2018-2019年七年级数学上册期末试卷及答案

合集下载

2018-2019年新人教版七年级(上)期末考试数学试卷(含答案解析)

2018-2019年新人教版七年级(上)期末考试数学试卷(含答案解析)

2018-2019年新人教版七年级(上)期末考试数学试卷一、选择题(本大题共10小题,共30.0分)1.−12的相反数等于()A. 12B. 2 C. −12D. −22.下列计算正确的是()A. −2−2=0B. 8a4−6a2=2a2C. 3(b−2a)=3b−2aD. −32=−93.如图,点B在点A的方位是()A. 南偏东43∘B. 北偏西47∘C. 西偏北47∘D. 东偏南47∘4.据统计,网络《洋葱数学》学习软件,注册用户已达1200万人,数据1200万用科学记数法表示为()A. 1.2×103B. 1.2×107C. 1.2×108D. 1.2万×1045.如图,小刚将一副三角板摆成如图形状,如果∠DOC=120°,则∠AOB=()A. 45∘B. 70∘C. 30∘D. 60∘6.关于y的方程2m+y=m与3y-3=2y-1的解相同,则m的值为()A. 0B. −2C. −12D. 27.若|m|=5,|n|=3,且m+n<0,则m-n的值是()A. −8或−2B. ±8或±2C. −8或2D. 8或28.某土建工程共需动用30台挖运机械,每台机械每分钟能挖土3m3,或者运土2m3,为了使挖土和运土工作同时结束,安排了x台机械挖土,这里的x应满足的方程是()A. 30−2x=3xB. 3x−2x=30C. 2x=3(30−x)D. 3x=2(30−x)9.已知一个有50个奇数排成的数阵,用如图所示的框去框住四个数,并求出这四个数的和,在下列给出的备选答案中,有可能是这四个数的和的是()A. 114B. 122C. 220D. 8410.如果∠α和∠β互余,则下列表示∠β的补角的式子中:①180°-∠β,②90°+∠α,③2∠α+∠β,④2∠β+∠α,其中正确的有()A. ①②③B. ①②③④C. ①②④D. ①②二、填空题(本大题共8小题,共24.0分)11. 如果卖出一台电脑赚钱500元,记作+500,那么亏本300元,记作______元.12. 如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r 米,广场的长为a 米,宽为b 米,则广场空地的面积表示为:______米2.13. 某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是______元.14. 如图,将长方形纸片ABCD 沿直线EN 、EM 进行折叠后(点E 在AB 边上),B ′点刚好落在A ′E 上,若折叠角∠AEN =30°15′,则另一个折叠角∠BEM =______.15. 设0.7⋅=x ,由0.7⋅=0.777…可知,10x =7.777…,所以10x -x =7.解方程x =79.于是,得0.7⋅=79.则无限循环小数0.3⋅25⋅化成分数等于______.16. 如图,已知BC 是圆柱的底面直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,若展开图中,金属丝与底面周长围成的图形的面积是5πcm 2,该圆柱的侧面积是______cm 2.17. 已知线段AB =acm ,在直线AB 上截取BC =bcm ,且b <a ,D 是AC 的中点,则线段BD =______cm .18. 如图所示,用圆圈拼成的图案,图1由一个圆环组成,图2由5个圆圈组成,图3由13个圆圈组成,依此规律,第8个图案一共由______个圆圈组成,第n 个由______个组成.三、计算题(本大题共4小题,共34.0分)19. 计算与化简:(1)-23÷23×(-13)2 (2)2(a 2+a +1)-3(1-2a -a 2)20. 解方程:(1)5(x -2)-2=2(2+x )+x(2)0.1(2x−4)−10.2=0.2(4−2x)−0.10.3−121. 我们通常象这样来比较两个数或两个代数式值的大小:若a -b =0,则a =b ;若a -b<0,则a <b ;若a -b >0,则a >b ,我们把这种方法叫“作差法”.已知A =5m 3+3m 2-2(52m -12),B =5m 3+5(m 2-m )+5,试比较代数式A 与B 的大小.22. 如图,已知直线AB 与直线CD 相交于点O ,∠BOE =90°,FO 平分∠BOD ,∠BOC :∠AOC =1:3.(1)求∠DOE 、∠COF 的度数.(2)若射线OF 、OE 同时绕O 点分别以2°/s 、4°/s 的速度,顺时针匀速旋转,当射线OE 、OF 的夹角为90°时,两射线同时停止旋转.设旋转时间为t ,试求t 值.四、解答题(本大题共3小题,共32.0分)23. 如图,已知同一平面内的四个点A 、B 、C 、D ,根据要求用直尺画图.(1)画线段AB ,∠ADC ;(2)找一点P ,使P 点既在直线AD 上,又在直线BC上;(3)找一点Q ,使Q 到A 、B 、C 、D 四个点的距离和最短.24. 下表是某市青少年业余体育健身运动中心的三种消费方式.方式 一年费/元 消费限定次数(次) 消费超时费(元/次)方式A5807525方式B88018020方式C0不限次数,29元/次(1)设一年内参加健身运动的次数为t次(t为正整数).试用t表示大于180次时,三种方式分别如何计费.(2)试计算t为何值时,方式A与方式B的计费相等?方式A与方式C呢?(3)请你根据参加运动的次数,设计最省钱的消费方式.25.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P 点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B 两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.答案和解析1.【答案】A【解析】解:根据定义可得:-的相反数等于.故选:A.根据相反数的定义:只有符号不同的两个数叫做互为相反数可以直接写出答案.此题主要考查了相反数的定义,关键是掌握相反数的定义.2.【答案】D【解析】解:A、-2-2=-2+(-2)=-4,此选项错误;B、8a4与-6a2不是同类项,不能合并,此选项错误;C、3(b-2a)=3b-6a,此选项错误;D、-32=-9,此选项正确;故选:D.根据有理数的减法和乘方的运算法则及同类项的定义、去括号法则逐一判断可得.本题主要考查有理数的运算和整式的运算,解题的关键掌握有理数的减法和乘方的运算法则及同类项的定义、去括号法则.3.【答案】B【解析】解:由余角的定义,得,∠CAB=90°43°=47°,点B在点A的北偏西47°,故选:B.根据余角的定义,方向角的表示方法,可得答案.本题考查了方向角,利用余角的定义得出方向角是解题关键.4.【答案】B【解析】解:1200万=1.2×107.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.【答案】D【解析】解:∵∠DOB=∠AOC=90°,∠DOC=120°,∴∠DOA=30°,故∠AOB=90°-30°=60°.故选:D.直接利用互余的性质进而结合已知得出答案.此题主要考查了互余的性质,正确得出∠DOA=30°是解题关键.6.【答案】B【解析】解:由3y-3=2y-1,得y=2.由关于y的方程2m+y=m与3y-3=2y-1的解相同,得2m+2=m,解得m=-2.故选:B.分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题考查了同解方程,解决的关键是能够求解关于x的方程,根据同解的定义建立方程.7.【答案】A【解析】解:∵|m|=5,|n|=3,且m+n<0,∴m=-5,n=3;m=-5,n=-3,可得m-n=-8或-2,则m-n的值是-8或-2.故选:A.根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.此题考查了代数式求值,以及绝对值,熟练掌握运算法则是解本题的关键.8.【答案】D【解析】解:设安排x台机械挖土,则有(30-x)台机械运土,x台机械挖土的总数为3xm3,则(30-x)台机械运土总数为2(30-x)m3,根据挖出的土等于运走的土,得:3x=2(30-x).故选:D.根据安排x台机械挖土,则有(30-x)台机械运土,x台机械挖土的总数为3xm3,则(30-x)台机械运土总数为2(30-x)m3,进而得出方程.此题主要考查了由实际问题抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.【答案】B【解析】解:设最小的一个数为x,则另外三个数为x+8,x+10,x+12,显然x的个位数字只可能是3,5,7,框住的四个数之和为x+(x+8)+(x+10)+(x+12)=4x+30.当4x+30=114时,x=21,不合题意;当4x+30=122时,x=23,符合题意;当4x+30=220时,x=47.5,不合题意;当4x+30=84时,x=13.5,不合题意;故选:B.可利用图例,看出框内四个数字之间的关系,上下相差10,左右相差2,利用此关系表示四个数之和,再进行求解即可得出答案.此题考查了一元一次方程的应用,解题的关键是读懂题目的意思,根据题目表示出这四个数,注意阅读材料题一定要审题细致,思维缜密.10.【答案】A【解析】解:因为∠α和∠β互余,所以表示∠β的补角的式子:①180°-∠β,正确;②90°+∠α,正确;③2∠α+∠β,正确④2∠β+∠α,错误;故选:A.根据互余的两角之和为90°,进行判断即可.本题考查了余角和补角的知识,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.11.【答案】-300【解析】解:根据题意,亏本300元,记作-300元,故答案为:-300.由赚钱为正,亏本为负.赚钱500元记作+500,即可得到亏本300元应记作-300元.此题考查了正数与负数,熟练掌握相反意义的量是解本题的关键.12.【答案】(ab-πr2)【解析】解:由图可得,广场空地的面积为:(ab-πr2)米2,故答案为:(ab-πr2).根据题意和图形,可以用代数式表示出广场空地的面积.本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.【答案】64【解析】解:设该玩具的进价为x元.根据题意得:100×80%-x=25%x.解得:x=64.故答案是:64.设该玩具的进价为x元.先求得售价,然后根据售价-进价=进价×利润率列方程求解即可.本题主要考查的是一元一次方程的应用,根据售价-进价=进价×利润率列出方程是解题的关键.14.【答案】59°45′【解析】解:由折叠性质得:∠AEN=∠A′EN,∠BEM=∠B′EM,∴∠A′EN=30°15′,∠BEM=(180°-∠AEN-∠A′EN)=(180°-30°15′-30°15′)=59°45′,故答案为:59°45′.由折叠性质得∠AEN=∠A′EN,∠BEM=∠B′EM,即可得出结果;本题主要考查了翻折变换的性质及其应用问题;灵活运用翻折变换的性质来分析、判断、推理是解决问题的关键.15.【答案】325999【解析】解:设=x,由=0.325325325…,易得1000x=325.325325….可知1000x-x=325.325325…-0.325325325…=325,即 1000x-x=325,解得:x=.故答案为:.设=x,找出规律公式1000x-x=325,解方程即可求解.此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成整数形式.16.【答案】10π【解析】解:如图,圆柱的侧面展开图为长方形,AC=A'C ,且点C 为BB'的中点,∵AA'∥BB',四边形ABB'A'是矩形,∴S △AA'C =S 长方形ABB'A ',又∵展开图中,S △AA'C =5πcm 2,∴圆柱的侧面积是10πcm 2.故答案为:10π.由平面图形的折叠及立体图形的表面展开图的特点解题.此题主要考查圆柱的展开图,以及学生的立体思维能力.解题时注意:圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形17.【答案】12(a +b )或12(a -b )【解析】 解:①当点C 在点B 的左侧时,如图,AC=AB-BC=(a-b )cm ,∵D 是AC 的中点,∴CD=AC=(a-b )cm ,则BD=BC+CD=b+(a-b )=(a+b )cm ;②当点C 在点B 右侧时,如图2,AC=AB+BC=(a+b )cm ,∵D 是AC 的中点,∴CD=AC=(a+b )cm ,则BD=CD-BC=(a+b )-b=(a-b )cm ,故答案为:(a+b )或(a-b ).分①当点C 在点B 的左侧时和②当点C 在点B 右侧时,分别求解可得. 本题主要考查两点间的距离和中点的定义,熟练掌握线段的和差运算是解题的关键.18.【答案】113 n 2+(n -1)2【解析】解:图1由一个圆环组成:1=12图2由5个圆圈组成:5=22+12图3由13个圆圈组成:13=33+22依此规律,第8个图案:82+72=113第n 个由n 2+(n-1)2,故答案为113,n 2+(n-1)2;探究规律,利用规律即可解决问题;本题考查规律问题,解题的关键是学会探究规律的方法,学会利用数形结合的思想解决问题,属于中考常考题型.19.【答案】解:(1)原式=-8×32×19=-43;(2)原式=2a 2+2a +2-3+6a +3a 2=5a 2+8a -1.【解析】(1)原式先计算乘方运算,再计算乘除运算即可求出值;(2)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)去括号得:5x -10-2=4+2x +x ,移项合并得:2x =16,解得:x =8;(2)方程整理得:x -2-5=2(4−2x)−13-1,去分母得:3x -21=7-4x -3,移项合并得:7x =25,解得:x =257.【解析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.21.【答案】解:∵A =5m 3+3m 2-2(52m -12),B =5m 3+5(m 2-m )+5,∴A -B =5m 3+3m 2-5m +1-5m 3-5m 2+5m -5=-2m 2-4<0,则A <B .【解析】把A 与B 代入A-B 中,判断差的正负确定出A 与B 的大小即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)∵∠BOC :∠AOC =1:3,∴∠BOC =180°×11+3=45°, ∴∠AOD =45°,∵∠BOE =90°,∴∠AOE =90°,∴∠DOE =45°+90°=135°,∠BOD =180°-45°=135°,∵FO 平分∠BOD ,∴∠DOF =∠BOF =67.5°,∴∠COF =180°-67.5°=112.5°.(2)∠EOF =90°+67.5°=157.5°,依题意有4t -2t =157.5-90,解得t =33.75.故t 值为33.75.【解析】(1)根据平角的定义和已知条件可求∠BOC 的度数,根据对顶角相等可求∠AOD 的度数,根据角的和差关系可求∠DOE 的度数,根据平角的定义和角平分线的定义可求∠DOF 的度数,再根据平角的定义求得∠COF 的度数. (2)先求出∠EOF 的度数,再根据射线OE 、OF 的夹角为90°,列出方程求解即可.此题主要考查了角平分线的性质以及垂线定义和邻补角的定义,正确表示出∠AOD的度数是解题关键.23.【答案】解:(1)如图所示,线段AB、∠ADC即为所求;(2)直线AD与直线BC交点P即为所求;(3)如图所示,点Q即为所求.【解析】(1)根据线段和角的定义作图可得;(2)直线AD与直线BC交点P即为所求;(3)连接AC、BD,交点即为所求.本题主要考查作图-复杂作图,解题的关键是熟练掌握线段、直线和角的概念.24.【答案】解:(1)消费方式A所需费用为580+25(t-75)=25t-1295元;消费方式B所需费用为:880+20(t-180)=20t-2720元;消费方式C所需费用为:29t元.(2)当0<t≤75时,消费方式A所需费用为580元;当t>75时,消费方式A所需费用为(25t-1295)元.当0<t≤180时,消费方式B所需费用为880元;当t>180时,消费方式B所需费用为(20t-2720)元.当t>0时,消费方式C所需费用为29t元.①若方式A与方式B的计费相等,则25t-1295=880,解得:t=87,∴当t=87时,方式A与方式B的计费相等;②若方式A与方式C的计费相等,则580=29t,解得:t=20,∴当t=20时,方式A与方式C的计费相等.(3)根据(2)的结论,可知:当0<t<20时,选择方式C消费最省钱;当t=20时,选择方式A与方式C的计费相等;当20<t<87时,选择方式A消费最省钱;当t=87时,选择方式A与方式B的计费相等;当t>87时,选择方式B消费最省钱.【解析】(1)根据总费用=年卡+消费超时费×超出次数,即可得出选择消费方式A、消费方式B及消费方式C所需费用;(2)找出当0<t≤75及t>75时消费方式A所需费用;当0<t≤180及t>180时消费方式B所需费用;当t>0时消费方式C所需费用.①由方式A与方式B 的计费相等,即可得出关于t的一元一次方程,解之即可得出结论;②由方式A与方式C的计费相等,可得出关于t的一元一次方程,解之即可得出结论;(3)由(2)的结论,即可找出最省钱的消费方式.本题考查了列代数式以及一元一次方程的应用,解题的关键是:(1)根据三种消费方式的收费标准,找出当t>180时三种消费方式所需费用;(2)找准等量关系,正确列出一元一次方程;(3)根据(2)的结论,找出最省钱的消费方式.25.【答案】解:(1)∵P是AB的中点,A、B所对应的数值分别为-20和40.∴点p应该位于点A的右侧,和点A的距离是30,而点A位于原点O的左侧,距离为20∴点P位于原点的右侧,和原点O的距离为10.故答案是10.=20(秒),此即整个过程中点P运动(2)①点A和点B相向而行,相遇的时间为601+2的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤15.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤15.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P与点B的距离越来越大,所以不存在相等的时候.【解析】(1)根据题意结合图形即可解决问题;(2)①关键是确定P点运动的时间;②根据条件确定t的取值范围,由点P运动的时间和速度,再结合其初始位置,易得其在数轴上对应的位置;③研究三个点的相对位置和运动过程中距离的变化情况可以判断.该命题主要考查了数轴上的点的排列特点;解题的关键是深刻把握题意.。

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。

2018-2019学年七年级人教版数学上学期期末试题(含解析)

2018-2019学年七年级人教版数学上学期期末试题(含解析)

2018-2019学年七年级数学上学期期末试题一、选择题(本大题共16个小题.1-6小题,每小题2分,7-16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2是2的()A.倒数 B.相反数C.绝对值D.平方根2.数轴上表示﹣10与10这两个点之间的距离是()A.0 B.10 C.20 D.无法计算3.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.54.如果a+b>0,且ab<0,则()A.a>0,b>0 B.a<0,b<0C.a>0,b<0,且|a|较大D.a<0,b>0,且|a|较大5.下列计算正确的是()A.3a+2b=5ab B.x+x=x2C.5y2﹣2y2=3 D.﹣x3+3x3=2x36.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.87.下列计算正确的是()A.﹣(﹣2)=﹣2 B.C.﹣34=(﹣3)4D.(﹣1)2=128.把方程变形为x=2,其依据是()A.等式的两边同时乘以B.等式的两边同时除以C.等式的两边同时减去D.等式的两边同时加上9.若∠1=37°18′,则∠1的补角度数为()A.52°42′B.53°42′C.142°42′D.163°42′10.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.11.如图1,线段a、b,图2中线段AB表示的是()A.a﹣b B.a+b C.a﹣2b D.2a﹣b12.减去﹣3x得x2﹣3x+4的式子为()A.x3+4 B.x2+3x+4 C.x2﹣6x+4 D.x2﹣6x13.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.﹣1 C.﹣5 D.514.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm15.“学宫”楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数是()A.m+4 B.m+4n C.n+4(m﹣1)D.m+4(n﹣1)16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3二、填空题(本大题共4个小题;每小题3分,共12分,把答案写在题中横线上)17.方程x+1=0的解是.18.如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是.19.某人以八折的优惠价购买了一件服装省了15元,那么他购买这件服装实际用了.20.下列图形都是由同样大小的棋子按一定规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,第④个图形一共有31颗棋子…,则第⑥个图形中棋子的颗数为三、解答题(本大题共7个小题,共66分,解答应写出必要说明或演算步骤)21.数与式计算:(1)﹣17+(﹣33)﹣(﹣8)+42(2)(3)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(4)(5a2+2b2)﹣3(a2﹣4b2).22.解方程(1)2(x+1)=﹣3(x﹣4)(2)﹣=1.23.按下列程序输入一个数x:(1)若输入的数为x=﹣1,求输出的结果.(2)若输入x后,第一次计算结果为8,求输入的x值.24.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一(1)求收工时距A地多远?(2)当维修小组返回到A地时,若每km耗油0.3升,问共耗油多少升?25.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.26.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=50°,求∠MON的度数.(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?27.某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.2014-2015学年河北省承德市兴隆县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共16个小题.1-6小题,每小题2分,7-16小题,每小题2分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣2是2的()A.倒数 B.相反数C.绝对值D.平方根【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2是2的相反数,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.数轴上表示﹣10与10这两个点之间的距离是()A.0 B.10 C.20 D.无法计算【考点】绝对值;数轴.【分析】数轴上两个点之间的距离等于这两个点表示的数的差的绝对值,即较大的数减去较小的数.【解答】解:数轴上表示﹣10与10这两个点之间的距离是|﹣10﹣10|=20.故选C.【点评】考查了数轴上两点之间的距离的求法.3.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【考点】一元一次方程的解.【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.【点评】本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.4.如果a+b>0,且ab<0,则()A.a>0,b>0 B.a<0,b<0C.a>0,b<0,且|a|较大D.a<0,b>0,且|a|较大【考点】有理数的乘法;有理数的加法.【分析】根据异号得负和有理数的加法运算法则判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b>0,∴正数的绝对值较大,负数的绝对值较小,即a、b异号且负数和绝对值较小,a>0,b<0,且|a|较大.故选C.【点评】本题考查了有理数的乘法,有理数的加法,是基础题,熟记运算法则是解题的关键.5.下列计算正确的是()A.3a+2b=5ab B.x+x=x2C.5y2﹣2y2=3 D.﹣x3+3x3=2x3【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.6.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5 B.6 C.7 D.8【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列计算正确的是()A.﹣(﹣2)=﹣2 B.C.﹣34=(﹣3)4D.(﹣1)2=12【考点】有理数的乘方;相反数;有理数的乘法.【分析】根据有理数的乘方和有理数的乘法进行计算解答即可.【解答】解:A、﹣(﹣2)=2,错误;B、,错误;C、34=(﹣3)4,错误;D、(﹣1)2=12,正确;故选D.【点评】此题考查有理数乘方问题,关键是根据法则进行计算.8.把方程变形为x=2,其依据是()A.等式的两边同时乘以B.等式的两边同时除以C.等式的两边同时减去D.等式的两边同时加上【考点】等式的性质.【分析】根据等式的性质:等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立,可得答案.【解答】解:由方程变形为x=2,得等式的两边都乘以2(除以),故选:B.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.9.若∠1=37°18′,则∠1的补角度数为()A.52°42′B.53°42′C.142°42′D.163°42′【考点】余角和补角.【分析】根据互补两个角的和为180°可得∠1的补角度数.【解答】解:180°﹣37°18′=142°42′,故选:C.【点评】此题主要考查了补角,关键是掌握如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.10.下列去括号正确的是()A.﹣(2x+5)=﹣2x+5 B.C.D.【考点】去括号与添括号.【专题】常规题型.【分析】去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则可以直接去括号.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、(2m﹣3n)=m﹣n,故本选项错误;D、﹣(m﹣2x)=﹣m+2x,故本选项正确.故选D.【点评】本题考查去括号的知识,难度不大,注意掌握去括号的法则是关键.11.如图1,线段a、b,图2中线段AB表示的是()A.a﹣b B.a+b C.a﹣2b D.2a﹣b【考点】直线、射线、线段.【专题】探究型.【分析】根据图形可以看出线段AB是线段AC与线段BC的差,从而可以得到AB如何表示.【解答】解:由图可得,AB=AC﹣BC=a+a﹣b=2a﹣b.故选D.【点评】本题考查直线、射线、线段,解题的关键是利用数形结合的思想,根据图形解答.12.减去﹣3x得x2﹣3x+4的式子为()A.x3+4 B.x2+3x+4 C.x2﹣6x+4 D.x2﹣6x【考点】整式的加减.【分析】根据题意列出关系式﹣3x+(x2﹣3x+4),去括号合并即可得到结果.【解答】解:﹣3x+(x2﹣3x+4)=﹣3x+x2﹣3x+4=x2﹣6x+4.故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.13.已知a﹣b=3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.﹣1 C.﹣5 D.5【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=3,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣3+2=﹣1,故选B【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.14.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【考点】两点间的距离.【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.“学宫”楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数是()A.m+4 B.m+4n C.n+4(m﹣1)D.m+4(n﹣1)【考点】列代数式.【专题】规律型.【分析】根据题意知,第一排有m个座位,第二排有m+4个座位,第三排有m+8个座位,则根据规律可求出第n排的座位数表达式.【解答】解:由于第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数为:m+4(n﹣1).故选D.【点评】本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式.16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3【考点】展开图折叠成几何体.【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【解答】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点评】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.二、填空题(本大题共4个小题;每小题3分,共12分,把答案写在题中横线上)17.方程x+1=0的解是x=﹣1 .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程移项即可求出解.【解答】解:方程x+1=0,解得:x=﹣1.故答案为:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是50°.【考点】余角和补角.【分析】由三角板的直角顶点在直线l上,根据平角的定义可知∠1与∠2互余,又∠1=40°,即可求得∠2的度数.【解答】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.【点评】本题考查了余角及平角的定义,正确观察图形,得出∠1与∠2互余是解题的关键.19.某人以八折的优惠价购买了一件服装省了15元,那么他购买这件服装实际用了60元.【考点】一元一次方程的应用.【分析】设这件衣服的原价为x元,则降价后的价格为0.8x元,根据前后的价格差为15元建立方程求出其解即可.【解答】解:设这件衣服的原价为x元,则降价后的价格为0.8x元,由题意,得x﹣0.8x=15,解得:x=75.他购买这件服装实际用了:75×80%=60(元)故答案为:60元【点评】本题考查了销售问题的运用,列一元一次方程解实际问题的运用,解答时根据前后的价格差为15元建立方程是关键.20.下列图形都是由同样大小的棋子按一定规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,第④个图形一共有31颗棋子…,则第⑥个图形中棋子的颗数为76【考点】规律型:图形的变化类.【分析】通过观察图形得到:第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×(1+2)=16;…由此得出第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+n(n﹣1),然后把n=6代入计算即可.【解答】解:∵第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×(1+2)=16;…∴第n个图形中棋子的个数为1+5(1+2+…+n﹣1)=1+n(n﹣1);∴第⑥个图形中棋子的颗数为1+×6×(6﹣1)=76.故答案为:76.【点评】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(本大题共7个小题,共66分,解答应写出必要说明或演算步骤)21.数与式计算:(1)﹣17+(﹣33)﹣(﹣8)+42(2)(3)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(4)(5a2+2b2)﹣3(a2﹣4b2).【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣17﹣33+8+42=﹣50+50=0;(2)原式=﹣27+9+3=﹣15;(3)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(4)(5a2+2b2)﹣3(a2﹣4b2)=5a2+2b2﹣3a2+12b2=2a2+14b2.【点评】此题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解本题的关键.22.解方程(1)2(x+1)=﹣3(x﹣4)(2)﹣=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+2=﹣3x+12,移项合并得:5x=10,解得:x=2;(2)方程两边同时乘以6得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.按下列程序输入一个数x:(1)若输入的数为x=﹣1,求输出的结果.(2)若输入x后,第一次计算结果为8,求输入的x值.【考点】有理数的混合运算.【专题】图表型;实数.【分析】(1)把x=﹣1代入程序中计算得到输出解即可;(2)根据第一次计算结果为8,确定出输入x的值即可.【解答】解:(1)根据题意得:﹣1×(﹣2)﹣4=﹣2<0,﹣2×(﹣2)﹣4=0,0×(﹣2)﹣4=﹣4<0,﹣4×(﹣2)﹣4=4>0,则输出结果为4;(2)根据题意得:x×(﹣2)﹣4=8,则x=﹣6,即输入的数﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4 +7 ﹣9 +8 +6 ﹣5 ﹣2(1)求收工时距A地多远?(2)当维修小组返回到A地时,若每km耗油0.3升,问共耗油多少升?【考点】正数和负数.【专题】探究型.【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,最后再加上1,因为维修小组还要回到A地,然后即可解答本题.【解答】解:(1)(﹣4)+7+(﹣9)+8+6+(﹣5)+(﹣2)=1,即收工时在A地东1千米处;(2)(4+7+9+8+6+5+2+1)×0.3=42×0.3=12.6(升).即当维修小组返回到A地时,共耗油12.6升.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义,注意在第二问的计算中,要加1.25.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.【考点】一元一次方程的应用.【分析】设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m为等量关系建立方程求出其解即可.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.【点评】本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.26.如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=50°,求∠MON的度数.(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来,若不能,说明为什么?【考点】角平分线的定义;角的计算.【专题】计算题.【分析】(1)根据已知的度数求∠BOC的度数,再根据角平分线的定义,求∠MOC和∠NOC的度数,利用角的和差可得∠MON的度数.(2)结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON 的度数.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(90°+50°﹣50°)=45°.(2)同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=45°.【点评】此类问题,注意结合图形,运用角的和差和角平分线的定义求解.27.某中学组织七年级学生秋游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了2辆60座和5辆45座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗?”甲、乙两同学想了一下,都说知道了价格.你知道45座和60座的客车每辆每天的租金各是多少元?(2)公司经理问:“你们准备怎样租车?”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在一旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗?”如果是你,你该如何设计租车方案,并说明理由.【考点】一元一次方程的应用.【分析】(1)设45座的客车每辆每天的租金为x元,则60座的客车每辆每天的租金为(x+100)元,根据题意可得等量关系:2辆60座的一天的租金+5辆45座的一天的客车的租金=一天的租金为1600元;根据等量关系列出方程,再解即可;(2)设这个学校七年级共有y名学生,由题意可得等量关系:租用45座的客车的数量=租用60座客车的数量+2,根据等量关系列出方程,可得y的值,然后再根据学生数计算费用.【解答】解:(1)设45座的客车每辆每天的租金为x元,则60座的客车每辆每天的租金为(x+100)元,则:2(x+100)+5x=1600,解得:x=200,∴x+100=300,答:设45座的客车每辆每天的租金为200元,则60座的客车每辆每天的租金为300元;(2)设这个学校七年级共有y名学生,则:,解得:y=240,租45座客车数量:甲方案的费用:(240+30)×45×200=1200(元),乙的方案费用:240÷60×300=1200(元),共240人,可以租用45座的客车4辆,60座的客车1辆,费用:4×200+300=1100(元),答:甲和乙的方案的费用为1200元,比甲和乙更经济的方案是:租用45座的客车4辆,60座的客车1辆.这个方案的费用为1100元,且能让所有同学都能有座位.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.。

人教版)2018-2019学年初一数学上册期末测试卷(含答案)

人教版)2018-2019学年初一数学上册期末测试卷(含答案)

人教版)2018-2019学年初一数学上册期末测试卷(含答案)2018-201年第一学期初一期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.绝对值是2的数是______。

A。

-2 B。

2 C。

2或-2 D。

122.据中新网报道,“神威·太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度最快的计算机”,它共有块处理器。

其中用科学记数法表示应为______。

A。

0.4096×10 B。

4.096×10^5 C。

4.0960×10 D。

40.96×103.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是______。

A。

m 3 C。

m< -n D。

-44.若x=3是关于x的方程2x-a=1的解,则a的值为______。

5.下列判断正确的是______。

A。

近似数0.35与0.350的精确度相同 B。

a的相反数为-a C。

m的倒数为1/m D。

m=m6.点C在射线AB上,若AB=3,BC=2,则AC为______。

A。

5 B。

1或5 C。

4 D。

不能确定7.同一平面内,两条直线的位置关系可能是______。

A。

相交或平行B。

相交或垂直C。

平行或垂直D。

平行、相交或垂直8.如图,点C为线段AB的中点,延长线段AB到D,使得BD=1/3AB。

若AD=8,则CD的长为______。

A。

2 B。

3 C。

5 D。

79.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是______。

A。

用两个钉子就可以把木条固定在墙上 B。

如果把A,B两地间弯曲的河道改直,那么就能缩短原来河道的长度 C。

植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线 D。

测量运动员的跳远成绩时,皮尺与起跳线保持垂直10.按下图方式摆放餐桌和椅子。

1张餐桌坐6人,2张餐桌坐8人,…,n张餐桌可坐的人数为______。

人教版2018-2019学年七年级上学期期末测试数学试卷(解析版)

人教版2018-2019学年七年级上学期期末测试数学试卷(解析版)

期末测试卷一、选择题:每小题3分,共30分1. 2015的相反数是()A. B. ﹣2015 C. 2015 D. ﹣【答案】B【解析】分析:利用相反数的定义即可得结果.详解:2015的相反数是﹣2015.故选B.点睛:本题主要考查了相反数的定义,熟记定义是解答此题的关键.2. 在﹣4,0,2.5,|﹣3|这四个数中,最大的数是()A. ﹣4B. 0C. 2.5D. |﹣3|【答案】D【解析】分析:|﹣3|=3,再去比较﹣4,0,2.5,3这四个数即可得出结论.详解:∵|﹣3|=3,且有﹣4<0<2.5<3,∴最大的数是|﹣3|.故选D.3. 我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A. 0.21×108B. 21×106C. 2.1×107D. 2.1×106【答案】D【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:2100000=2.1×106,故选D.考点:科学记数法—表示较大的数.4. 下列方程为一元一次方程的是()A. y+3=0B. x+2y=3C. x2=2xD. +y=2【答案】A【解析】试题分析:一元一次方程是指只含有一个未知数,且未知数的最高次数为1次的整式方程.B选项含有两个未知数;C选项未知数的最高次数为2次;D选项不是整式.考点:一元一次方程的定义5. 已知∠A=65°,则∠A的补角等于()A. 125°B. 105°C. 115°D. 95°【答案】C【解析】∵∠A=65°,∴∠A的补角为180°-65°=115°,故选C.6. 下列各式正确的是()A. ﹣8+5=3B. (﹣2)3=6C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b【答案】C【解析】A. ∵﹣8+5=-3 ,故不正确;B. ∵(﹣2)3=-8,故不正确;C. ∵﹣(a﹣b)=﹣a+b,故正确;D. ∵2(a+b)=2a+2b ,故不正确;故选C.7. 如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A. b﹣a>0B. a+b<0C. ab<0D. b<a【答案】A【解析】A. ∵b<a, ∴ b﹣a<0 ,故不正确;B. ∵b<0,a>0,, ∴ a+b<0 ,故正确;C. ∵b<0,a>0, ab<0 ,故正确;D. ∵b<0,a>0, b<a ,故正确;故选A.8. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】D【解析】试题分析:根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选D.考点:点、线、面、体.9. 一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A. x(30﹣2x)平方厘米B. x(30﹣x)平方厘米C. x(15﹣x)平方厘米D. x(15+x)平方厘米【答案】C【解析】试题分析:由题意先根据长方形的周长公式表示出另一边的长,再根据长方形的面积公式求解即可.由题意得该长方形的面积是x(15-x)平方厘米,故选C.考点:长方形的周长和面积公式...... ...............10. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A. 赚16元B. 赔16元C. 不赚不赔D. 无法确定【答案】B【解析】试题分析:此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.考点:一元一次方程的应用.二、填空题:每小题4分,共24分11. 如果“节约10%”记作+10%,那么“浪费6%”记作:______.【答案】﹣6%.【解析】试题分析:明确“正”和“负”所表示的意义:节约用+号表示,则浪费一定用﹣表示,据此即可解决.解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.考点:正数和负数.12. 按四舍五入法则去近似值:(1)2.086≈______(精确到百分位).(2)0.03445≈______(精确到0.001)【答案】(1). 2.09(2). 0.034【解析】试题分析:精确到百分位即是对千分位四舍五入,精确到0.001即是对0.0001位四舍五入.按四舍五入法则取近似值:2.096≈2.10(精确到百分位).-0.03445≈-0.034(精确到0.001).考点:近似数和有效数字点评:本题属于基础应用题,只需学生熟练掌握取近似数的方法,即可完成.13. 若﹣5x n y2与12x3y2m是同类项,则m=______,n=______.【答案】(1). 1(2). 3【解析】试题分析:根据同类项的定义(所含字母相同,相同字母的指数相同),列出方程,从而求出m,n的值.解:因为﹣5x n y2与12x3y2m是同类项,所以n=3,2=2m,解得:m=1,n=3.故答案为:1,3.点评:本题考查同类项的知识,属于基础题目,关键是掌握同类项所含字母相同,且相同字母的指数相同,这两点是易混点,同学们要注意区分.14. 已知5是关于x的方程3x﹣2a=7的解,则a的值为______.【答案】4【解析】∵关于x的方程3x﹣2a=7的解是5,∴3×5﹣2a=7,∴a=4.故答案为:4.15. 如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=______.【答案】134°【解析】试题分析:根据题意可得∠AOE=90°,则∠AOC=46°,则∠AOD=180°-∠AOC=180°-46°=134°.考点:角度的计算.16. 已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n=____cm.【答案】【解析】分析:根据题意,找出AA1,AA2,AA3与a的关系,再按照规律解答即可.详解:∵线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,∴AA1=a,AA2=a,AA n=()na.故答案为:()n a.点睛:本题主要考查两点间的距离,熟练找出规律是解答本题的关键.三、解答题:每小题6分,共18分17. 计算:﹣12014﹣6÷(﹣2)×|﹣|.【答案】0【解析】分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.详解:原式=﹣1+6××=﹣1+1=0.点睛:本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.18. 如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析.【解析】试题分析:(1)按要求画图即可;按要求画图即可;按要求画图即可;试题解析:(1)如图所示;如图所示;如图所示。

2018-2019学年新人教版数学七年级上册期末试题(含答案解析)

2018-2019学年新人教版数学七年级上册期末试题(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

2018-2019学年度七年级数学上册期末试卷(有答案)

2018-2019学年度七年级数学上册期末试卷(有答案)

)A.1B.2C.3D.45、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、实数a ,b 在数轴上的位置如图所示,则下列各式正确的是★A .a>bB .a>-bC .a<bD .-a<-b7、如果∠AOB+∠BOC=90°,且∠BOC 与∠COD 互余,那么∠AOB 与∠COD 的关系为 ★8、小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是 ★BCD .9、计算:201320142015(2013)(2014)(2015)-⨯-⨯-的结果可能是 ★ A.正数 B.负数 C.零 D.不能确定10、整式2mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的 值,则关于x 的方程24mx n --=的解为 ★A.-1B.-2C.0D.为其它的值二、填空题:(本大题共4小题, 每小题6分, 每空2分, 共24分)11、实际背景中正负数的含义。

把0以外的数分为正数和负数,它们表示具有相反意义的量.如以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,用负数表示 海平面的某地的海拔高度. (1)如果80m 表示向东走80m,那么-60m 表示________________.(2)月球表面的白天平均温度是零上126℃,记作+126℃,夜间平均温度零下150℃,记作________.12、单项式的次数.一个单项式中, 叫做这个单项式的次数. (1)h a 2的次数是 ___ .(2)342xy -的次数为 .13、方程的解解方程就是求出使方程中等号左右两边______的未知数的值,这个值就是方程的解. (1)在3=x ,0=x ,2-=x 中,方程x x 2775-=+的解是__________. (2)在1000=x 和2000=x 中,方程()8052.0152.0=--x x 的解是__________.14、余角的概念如果两个角的和等于 ,就说这两个角互为余角,简称互余,即其中的一个角是另外一个角的余角. (1)如果∠1=30°,∠1的互余等于 .(2)如果∠1=30°∠2=60°,我们可以说∠1与∠2互余,或者可以说∠1是∠2的余角,还可以说 .三、解答题(一)(每小题6分,共18分) 15、计算: 22(3)2(1)5⨯--⨯-+16、化简: 222232(32)xy x y xy x y -+-+17、解方程: x -x -1=2-x +2四、解答题(二)(每小题7分,共21分)18、先化简后求值:22252(1)x x x ---,其中,1x =-19、如图060AOC ∠=,OB 是AOC ∠的平分线,若再把AOB ∠四等分,每一份是多少度角(精确到分)?20、 一条数轴如图所示,点A 表示的数是-8。

人教版七年级上册数学期末试题及答案(2018-2019学年)

人教版七年级上册数学期末试题及答案(2018-2019学年)

人教版七年级上册数学期末试题及答案(2018-2019学年)一、选择题1. 如果 \(a^3 = -8\),那么实数 \(a\) 等于:A. \(-2\)B. \(2\)C. \(0\)D. \(3\){答案:A}2. 下列各数中是无理数的是:A. \(3\sqrt{2}\)B. \(\sqrt{9}\)C. \(0.333...\)D. \(2\sqrt{5}\){答案:A, D}3. 已知 \(a = 5\) 和 \(b = 12\),则 \(a^2 + b^2\) 等于:A. \(119\)B. \(121\)C. \(125\)D. \(132\){答案:B}4. 下列各数中是等差数列的是:A. \(2, 5, 8, 11, ...\)B. \(1, 3, 5, 7, ...\)C. \(2, 4, 8, 16, ...\)D. \(1, 1, 1, 1, ...\){答案:B}5. 如果 \(a:b = 2:3\),那么 \(a+b : b\) 等于:A. \(5:3\)B. \(2:3\)C. \(6:5\)D. \(8:7\){答案:A}二、填空题1. \(3^0 = _______){答案:1}2. 一个数的平方根叫做它的______。

{答案:算术平方根}3. 若 \(a:b = 4:5\),那么 \(a+b : b = _______)。

{答案:9}三、解答题1. 解方程 \(2x-5=3x+1\)。

{答案:x = -6}2. 已知 \(a=6\) 和 \(b=8\),求 \(a^2+b^2\)。

{答案:100}3. 计算 \(7+8\times(-2)\)。

{答案:-3}4. 判断 \(2^3 = 8\) 是否成立。

{答案:成立}5. 解不等式 \(3x-7>2x+1\)。

{答案:x>8}四、应用题1. 小明的身高是1.6米,小华的身高是1.5米,小明比小华高多少?{答案:0.1米}2. 一个长方形的长是10厘米,宽是5厘米,求它的面积和周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末考试试题
七年级数学
一. 填空题(每小题3分,共30分)
1、一个数的绝对值是4,则这个数是 数轴上与原点的距离为5
的数是
2、—2x 与3x —1互为相反数,则=x 。

3、如图3,是某一个几何体的俯视图,主视图、左视图,则这个几何体是
4、已知x=3是方程ax-6=a+10的解,则a=_____________
5、已知0)1(32=-++b a ,则=+b a 3 。

6、买一个篮球需要m 元,买一个排球需要n 元,则买4个篮球和5个排球 共需要 元。

7、北京时间2007年10月24日,“嫦娥一号”从西昌卫星发射中心成功发射。

它在离月球表面200公里高度的极月圆轨道绕月球飞行工作,它距离地球最近处有38.44万公里。

用科学记数法表示38.44万公里= 公里。

8、袋中装有相同10个红球,15个白球,从中任取一球,取到白球的可能性是 9、图9是根据某市1999年至2003年工业生产总值绘制的折线统计图,观察统计图可得:.增长幅度最是 年,比它的前一年增加 亿元
10、如图10所示, ∠AOB 是平角, ∠

3
100
80 60 40 20
1999 2000 2001 2002 2003 年份/年
工业生产总产值/亿元
AOC=300, ∠BOD=600, OM、ON分别是∠AOC、∠BOD的平分线,
∠MON等于_________________.
图10
二. 选择题(每小题3分,共30分)
11.下列计算结果为负值的是()
A.(-3)÷(-2)
B. 0×(-7)×
C. 1-9
D. -7-(-10)
12. 5的相反数和绝对值分别是()
A. -5;-5
B. -5;5
C. 5;-5
D. 5;5
13. 一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则售货员出售此商品最低可打()
A. 六折
B. 七折
C. 八折
D. 九折
14. 下列运算,结果正确的是()
A. 2ab-2ba=0
B. 3xy-4xy=-1
C. 2a2+3a2=6a2
D. 2x3+3x3=5x6
15. 小红家的冰箱冷藏室温度是3℃,冷冻室的温度是-1℃,则她家的冰箱
冷藏室比冷冻室温度高()
A. 2℃
B. -2℃
C. 4℃
D. -4℃
16. 下列方程的变形中正确
..的是()
A. 由x+5=6x-7得x-6x=7-5
B. 由-2(x-1)=3得-2x-2=3
C. 由
3
1
0.7
x-
=得
1030
10
7
x-
= D. 由
13
93
22
x x
+=--得2x=-12
17. 将下左图直角三角形ABC绕直角边A C旋转一周,所得几何体从正面是
()
A B C D
18. 下列图形中,不是正方体表面展开图的图形的个数是 ( )
A. 1个
B. 2个
C. 3个
D. 4个
19. 若一个角的补角等于它的余角的3倍,则这个角为 ( )
A. 75°
B. 60°
C. 45°
D. 30°
20. 下列第一行所示的四个图形,每个图形均是由四种简单的图形a 、b 、c 、
d (圆、直线、三角形、长方形)中的两种组成. 例如由a 、b 组成的
图形记作a ⊙b ,那么由此可知,下列第二行的图中可以记作a ⊙d 的是 ( )
A B C D
三. 解答题(6小题,共60分) 21.(12分)计算: (1)3
23(5)(3)128⨯---÷
(2)231075(2)10(12)--⨯-+÷-
22.(8分)先化简,再求值.
322323323
(23)(2)(3)
x x y xy x xy y x x y y
-----+-+-,其中
1
4
x=,2
y=.
23.(12分)解方程:
(1)2(70.5)3(2)
x x
-=-(2)2123
1 34
x x
--
-=
24.(8分)如图,O是直线AB上一点,OC是一条射线,OD平分∠AOC,
∠BOC=70°(1)画出∠BOC的平分线OE;
(2)求∠COD和∠DOE的度数.
25.(10分)一个检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,某天行车里程(单位:千米)依先后次序记录如下:-4,+7,-9,+8,+6,-5,-2.
(1)请问收工时检修小组离A地多远?在A地的什么方向?
(2)若每千米耗油0.1升,请问这天共耗油多少升?
26.(10分)某校科技小组的26名学生在1名生物老师的带领下准备前往国家森林公园考察标本,森林公园的票价是每人5元,一次性购满30张,每张票可少收1元. 当老师准备到售票处买27张票时,平时爱动脑筋的聪聪喊住了老师,提议买30张票.
(1)请你回答,买30张票合算还是买27张合算,为什么?
(2)当少于30人进入森林公园,入园人数为多少时,按实际人数购票和买30张票,两种方法付款相同?
七年级数学试题参考答案及评分标准一、填空题:(每小题2分,共16分)
二、选择题(四选一,每小题3分,共30分)。

相关文档
最新文档