC 不垂直时(如图2),第(1)小题得到的结论成立吗?若成立,请给子证明;若不成立,请直接给出S △DEF 、S △CEF 、S △ABC 的关系.(3)当点E 在AC 延长线上时(如图3),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出的关系S △DEF ,S △CEF ,S △ABC 的关系.2018-2019学年上海市浦东新区七年级(下)期末数学试卷(五四学制)参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分)1.(3分)是()A.整数B.分数C.有理数D.无理数【分析】根据无理数的概念作答.【解答】解:是无理数故选:D.【点评】本题考查了无理数的概念,属于基础题.2.(3分)下列说法中不正确的是()A.﹣1的立方是﹣1B.﹣1的立方根是﹣1C.﹣1的平方是1D.﹣1的平方根是﹣1【分析】A、根据立方运算法则计算即可判定;B、根据立方根的定义即可判定;C、根据平方运算的法则计算即可判定;D、根据平方根的定义分析即可判定.【解答】解:A、﹣1的立方是﹣1;故选项正确;B、﹣1的立方根是﹣1;故选项正确;C、﹣1的平方是1;故选项正确.D、由于负数没有平方根,故选项错误.故选:D.【点评】本题主要考查了立方根及平方根的概念.3.(3分)如图,可以推断AB∥CD的是()A.∠2=∠3B.∠1=∠4C.∠BCD=∠BAD D.∠B+∠4+∠5=180°【分析】由平行线的判定定理,即可求得答案;注意排除法在解选择题中的应用.【解答】解:A、由∠2=∠3不能判定AB∥CD,故本选项错误.B、由∠1=∠4可以判定AD∥BC,不能判定AB∥CD,故本选项错误.C、由∠BCD=∠BAD不能判定AB∥CD,故本选项错误.D、由∠B+∠4+∠5=180°能判定AB∥CD(同旁内角互补,两直线平行),故本选项正确.故选:D.【点评】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用.4.(3分)下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形【分析】两边相等,面积相等或者角相等的三角形都不能证明三角形全等.【解答】A、正确,等边三角形的三边一定相等,又周长相等,故两个三角形的边长分别对应相等;B、错误,三个内角分别相等的两个三角形不一定全等,可能相似;C、错误,两条边和其夹角相等的两个三角形全等;D、错误,面积相等但边长不一定相等.故选:A.【点评】本题考查的全等三角形的判定;全等三角形的判别要求严格,条件缺一不可.做题时要结合已知与判定方法逐个验证排除.5.(3分)平面直角坐标系中,到x轴距离为2,y轴距离为2的点有()个.A.1B.2C.3D.4【分析】根据平面直角坐标系内的点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求出点可能的横坐标与纵坐标,即可得解.【解答】解:∵平面直角坐标系中,到x轴距离为2,y轴距离为2的点横坐标为2或﹣2,纵坐标为2或﹣2,∴所求点的坐标为(2,2)或(2,﹣2)或(﹣2,2)或(﹣2,﹣2).故选:D.【点评】本题考查了坐标与图形性质,熟记点到x轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.6.(3分)如果一个三角形的三边a、b、c满足ab+bc=b2+ac,那么这个三角形一定是()A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形【分析】把原式变形因式分解得出(b﹣c)(a﹣b)=0,得出b﹣c=0或a﹣b=0,即可得出结论.【解答】解:∵ab+bc=b2+ac,∴ab+bc﹣b2﹣ac=0,∴(b﹣c)(a﹣b)=0,∴b﹣c=0或a﹣b=0,∴这个三角形一定是等腰三角形;故选:B.【点评】本题考查了因式分解的应用、等腰三角形的判定;熟练掌握因式分解的方法是解题的关键.二、填空题(本大题共13空,每空2分,满分26分)7.(2分)11的平方根是.【分析】根据正数有两个平方根可得11的平方根是±.【解答】解:11的平方根是±.故答案为:±.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.8.(2分)比较大小:﹣<(填“<“”或“=“”或“>”)【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:∵=,∴﹣<.故答案为:<.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.9.(2分)平面直角坐标系中点P(3,﹣2)关于x轴对称的点的坐标是(3,2).【分析】根据两点关于x轴对称,横坐标不变,纵坐标互为相反数即可得出结果.【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点P(3,﹣2)关于x轴的对称点P′的坐标是(3,2).故答案为:(3,2).【点评】本题考查了关于x轴对称的点的坐标的知识,注意掌握两点关于x轴对称,横坐标不变,纵坐标互为相反数.10.(4分)点M(4,3)向左(填“上”、“下”、“左”、“右”)平移4个单位后落在y轴上.【分析】根据:“上加下减、右加左减”求解可得.【解答】解:点M(4,3)向左平移4个单位后落在y轴上.故答案为:左、4.【点评】本题考查的是坐标与图形变化﹣平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.11.(2分)等腰三角形的周长是15,其中一条边的长度为3,那么它的腰长是6.【分析】分别从腰长为3与底边长为3,去分析求解即可求得答案.【解答】解:若腰长为3,则底边长为:15﹣3﹣3=9,∵3+3<9,∴不能组成三角形,舍去;若底边长为3,则腰长为:=6;∴该等腰三角形的腰长为:6.故答案为:6.【点评】此题考查了等腰三角形的性质以及三角形的三边关系.注意分别从腰长为3与底边长为3去分析求解是关键.12.(2分)等腰三角形中,角平分线、中线、高的条数一共最多有7条.(重合的算一条)【分析】根据等腰三角形与等边三角形三线合一的性质进行分析即可.【解答】解:在底和腰不等的等腰三角形中,它的角平分线、中线、高共有线段7条,故答案为:7.【点评】本题考查了等腰三角形的性质的运用,熟练掌握等腰三角形的性质是解题的关键.13.(2分)在不等边三角形△ABC中,已知两条边长分别为2、3,第三条边长为整数,那么它的长度为4.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围;再根据第三边应是整数,即可求解.【解答】解:根据三角形的三边关系,得第三边应大于3﹣2=1,而小于3+2=5.又因为第三边为整数,所以第三边应是2或3或4,因为是不等边三角形,则第三边是4.故答案为:4.【点评】本题考查了三角形的三边关系,理解不等边三角形是解答本题的关键,难度不大.14.(2分)如图,直线l1∥l2,∠1=43°,∠2=72°,则∠3的度数是65度.【分析】利用平行线的性质,三角形的内角和定理解决问题即可.【解答】解:∵l1∥l2,∠1=43°,∠2=72°,∴∠5=∠2=72°,∠4=∠1=43°,∴∠3=180°﹣72°﹣43°=65°,【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(2分)如图,已知EF∥GH,AC⊥CD,∠DCG=143°,则∠CBF=127度.【分析】首先根据垂直定义可得∠ACD=90°,再根据余角的定义可得∠ACH的度数,然后再根据平行线的性质可得∠FBC+∠ACH=180°,进而可得答案.【解答】解:∵AC⊥CD,∴∠ACD=90°,∵∠DCG=143°,∴∠DCH=37°,∴∠ACH=90°﹣37°=53°,∵EF∥GH,∴∠FBC+∠ACH=180°,∴∠FBC=180°﹣53°=127°,故答案为:127.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.16.(2分)用直尺和圆规作一个角等于已知角的示意图如图,则可说明∠A′O′B′=∠AOB,其中判断△COD≌△C′O′D′的依据是SSS.【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法求解.【解答】解:由作法得OD=OC=OD′=OC′,CD=C′D′,所以△COD≌△C′O′D′(SSS).【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形全等的判定.17.(2分)如图,在△ABC中,AB=AC,高BD,CE交于点O,连接AO并延长交BC 于点F,则图中共有7组全等三角形.【分析】在△ABC中,AB=AC则三角形是等腰三角形,做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【解答】解:∵AB=AC,BD,CE分别是三角形的高,∴∠AEC=∠ADB=90°,∴∠ABD=∠ACE,∴Rt△ABD≌Rt△ACE(AAS),∴CE=BD,又∵AB=AC,∴∠ABC=∠ACB,又∵∠ABD=∠ACE,∴∠BCE=∠CBD,∴△BCE≌△CBD(AAS)同理还有△ABF≌△ACF;△AEO≌△ADO;△ABO≌△ACO;△OBE≌△OCD;△BFO ≌△CFO,总共7对.故答案为:7【点评】本题考查了等腰三角形的性质、三角形全等的判定方法,做题时要从很容易的找起,由易到难,不重不漏.18.(2分)如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是15°.【分析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.【解答】解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15,所以∠EDC的度数是15°.故答案是:15°.【点评】本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.三、简答题(本大题共5小题,每小题5分,满分25分)19.(5分)计算:(﹣8)﹣﹣(﹣π)0+()﹣3【分析】直接利用二次根式的性质以及分数值数幂的性质、零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=﹣5﹣1+8=4﹣5﹣1+8=6.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)利用幂的性质计算:÷﹣【分析】直接利用二次根式的性质以及分数值数幂的性质、零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=﹣(3)=﹣3=﹣=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.(5分)已知点A(a﹣3,1﹣a)在第三象限且它的坐标都是整数,求点A的坐标.【分析】根据第三象限点的符号特点列出关于a的不等式组,解之求出a的范围,再由坐标都是整数得出a的值,从而得出答案.【解答】解:由题意知,解得1<a<3,∵a是整数,∴a=2,∴点A的坐标为(﹣1,﹣1).【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(5分)如图,已知CD∥BE,且∠D=∠E,试说明AD∥CE的理由.【分析】根据平行线的性质得出∠ACD=∠B,根据三角形内角和定理求出∠A=∠BCE,根据平行线的判定推出即可.【解答】解:理由是:∵CD∥BE,∴∠ACD=∠B,∵∠D=∠E,∠A+∠D+∠ACD=180°,∠B+∠E+∠BCE=180°,∴∠A=∠BCE,∴AD∥CE.【点评】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力.23.(5分)如图,△ABC中,∠B=∠C,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B求证:ED=EF.证明:∵∠DEC=∠B+∠BDE(三角形的一个外角等于与它不相邻的两个内角和,)且∠DEC=∠DEF+∠FEC(如图所示)∴∠DEF+∠FEC=∠B+∠BDE(等量代换)又∵∠DEF=∠B(已知)∴∠BDE=∠FEC(等式性质)在△EBD与△FCE中,∠BDE=∠FEC(已证)BD=CE(已知)∠B=∠C(已知)∴△EBD≌△FCE(ASA)∴ED=EF(全等三角形的对应边相等)【分析】首先根据三角形的外角等于与它不相邻的两个内角的和可得∠DEC=∠B+∠BDE,再由条件∠DEF=∠B可得∠BDE=∠CEF,再加上条件BD=CE,∠B=∠C可利用ASA证明△EBD≌△FCE再根据全等三角形对应边相等可得ED=EF.【解答】证明:∵∠DEC=∠B+∠BDE(三角形的一个外角等于与它不相邻的两个内角和,)且∠DEC=∠DEF+∠FEC(如图所示)∴∠DEF+∠FEC=∠B+∠BDE(等量代换)又∵∠DEF=∠B(已知)∠BDE=∠FEC(等式性质)在△EBD与△FCE中,∠BDE=∠FEC(已证)BD=CE(已知)∠B=∠C(已知)∴△EBD≌△FCE(ASA)∴ED=EF(全等三角形的对应边相等)故答案为:三角形的一个外角等于与它不相邻的两个内角和,FEC,FEC,ASA,全等三角形的对应边相等【点评】本题主要考查了全等三角形的判定与性质,关键是掌握两个三角形全等的判定定理:SSS、ASA、SAS、AAS.四、解答题(本大题共4题,24题每小题5分,共5分,25-27题每题6分,满分23分)24.(5分)如图,在直角坐标平面内,已知点A的坐标是(0,3),点B的坐标是(﹣3,﹣2)(1)图中点C的坐标是(3,﹣2).(2)三角形ABC的面积为15.(3)点C关于x轴对称的点D的坐标是(3,2)(4)如果将点B沿着与x轴平行的方向向右平移3个单位得到点B′,那么A、B′两点之间的距离是5.(5)图中四边形ABCD的面积是21.【分析】(1)根据平面直角坐标系可直接写出C点坐标;(2)根据三角形的面积公式可得答案;(3)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得D点坐标;(4)根据点的平移:横坐标,右移加,左移减;纵坐标,上移加,下移减可得B′点坐标,进而得到答案;(5)用△ABC的面积加上△ACD的面积即可.【解答】解:(1)根据题意得点C的坐标为(3,﹣2);故答案为:(3,﹣2);(2)△ABC的面积:.故答案为:15;(3)点C关于x轴对称的点D的坐标是(3,2);故答案为:(3,2);(4)将点B沿着与x轴平行的方向向右平移3个单位得到点B′(﹣3+3,﹣2),即(0,﹣2),A、B′两点之间的距离是:3﹣(﹣2)=5;故答案为:5;(5),∴四边形ABCD的面积为:S△ABC +S△ACD=15+6=21.故答案为:21【点评】此题主要考查了坐标与图形变化﹣平移,关于x轴对称的点的坐标,平面直角坐标系,以及三角形的面积,关键是掌握点的坐标的变化规律.25.(6分)已知一个等腰三角形两内角的度数之比为1:4,求这个等腰三角形顶角的度数.【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30,4x=120;因此等腰三角形的顶角度数为20°或120°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.26.(6分)已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.【点评】本题考查了等腰三角形的性质,用到的知识点是全等三角形的判定和性质、等腰三角形三线合一的性质,关键是找出全等三角形.27.(6分)公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M是BC的中点,试说明三只石凳E,F,M恰好在一条直线上.(提示:可通过证明∠EMF=180°)【分析】先根据SAS 判定△BEM ≌△CFM ,从而得出∠BME =∠CMF .通过角之间的转换可得到E ,M ,F 在一条直线上.【解答】证明:连接ME ,MF .∵AB ∥CD ,(已知)∴∠B =∠C (两线平行内错角相等).在△BEM 和△CFM 中,∴△BEM ≌△CFM (SAS ).∴∠BME =∠CMF ,∴∠EMF =∠BME +∠BMF =∠CMF +∠BMF =∠BMC =180°,∴E ,M ,F 在一条直线上.【点评】此题主要考查了学生对全等三角形的判定的掌握情况,注意共线的证明方法.五、能力题(满分8分)28.(8分)在Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 和CB (或它们的延长线)于E ,F .(1)当DE ⊥AC 于E 时(如图1),可得S △DEF +S △CEF = S △ABC ;(2)当DE 与AC 不垂直时(如图2),第(1)小题得到的结论成立吗?若成立,请给子证明;若不成立,请直接给出S △DEF 、S △CEF 、S △ABC 的关系.(3)当点E 在AC 延长线上时(如图3),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出的关系S △DEF ,S △CEF ,S △ABC 的关系.【分析】(1)当∠EDF 绕D 点旋转到DE ⊥AC 时,四边形CEDF 是正方形,边长是AC 的一半,即可得出结论;(2)成立;先证明△CDE ≌△BDF ,即可得出结论;(3)不成立;同(2)得:△DEC ≌△DBF ,得出S △DEF =S 五边形DBFEC =S △CFE +S △DBC =S △CFE +S △ABC .【解答】解:(1)如图1中,当∠EDF 绕D 点旋转到DE ⊥AC 时,四边形CEDF 是正方形.设△ABC 的边长AC =BC =a ,则正方形CEDF 的边长为a .∴S △ABC =a 2,S 正方形DECF =(a )2=a 2即S △DEF +S △CEF =S △ABC ; 故答案为.(2)上述结论成立;理由如下:连接CD ;如图2所示:∵AC =BC ,∠ACB =90°,D 为AB 中点,∴∠B =45°,∠DCE =∠ACB =45°,CD ⊥AB ,CD =AB =BD ,∴∠DCE =∠B ,∠CDB =90°,∵∠EDF =90°,∴∠1=∠2,在△CDE 和△BDF 中,,∴△CDE ≌△BDF (ASA ),∴S △DEF +S △CEF =S △ADE +S △BDF =S △ABC ;(3)不成立;S △DEF ﹣S △CEF =S △ABC ;理由如下:连接CD ,如图3所示:同(2)得:△DEC ≌△DBF ,∠DCE =∠DBF =135°∴S △DEF =S 五边形DBFEC ,=S △CFE +S △DBC ,=S △CFE +S △ABC ,∴S △DEF ﹣S △CFE =S △ABC .∴S △DEF 、S △CEF 、S △ABC 的关系是:S △DEF ﹣S △CEF =S △ABC .【点评】本题属于几何变换综合题,考查了全等三角形的判定与性质、等腰直角三角形的性质、图形面积的求法;证明三角形全等是解决问题的关键.。
2018-2019学年七年级下期末考试数学试卷及答案
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
江苏省南京建邺新城中学2018-2019学年度第二学期七年级数学学科期末试题(解析版)
2021-2021学年度第二学期七年级数学学科期末试题考前须知:1 .本试卷共6页.全卷总分值100分.测试时间为100分钟.考生做题全部答在做题卡上,答 在本试卷上无效.2 .请认真核对监考教师在做题卡上所粘贴条形码的姓名、测试证号是否与本人相符合,再将 自己的姓名、测试证号用 0.5毫米黑色墨水签字笔填写在做题卡及本试卷上.3 .答选择题必须用2B 铅笔将做题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后, 再选涂其他答案.答非选择题必须用 0.5毫米黑色墨水签字笔写在做题卡上的指定位置,在其他位置做题一律无效.、选择题〔本大题共6小题,每题2分,共12分.在每题所给出的四个选项中,恰有一项为哪一项符合题目要求的,请将正确选项前的字母代号填涂在做题卡 相应位置 上〕组正确的选项是〔▲〕 2. 4. 计算〔a 2b 〕3的结果是 A. a 6b 3(▲) B. a 2b 3 AB // CD 的条件是C.a 6b D. a 5b 32m =5, 3m =2.那么6m 的值为〔▲〕 D. 125C. 25D. 325. 根据以下条件,能唯一画出△ ABC 的是〔▲〕A. AB=6, BC=3, AC= 9C. Z 0=90°, AB=6B. AB= 5, BC = 4, Z A= 30 ° D. /A=60°, /B=45°, AB=46. 小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你 还要16年才出生呢.〞 如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,那么下面方程x+ y= 52,A. 一16 — x= y —x.y —x= 52, B.0.x — 16= y —x.x+ y= 52, y-2x= 16.52— x= y, D.〞x — 16= y —x.如图,能判断直线3.A . 70B . 1084C. 1103+Z4= 180°二、填空题〔本大题共 10小题,每题2分,共20分.不需写出解答过程,请把答案直接填写在做题卡相应位置上〕7 .石墨烯是现在世界上最薄的纳米材料,其理论厚度应是0.000 000 000 34 m,用科学记数法表示 0.000 000 000 34 是 ▲ .8 .结合以下图,用符号语言表达定理“同旁内角互补,两直线平行〞的推理形式:.「▲,a // b.9 .如图, AC=DB,要使△ ABC^^DCB,那么需要补充的条件为 ▲〔填一个即可〕.10 .如图,4ABC, 4DBE 均为直角三角形, 且D, A, E, C 都在一条直线上, / 0=25°, /D = 45°,那么/ EBC的度数是 ▲.11 .假设x 2+kx+4是一个完全平方式,那么整数 k 的值为 ▲. x>2, 一. 一 一 一一,12,不等式组无解,那么a 的取值范围为▲.xv a13 .如图,直线 11 // 12, / A=85°, / B= 70°,那么/ 1-Z 2= ▲14 .如图,在 RtAABC 中,/ BAC=90°, Z 0=50°, AH, BD 分别是△ ABC 高和角平分线,点P 为边BC 上一个点,当^ BDP 为直角三角形时,那么/ CDP = ▲度.15 .如图,△ ABC 的两个外角的三等分线交于D 点,其中/ CBD = 1/CBF, / BCD =1/BCG,3 3DB 的延长线于/ ACB 的三等分线交于 E 点且/ BCE=1/ BCA,当/ D= a 时,/ E 的度3 数为 ▲ 〔结果用含有 a 代数式表示〕.x= 2 — t, … 、,一,,16 .假设 ;,那么y 与x 满足的关系式为 ▲y=4-t 2〔第10题〕解做题〔本大题共 10小题,共68分.请在做题卡指定区域 内作答,解答时应写出文字 说明、证实过程或演算步骤〕把以下各式因式分解〔每题3分,共6分〕 1 1〕 4x 2—16;〔2〕 〔x —y 〕2+4xy.(6 分)先化简再求值:(2x + 3)(2 x-3)-4x(x-1) -(x-2)2,其中 x=2.〔6分〕如图, B, C, E 三点在同一条直线上,/ A=/DCE, /ACB=/E, AB = CD.假设 BC=8, BE = 2,求 AC 的长.17. 18. 19. 〔每题4分,共8分〕 x — 2y = 一 8,(1)解方程组 y3x>x+ 2,(2)解不等式组 x+4 2x- 1--- < ------ 4 220.(6 分) y= ax 2 + bx+ c,当 x = 0 时,y= 1;当 x= 2 时,y=11;当 x= - 1 时,y=6. (1)求a, b, c 的值; (2)当x= — 3时,求y 的值.〔7分〕〔1〕尺规作图:如图,过点A 点作直线l 的垂线AB ,垂足为B 点〔保 留作图痕迹〕;2〕根据作图的方法,结合图形,写出, * A并证实. :如图, ▲ .l求证:AB ± l .(1)求x 的取值范围;(2)当AB=2BC 时,x 的值为 ▲.A BC_______ I ______________ I _____________________ [1—2x 3 x 1 〔第25题〕21. 22. 23.〔6分〕如图,在数轴上点 侧,点C 在点B 的右侧. A 、B 、C 分别表示—1、 —2x+ 3、x+ 1,且点 A 在点B 的左24. 〔7分〕为了参加学校举办的新城杯〞足球联赛,新城中学七〔1〕班学生去商场购置了A 品牌足球1个、B品牌足球2个,共花费400元,七〔2〕班学生购置了品牌A足千3个、B品牌足球1个,共花费450元.〔1〕求购置一个A种品牌、一个B种品牌的足球各需多少元?〔2〕为了进一步开展“校园足球〞,学校准备再次购进A、B两种品牌的足球,学校提供专项经费850元全部用于购置这两种品牌的足球,学校这次最多能购置多少个足球?25. 〔8分〕用半种方话证实“四边形的外角和等于360.〞 .如图,/ DAE、/ ABF、/ BCG、/ CDH是四边形ABCD的四个外角.求证:/ DAE + /ABF + / BCG + /CDH =360° .〔8分〕如图:在长方形ABCD中,AB=CD = 4cm, BC=3cm,动点P从点A出发,先以1cm/s的26.速度沿A-B,然后以2cm/s的速度沿B-C运动,至U C点停止运动,设点P 运动的时间为t秒,是否存在这样的t,使得△ BPD的面积S>3cm2?如果能,请求出t 的取值范围;如果不能,请说明理由 .参考答案与试题解析1 .计算〔a b〕的结果是〔▲〕A . a6b3 B. a2b3【解答】解:原a6b3,应选:A.2 .如图,能判断直线AB// CD的条件是〔&C 3/ \4 DA./1 = /2B./3=/4【分析】根据邻补角互补和条件/ 3+ / 直线平行可得结论.【解答】解:•••/ 1+75= 180° , / 3+・・/ 3=7 5,AB // CD,应选:C.71C 3 / \4 D3 .如图,在^ ABC 中,/ ACB = 70° , /CA ------------------------------- BA. 70B. 108C. a6bD. a5b3〕C. /1 + /3=180° D , Z 3+74=180° 1=180°,可得/ 3=/ 5,再根据同位角相等,两71 = 180° ,1 = 7 2,那么/ BPC的度数为〔〕C. 110D. 125选择题〔共6小题〕【分析】先根据/ 1 = /2得出/ 2+/BCP=/ACB,再由三角形内角和定理即可得出结论.【解答】 解:••・在△ ABC 中,/ ACB=70° , / 1 = /2, . •/ 2+/ BCP=/ ACB = 70° ,・ ./ BPC=180° —乙 2—乙 BCP=180° - 70° = 110° .应选:C.4,2m =5, 3m =2.那么6m 的值为〔〕A. 7B. 10C. 25D. 32【分析】根据哥的乘方与积的乘方法那么计算即可. 【解答】解:6m = 〔2X3〕 m = 2m x 3m =5X 2=10, 应选:B.5.根据以下条件,能唯一画出△ABC 的是〔〕A. AB=5, BC=3, AC=8B. AB = 4, BC= 3, /A=30°C. /C=90° , AB=6D. /A=60° , / B=45° , AB=4 【分析】根据全等三角形的判定方法可知只有D 能画出三角形.【解答】 解:〔1〕 AB+BC=5+3=8=AC,「•不能画出^ ABC; 〔2〕 AB 、BC 和BC 的对角,不能画出^ ABC; 〔3〕一个角和一条边,不能画出^ ABC; 〔4〕两角和夹边,能画出△ ABC; 应选:D.组正确的选项是〔 〕 yr = 52 x-16=y-i y =l 5 2 x-16=y-x【分析】 可设现在小明的年龄是 x 岁,爸爸的年龄是 y 岁,根据“小明与爸爸的年龄和是52岁〞,小明与爸爸的年龄差不变得出16+x=y-x,列出方程组即可.【解答】 解:设小明的年龄是 x 岁,爸爸的年龄是 y 岁,依题意有 应选:C..填空题〔共10小题〕6.小明与爸爸的年龄和是 52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你 还要16年才出生呢.〞如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,那么下面方程A.C.|x+52=yIx+16=y-i \i+y=52 I. y-2x=16x+y=52 16+x =y-jt+y=52y-2x=167 .石墨烯是现在世界上最薄的纳米材料,其理论厚度应是 示 0.00000000034 是 3.4 X 10 10【分析】 绝对值小于1的正数也可以利用科学记数法表示,一般形式为数的科学记数法不同的是其所使用的是负指数哥,指数由原数左边起第一个不为零的数字 前面的0的个数所决定.【解答】 解:0.00000000034 = 3.4 X 10 10 故答案为:3.4X 10 108 .结合图,用符号语言表达定理“同旁内角互补,两直线平行〞的推理形式:【分析】两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 【解答】 解:•••/ 1+73= 180° , a // b 〔同旁内角互补,两直线平行〕. 故答案为:/ 1 + Z 3=180° .9 .如图, AC=DB,要使△ABC^^DCB,那么需要补充的条件为AB= DC 〔填【分析】要使△ABC^^DCB,由于BC 是公共边,AC=DB 是条件,假设补充一组边相 等,那么可用SSS 判定其全等,故可以添加条件: AB=DC.【解答】 解:可以添加条件: AB=DC, 理由如下:AC=DB CB=BC AB 二 DCABC^ADCB (SSS 故答案为:AB=DC.10 .如图,4ABC, ADBE 均为直角三角形, 且D, A, E, C 都在一条直线上, / 0=25 /D = 45° ,那么/[0.00000000034m,用科学记数法表ax 10 n ,与较大个即可〕EBC的度数是20°.【分析】先根据三角形的内角和定理得:/ DEB = 45°,最后根据三角形外角的性质可得结论.【解答】解:RtADBE 中,,一/ D=45° , / DBE = 90° ,・./ DEB = 90° - 45° =45° ,・・ / 0=25° ,・./ EBC=/DEB-/ 0=45-25° =20° ,故答案为:20° .11 .假设x2+kx+4是一个完全平方式,那么常数k的值为土4 .【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定的值.【解答】解:x2+kx+4 = x2+kx+22,kx= ± 2X 2x,解得k= ±4.故答案为:土 4.12 .不等式组广无解,那么a的取值范围为aW2 .【分析】根据不等式组,无解,可得出aw 2,即可得出答案.【解答I解:二.不等式组, 无解,,a的取值范围是aW2;故答案为:aw 2.13 .如图,直线11 // 12, / A=85° , / B=70°,那么/ 1 - Z 2=2£// 12得出/ 2=Z EBC,由BC // 11 得出/ CBA = Z ADF ,证出/ADF=70°-乙2,由三角形内角和定理即可得出结果.【解答】解:过点B作BC// li,如下图:;直线11 // 12,BC // 12,・./ 2=Z EBC,BC // 11,・./ CBA=Z ADF,・. Z B=Z EBC+Z CBA=70° ,.•.Z 2+Z ADF = 70°,即/ ADF = 70° - Z 2,・• / 1 + Z A+Z ADF =180° ,. 1+85° +70°—人 2=180° ,14 .如图,在Rt^ABC中,ZBAC = 90° , /C=50° , AH, BD分别是△ ABC高和角平分线,点P为边BC上一个点,当^ BDP为直角三角形时,那么/ CDP = 40或20 度.故答案为:25°【分析】直接根据三角形内角和定理得/ ABC=40°,由角平分线的定义得/ DBC = 20当4BDP 为直角三角形时,存在两种情况:分别根据三角形外角的性质即可得出结论.【解答】解:.一/ BAC = 90° , Z 0=50° ,・ ./ ABC =90 ° — 50° = 40°••• BD 平分/ AB0^ZABC=20・ ./ BPD = 90° — 20° =70° ,・. / BPD = / C+/CDP,・ ./ CDP = 70° — 50° =20° ,综上,/ 0DP 的度数为40°或20° .故答案为:40或20.15 .如图,△ ABC 的两个外角的三等分线交于 D 点,其中/ CBD =BCG, DB 的延长线于/ ACB 的三等分线交于 E 点且/ BCE =E 的度数为 120.— a 〔结果用含有 a 代数式表示〕. ②当/ BDP = 90°时,如图2,ZCBF, / BCD =4 3/ BCA,当/ D= a 时,/ 当^ BDP 为直角三角形时,有以下两种情况:・ ./ CDP = 90° — 50° =40° ;D图2【分析】根据平角的定义和三等分角可得:ECD = 60°,再由三角形内角和定理可得结论.【解答】解:•••/ ACB + Z BCG = 180°,且/ BCD = A Z BCG, /BCE=—/BCA.33・・./ ECD = /BCD+/BCE=!/BCG+L,BCA=-X 180.= 60° , a x△ DCE 中,/ E+ZD+ZDCE=180O,- Z E= 180 - a- 60 = 120 - a,故答案为:120 - a.16.假设, .,那么y与x满足的关系式为y = - x2+4x .L y-4-t【分析】由x= 2 - t,可得:t = 2-x,把t= 2 - x代入y = 4 - t2,进而解答即可.【解答】解:由x= 2-t,可得:t=2-x,把t=2-x 代入y=4- t2,可得:y= - x2+4x,故答案为:y=-x2+4x.三.解做题(共7小题)17 .把以下各式因式分解(1) 4x2- 16;(2) (x-y) 2+4xy.【分析】(1)提公因式后利用平方差公式分解;(2)先去括号化简,再利用完全平方公式分解.【解答】解:(1) 4x2 -16=4 (x2 - 4) = 4 (x+2) ( x — 2);(3) (x-y) 2+4xy= x2-2xy+y2+4xy= x2+2xy+y2= ( x+y) 2.18 .先化简,再求值:(2x+3) (2x- 3) - 4x (x-1) - ( x- 2) 2,其中x=2.【分析】先去括号,再合并同类项即可化简原式,最后把x的值代入计算可得.【解答】解:原式=4x 2- 9 - 4x 2+4x- x 2+4x-4,=-x 2+8x- 13,当 x= 2 时,原式=-4+16— 13= — 1 .19 . ( 1)解方程组, [2工十的刁9.(2)解不等式组■工十4厂2工-1【分析】(1)方程组利用加减消元法求出解即可;(2)分别求得不等式的解,然后取其公共局部即可得到不等式组的解集.②一① X2 得:7y=35,即 y=5,把y= 5代入①得:x=2,解①得:x>1,解②得:x>2,所以不等式组的解集为: x>2.20 .如图, B, C, E 三点在同一条直线上,/ A=/DCE, /ACB = /E, AB= CD .假设CE= 10,•. /A=/DCE, /ACB = /E, AB=CD,ACB^A CED (AAS),AC = CE= 10. 221 . y= ax +bx+c,当 x=0 时,y=1;当 x= 2 时,y= 11;当 x= - 1 时,y= 6.【解答】解(1)但2尸3© t 2x+3y=19©那么方程组的解BC=8, BE = 2,求 AC 的长.【解答】 解:= BC=8, BE=2,(1)求a, b, c的值;(2)当x= - 3时,求y的值.【分析】(1)代入后得出三元一次方程组,求出方程组的解即可.(2)把x= — 3代入y=Mx2--Lx+1求得即可.3 3【解答】解:y=ax2+bx+c,当x= 0 时,y= 1 ;当x=2 时,y=11;当x= - 1 时,y=6, ,代入得:4/2bF=ll②把①代入②和③得:4,解得:a=-y-, b= - y,即a= 1°, b = — -, c= 1.3 3(2) y=JJlx2 - —x+1 ,3 3「•当x= — 3 时,y= 30+5+1 = 36.22. (1)尺规作图:如图,过点A点作直线l的垂线AB,垂足为B点(保存作图痕迹);(2)根据作图的方法,结合图形,写出,并证实.:如图, AD = AC, DE = CE, AE与CD交于点B .求证:AB± l.【分析】(1)依据过一点作直线的垂线的方法作图即可;(2)利用全等三角形的对应角相等,即可得出结论.【解答】解:(1)如下图,ABH;ADE^AACE (SSS ),・ ./ DAB = Z CAB,又「 AD = AC, AB= AB,ABD^AABC (SAS),・ ./ ABD = / ABC,又・• / ABD + Z ABC= 180° ,・ ./ ABC =90° ,即 AB±l.23.如图,在数轴上点 A 、B 、C 分别表示-1、- 2x+3、x+1 ,且点A 在点B 的左侧,点C 在 点B 的右侧.(1)求x 的取值范围;(2)当AB=2BC 时,x 的值为 1 . A .B .C *1一 I r+1【分析】(1)根据点A 在点B 的左侧,点C 在点B 的右侧以及数轴上右边的数大于左边的数列出不等式组,求解即可;(2)根据AB=2BC 列出方程,解方程即可.解不等式①得:xv 2, 解不等式②得:x>1-.即x 的取值范围是—v xv 2;3⑵••• AB = 2BC,【解答】解: (1)由题意得:那么不等式组的解集为:? 3 v xv 2.AE=AE,- 2x+3+1 =2 (x+1+2x- 3),解得x= 1.故答案为1 .24.为了参加学校举办的“新城杯〞足球联赛,新城中学七( 1)班学生去商场购置了A品牌足球1个、B品牌足球2个,共花费400元,七(2)班学生购置了A品牌足球3个、B品牌足千1 1个,共花费450元.(1)求购置一个A种品牌、一个B种品牌的足球各需多少元?(2)为了进一步开展“校园足球〞,学校准备再次购进A、B两种品牌的足球,学校提供专项经费850元全部用于购置这两种品牌的足球,学校这次最多能购置多少个足球?【考点】95:二元一次方程的应用;9A :二元一次方程组的应用.【专题】34:方程思想;521: 一次方程(组)及应用.【分析】(1)设购置一个A种品牌足球需要x元,购置一个B种品牌足球需要y元,根据“购置A品牌足球1个、B品牌足球2个,共花费400元;购置A品牌足球3个、B品牌足千1个,共花费450元〞,即可得出关于x, y的二元一次方程组,解之即可得出结论;(2)设可以购置m个A种品牌足球,n个B种品牌足球,根据总价=单价X数量, 即可得出关于m, n的二元一次方程,结合m, n均为非负整数即可求出m, n的值,将m, n值相加取其最大值即可得出结论.【解答】解:(1)设购置一个A种品牌足球需要x元,购置一个B种品牌足球需要y元,/、日…/日If K+2V=4J00依题意,得:1 ,[3x-Hy=450加日fx=100 解得:■.13150答:购置一个A种品牌足球需要100元,购置一个B种品牌足球需要150元.(2)设可以购置m个A种品牌足球,n个B种品牌足球,依题意,得:100m+150n = 850,一17-2mm, n均为非负整数,,m+n=6或m+n=7 或m+n= 8.答:学校这次最多能购置8个足球.25.用两种方法证实“四边形的外角和等于360°〞 .如图,/ DAE、/ ABF、/ BCG、/ CDH是四边形ABCD的四个外角.求证:/ DAE+ Z ABF+ Z BCG+ ZCDH = 360° .【考点】K7:三角形内角和定理;K8:三角形的外角性质;L3:多边形内角与外角.【专题】552:三角形;55B:正多边形与圆.【分析】连接AC, BD,由三角形外角和可知/ EAD = Z ABD + Z ADB , /ABF = /CAB + /ACB, Z BCG=Z CDB + Z CBD, Z CDH =Z DAC+Z DCA,代入所求式子即可求解.【解答】解:连接AC, BD,・. / EAD = Z ABD+Z ADB,/ ABF=/ CAB+ZACB,/ BCG = Z CDB+Z CBD,Z CDH =Z DAC+/DCA,••• / DAE+ / ABF+ / BCG+ / CDH =Z ACB+ / ABC+ / CAB+ / ACB+ / CDB+Z CBD+ /DAC + /DCA= (/ ACD + Z DCA + Z ADC) + (/ABC+ / DAB+ /ACB) = 180° +180° = 360° .26.如图:在长方形 ABCD 中,AB=CD = 4cm, BC=3cm,动点P 从点A 出发,先以1cm/s 的 速度沿A-B,然后以2cm/s 的速度沿B-C 运动,至U C 点停止运动,设点 P 运动的时间为 t 秒,是否存在这样的 t,使得△ BPD 的面积S> 3cm 2?如果能,请求出t 的取值范围;如 【考点】CE: 一元一次不等式组的应用.【专题】25:动点型.【分析】分两段考虑:①点P 在AB 上,②点P 在BC 上,分别用含t 的式子表示出△ BPD 的面积,再由S>3cm 2建立不等式,解出t 的取值范围值即可.【解答】解:①当点P 在AB 上时,假设存在△ BPD 的面积满足条件,即运动时间为 t 秒, S ABPD =— (4-t) X 3=旦(4- t) > 32 2解得tv 2,又由于P 在AB 上运动,0K t<4, 所以0W t<2;②当点P 在BC 上时,假设存在△ BPD 的面积满足条件,即运动时间为t 秒,那么 S A BPD=—x 4X2 (t-4) =4t-16>3解得t>』j 4又由于P 在BC 上运动,手vtW5.5, 4. ............................. … _____ ....... ............ Iiq综上所知,存在这样的 t,使得△ BPD 的面积满足条件,此时 0<t<2; —<t<5.5. 4 果不能,请说明理由.备用图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018—2019学年下学期期末水平质量检测七年级数学试卷
(全卷满分:120分钟 考试时间:120分钟)
注意:本卷为试题卷;考生必须在答题卷上作答;答案应书写在答题卷相应位置;在试题卷、草稿纸上答题无效.
一、细心填一填(每小题3分,共计24分)
1. 计算:2
)3(2x y + = ;)2b -b -2a a -)((= . 2.如果12
++kx x 是一个完全平方式,那么k 的值是 .
3. 温家宝总理在十届全国人大四次会议上谈到解决“三农”问题 时说,2006年中央财政用于“三农”的支出将达到33970000 万元,这个数据用科学记数法可表示为 万元.
4. 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .
5. 如图,已知∠BAC=∠DAE=90°,AB=AD ,要使△ABC ≌△ADE ,还需要添加的条件是 .
6.现在规定两种新的运算“﹡”和“◎”:a ﹡b=2
2
b a +;a ◎b=2ab,如(2﹡3)(2◎3)=
(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .
7.某物体运动的路程s (千米)与运动的时间t (小时)关系如图所示,则当t=3小时时,物体运动所经过的路程为 千米. 8.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图 所示, 则该汽车的号码是 .
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共27分)
9.下列图形中不是..
正方体的展开图的是( )
A B C D 10. 下列运算正确..
的是( ) A .1055a a a =+ B .2446a a a =⨯ C .a a a =÷-10 D .14
4=-a a
11. 下列结论中,正确..
的是( ) A .若2
2
b a ,b a ≠≠则 B .若22b a , b a >>则
C .若b a ,b a 2
2
±==则 D .若b
1a 1, b a >>则
12. 如图,在△ABC 中,D 、E 分别是AC 、BC 上的点,若
△ADB ≌△EDB ≌△EDC ,则∠C 的度数是( ) A .15° B .20° C .25° D .30°
E D C
B A
第5题
t (小时)
2 O 30
S (千米)
第8题
第14题
E D
C
B
A
13. 观察一串数:0,2,4,6,….第n 个数应为( )
A .2(n -1)
B .2n -1
C .2(n +1)
D .2n +1 14.下列关系式中,正确..
的是( ) A .()222
b a b a -=- B.()()22b a b a b a -=-+
C .()222
b a b a +=+ D.()2
22
b 2ab a b a +-=+
15. 如图表示某加工厂今年前5
) A
.1月至3月每月产量逐月增加,4、5两月产量逐月
减小
B .1
月至3
月每月产量逐月增加,4、
5
两月产量与3
持平
C .1月至3月每月产量逐月增加,4、5生产
D . 1月至3月每月产量不变,4、5两月均停止生产 16.下列图形中,不一定...是轴对称图形的是( ) A .等腰三角形 B .线段 C .钝角17. 长度分别为3cm ,5cm ,7cm ,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )
A .1
B .2
C . 3
D .4
三、精心算一算(18题5分,19题6分,共计11分)
18.()()3
42
6
y y 2-
19.先化简()()()()1x 5x 13x 13x 12x 2
-+-+--,再选取一个你喜欢的数代替x ,并求原代数式的值.
四、认真画一画(20题5分,21题5分,共计10分)
20.如图,某村庄计划把河中的水引到水池M 中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:
21.两个全等的三角形,可以拼出各种不同的图形,如图所示中已画出其中一个三角形,请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分),你最多可以设计出几种?(至少设计四种)
五、请你做裁判(第22题小5分,第23小题5分,共计10分)
22.在“五·四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额. 小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.
游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?
23. 一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米; 小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际? 按照他的设计,鸡场的面积是多少?
六、生活中的数学(8分),
24.某种产品的商标如图所示,O 是线段AC 、BD 的交点,并且
在△ABO 和△DCO 中 ⎪⎩
⎪
⎨⎧=∆
≅∆−→−∠=∠=CD AB DCO ABO DOC AOB BD AC
你认为小明的思考过程正确吗?如果正确,他用的是判定三 角形全等的哪个条件?如果不正确,请你增加一个条件,并 说明你的思考过程.(请将答案写在右侧答题区)
七.探究拓展与应用满分30分,
25.几何探究题(30分)请将题答在右侧区域。
2010—2011学年下学期期末水平质量检测 七年级数学试卷参考答案及评分标准
一、细心填一填(每题2分,共计20)
1. 5x ;2a .
2.±2.
3.平行.
4.3.397×10
7
5.
8
3
6.26或22㎝
7. AC=AE (或BC=DE ,∠E=∠C ,∠B=∠D )
8.-20
9. 45 10.B6395
二、相信你的选择(每小题只有一个正确的选项,每小题3分,共计30分)
三、精心算一算(21题3分,22题5分,共计8分)
21.解:=1212
y 2y
- =12y ……3分
22.解:=5x 5x 19x 14x 4x 2
2
2
-++-+-=29x +- …3分 当x=0时,原式
四、认真画一画(23题4分,24题423.解:
理由是: 垂线段最短 . ……2分 作图……2分
24.解
每作对一个给1分
五、请你做裁判!(第25题小4分,第26小题6分,共计10分)
25.解:不会同意. ……2分 因为转盘中有两个3,一个2,这说明小丽去的可能性是
3162=,而小丽去的可能性是6
1
,所以游戏不公平. ……2分 26.解:根据小王的设计可以设宽为x 米,长为(x +5)米,
根据题意得2x +(x +5)=35 解得x=10.
因此小王设计的长为x +
.
……2分
根据题意得2x +(x +2)=35 解得x=11.
因此小王设计的长为x +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米). ……2分 六、生活中的数学(第27小题4分,第28小题5分,共计9分) 27.解:(1)2001年该养鸡场养了2万只鸡.(答案不唯一)
(2)2001年养了2万只;2002年养了3万只;2003年养了4万只;2004年养了3万只;2005年养了4万只;2006年养了6万只. (3)近似数.
(4)比条形统计图更形象、生动.(能符合即可) ………(每小题1分) 28.解:小明的思考过程不正确. …1分
添加的条件为:∠B=∠C (或∠A=∠D 、或符合即可)…3分
在△ABO 和△DCO 中
DCO ABO CD AB DOC AOB C B ∆≅∆⇒⎪⎩
⎪
⎨⎧=∠=∠∠=∠ …… 5分(答案不唯一) 七、探究拓展与应用(第29小题4分,第30小题7分,共计11分)
29. (1)∠EAB=∠C ;同位角相等,两直线平行.(2)∠BAD=∠D ;内错角相等,两直线平行 (3)∠BAC +∠C=180°;同旁内角互补两直线平行.……对1个给1分,全对给4分. 30.(1)2
2
b a -.(2)()b a -,()b a + ,()()b a b a -+ . (3)()()b a b a -+=2
2
b a -.
(4): 评分标准:每空1分,(4)小题各1分八、信息阅读题(6分)
31.(1)解:由图象可以看出农民自带的零钱为5元; (2)
()元5.030
5
20=-
(3)
()()千克,千克453015154
.020
26=+=-…各2分 答:农民自带的零钱为5元;降价前他每千克土豆出售的价格是0.5元;他一共带了45千克的土豆. …… 第(1)问和答各1分,(2)、(3)各2分.。