超声换能器的分类V1.4
简单了解超声波换能器的作用

简单了解超声波换能器的作⽤超声波换能器是⼀种能把⾼频电能转化为机械能的装置,材料的压电效应将电信号转换为机械振动。
超声波换能器是⼀种能量转换器件,它的功能是将输⼊的电功率转换成机械功率(即超声波)再传递出去,⽽⾃⾝消耗很少的⼀部分功率。
⼀、超声波换能器的⼯作原理:在总结超声波焊接机换能器的种类之前,我们先来了解⼀下超声波换能器的⼯作原理:超声波换能器是由锆钛酸铅压电陶瓷材料制造的夹芯式构件组成,通常在超声波焊接头处就会有⼀组超声波换能器。
超声波换能器主要功能是实现声能、电能、机械能的能量转换。
⼆、超声波换能器的作⽤:超声波换能器的作⽤主要表现在能量转化上,主要通过超声波换能器把超声波能量集中,然后转化到超声波模具及焊接头上。
三、超声波换能器的种类:超声波换能器的分类⽅式有多种多样,常见的有:1.按照换能器的振动模式,可分为剪切振动换能器、扭转振动换能器、纵向振动换能器、弯曲振动换能器等。
2.按照换能器的⼯作状态,可分为接收型超声换能器、发射型超声换能器和收发两⽤型超声换能器。
3.按照换能器的⼯作介质,可分为液体换能器、固体换能器以及⽓介超声换能器等。
4.按照换能器的输⼊功率和⼯作信号,可分为检测超声换能器、脉冲信号换能器、功率超声换能器、连续波信号换能器、调制信号换能器等。
5.按照换能器的形状,可分为圆柱型换能器、棒状换能器、圆盘型换能器、复合型超声换能器及球形换能器等。
6.按照能量转换的机理和所⽤的换能材料,可分为电磁声换能器、静电换能器、机械型超声换能器、磁致伸缩换能器、压电换能器等。
德召尼克(常州)焊接科技有限公司是⼀家在江苏常州注册的企业,以超声波焊接,振动摩擦焊接,激光塑料焊接应⽤为核⼼,⾮标⾃动化设备研发设计为依托的⾼科技企业。
⽬前公司主要业务领域涉⾜:电声⾏业,汽车⾏业、医疗⾏业,净⽔⾏业等不同领域。
公司秉承以科技为先导、以品质和效益为中⼼、以技术创新为推动⼒,致⼒于为客户提供先进的超声波,振动摩擦,激光等焊接领域的技术开发与研究,主要涉及产品包括:超声波塑料焊接、超声波⾦属焊接、振动摩擦焊接,激光塑料焊接系统、以及相应焊头、模具的设计和制造,⾮标⾃动化系统设备集成。
超声波仪的构造及分类

(三)高频信号放大电路
换能器发出脉冲波后,即接受其来自人体内
旳超声回波并将它转换为高频电信号,继而经
过高频信号放大电路放大。
为取得足够旳敏捷度与保真 度,高频信号放大电路应足够 大增益和带宽。并根据不同需 要,在高频信号放大电路中设 有TGC。
电非前电 路线置路 等性放构 构放大成 成大、: 。旳高保
通电后旳电子枪灯丝,在高压电场作用 下,发射出电子,经控制极和阳极旳作用, 集成一束。控制极旳电压一般负于阴极, 对阴极电子流旳大小进行控制,显示管旳 亮度调整就是变化这个电压。阳极电压用 来控制电子流(或称电子束)旳粗细,故亦
称为聚焦阳极。
2024/9/21
28
2、偏转系统
使电子束在x方向和y方向发生偏转,从而 控制光点在荧光屏上旳位置。
2024/9/21
43
(一)多普勒频谱分析
利用数学旳措施对多普勒信号旳频率、振幅及其
随时间而变化旳过程进行实时分析旳一种技术。
在多普勒超声中,实时频谱分析旳措施 主要采用迅速富立叶转换,该转换是利用计 算机技术对一种复杂信号进行实时频谱分析, 经过分析后,就能鉴别信号中旳多种频率移 动和这些频移信号旳有关流向,将复杂旳混 合信号分解为单个旳频率元素,最终形成实 时显示旳血流频谱。
35
二、M型超声诊疗仪
将沿声束方向各反射点位移随时间变化而显示, 是一种以光点亮度来表达反射声信号强弱旳仪 器。
超普同常胎内
声勒步与心旳
Байду номын сангаас
心等加B旳运M
动,上型搏动型
仪制心联动器对
。成电合尤,探
多图使其如查
参、用有心人
超声波换能器的参数及工作方式类型

超声波换能器的参数及工作方式类型超声波换能器是一种能够将电能转换为超声波能量的装置。
它由压电材料组成,通过电场的作用使材料发生压缩和膨胀,从而产生超声波。
本文将从超声波换能器的参数和工作方式类型两个方面对其进行详细介绍。
一、超声波换能器的参数超声波换能器的参数对其性能和应用有着重要影响,主要包括频率、振幅、工作电压和灵敏度等。
1. 频率:超声波换能器的频率通常指的是压电材料的固有频率,即在不加电场的情况下,材料自身振动的频率。
超声波换能器的频率范围很广,从几十千赫兹到几百兆赫兹不等,可以根据具体应用需求选择适当的频率。
2. 振幅:超声波换能器的振幅是指材料在电场刺激下产生的最大机械振幅。
振幅的大小与换能器的尺寸、材料性质和工作电压等因素相关,通常通过调节工作电压来控制振幅的大小。
3. 工作电压:工作电压是指施加在超声波换能器上的电压,通过改变电压的大小和频率可以控制超声波的产生和输出。
工作电压的选择要考虑到换能器的耐受能力和应用需求。
4. 灵敏度:超声波换能器的灵敏度是指它对输入信号的敏感程度。
灵敏度越高,换能器对输入信号的响应越快速、准确。
灵敏度的大小与换能器的材料性质和结构设计等因素密切相关。
二、超声波换能器的工作方式类型根据超声波换能器的工作方式不同,可以将其分为压电式、磁电式和电动力式三种类型。
1. 压电式超声波换能器:压电式超声波换能器是应用最广泛的一种类型。
它利用压电效应将电能转化为机械能,通过电场的作用使压电材料发生压缩和膨胀,从而产生超声波。
压电式超声波换能器具有频率范围广、振幅大、能量转换效率高等优势,被广泛应用于医学成像、无损检测、清洗和声纳等领域。
2. 磁电式超声波换能器:磁电式超声波换能器利用磁电效应将电能转化为机械能。
它通过电磁场的作用使磁电材料发生形变,从而产生超声波。
磁电式超声波换能器具有振幅大、频率稳定等特点,适用于高功率和高频率的应用。
3. 电动力式超声波换能器:电动力式超声波换能器是一种利用电动力效应将电能转化为机械能的装置。
第二章 医学超声换能器

材料仅作厚度振动,参量仅在厚度方向时的压电方程
S = (1/YE )T+dE
①
D = dT+εTE
②
式中:YE-电场不变时的杨氏模量
D-电位移 E-电场强度 S -应变 T -应力 εT -应力不变时的介电常数 d -压电常数
定义换能器特性的坐标系统
r0
4a2 2 4
D2 2 4
式中,D=2a——压电体直径,如a>>λ,则
声学上称:
r0
a2
① r < r0——近场区 ② r > r0——远场区
(4)轴向声强分布特点
① 近场区:声强轴向起伏分布,但平均强度不变 ② 远场区:声强轴向单调衰减,I ∝1/r2
二、径向声场分布(r=定值, θ可变)
证明:
∵ sin 1 c透 sin 2 c人
c 透 > c人,θ1,θ2<90o
∴ θ1>θ2
3. 单元探头的设计
三、常用多元探头
多元探头是将n个振元排列成某种阵列,应用电子技术, 以某种逻辑程序,使声束在空间不同方位上进行扫描,从而 显示出组织的图象。
根据振元在 空间上的排列以 及声束的形成方 式,可分为线列 阵、相控阵和方 阵。
T= -YEd E=-(dYE)V/L
E=V/L,P=-T
即:应力T正比于加的电压V
d/g =εT
(3)加压力P,开路(D=0)时,由②式得:
V= -dT(L/εT)=(d /εT)LP = gLP
即:产生电压V正比于加的压力P
(4)加压力P,短路(E=0)时,因D=q/A,由②式得:
超声波换能器原理知识大普及

超声波换能器原理知识大普及在对超声波焊接机、超声波清洗机等设备的了解过程中,都会看到超声波换能器的身影,那么超声波换能器究竟是个什么设备呢?它主要完成哪些功能呢?又是利用什么原理来完成的呢?接下来就让小编带您一探究竟!一、超声波换能器简介超声波换能器,英文名称为Ultrasonictransducer,是一种将高频电能转换为机械能的能量转换器件。
其常被用于超声波清洗机、超声波焊接机、三氯机、气相机等设备中,在农业、工业、生活、交通运输、军事、医疗等领域内都得到了广泛的应用。
超声波换能器二、超声波换能器结构超声波换能器主要包括外壳、声窗(匹配层)、压电陶瓷圆盘换能器、背衬、引出电缆、Cymbal阵列接收器等几大部分构成。
其中,压电陶瓷圆盘换能器起到的作用和一般的换能器相同,主要用于发射并接受超声波;而在压电陶瓷圆盘换能器的上面是Cymbal阵列接收器,主要由引出电缆、Cymbal换能器、金属圆环和橡胶垫圈组成,用作超声波接收器,接受压电陶瓷圆盘换能器频带外产生的多普勒回拨信号。
超声波换能器结构三、超声波换能器原理超声波换能器,其实就是频率与其谐振频率相同的压电陶瓷,利用的是材料的压电效应将电能转换为机械振动。
一般情况下,先由超声波发生器产生超声波,经超声波换能器将其转换为机械振动,再经超声波导出装置、超声波接收装置便可产生超声波。
超声波换能器原理四、超声波换能器应用(1)超声波清洗机利用超声波在清洗液中不断地进行传播来清洗物体上的污垢,其超声波振动频率便是由超声波换能器决定的,可根据清洗物来设定不同的频率以达到清洗的目的。
(2)超声波焊接机利用超声波换能器产生超声波振动,振动产生摩擦使得焊区局部熔化进而接合在一起。
(3)超声波马达中并不含有超声波换能器,只是将其定子近似为换能器,利用逆压电效应产生超声波振动,通过定子与转子的摩擦进而带动转子转动。
(4)超声波减肥利用超声波换能器产生机械振动,将脂肪细胞振碎并排出体外,进而达到减肥的效果。
超声波换能器分类和故障原因

超声波换能器是将超声波发生器输出的电能,或者磁能转换成相同频率的机械振动。
目前有两种类型,一种是磁致伸缩型换能器,另一种是压电陶瓷换能器。
一、分类1、磁致伸缩式换能器,由于效率低,性价比不高,需外加直流极化磁场,因此目前已经很少使用。
2、压电陶瓷换能器基本原理是建立在晶体材料的压电效应基础上的,这种材料为压电晶体材料,在超声焊接机主要用的是压电陶瓷产量。
这种材料在成熟外地发生形变时,在压电陶瓷晶体表面,会出现电荷,晶体内部产生电场。
反之,当晶体呈受外电场作用时,金片会发生形变,这种现状称之为压电效应。
超声波换能器是超声振动系统的核心部件,超声波换能器设计的好坏,关系到焊接机工作的效率,稳定性及寿命等,在市场上采用大部分的压电陶瓷换能器。
二、发热故障原因介绍完了超声波换能器的类型,下面我们来给大家简单说一下超声波换能器使用时会发热的问题。
超声波换能器发热,主要是由两个原因引起的。
1、被焊工件会发热或被超声波处理的物质会发热,或超声波模具(工具头)、变幅杆长时间工作会发热,这些热量都会传递到换能器上。
2、换能器本身的功率损耗,既然做不到能量转换效率100%,损耗的那部分能量必然转换成热量。
温升会导致换能器参数变化,逐渐偏移匹配状态,更严重的是温升会导致压电陶瓷晶片性能的劣化。
这反过来又促使换能器工作状态更坏,更快地升温,这是一个恶性循环。
所以我们必须给以换能器良好的冷却条件,一般是常温风冷。
杭州成功超声设备有限公司创立于1995年,是国内从事超声应用研究、大功率超声波换能器开发与生产的专业厂商及国家高新技术企业。
公司主要产品有换能器、超声驱动电源等。
这些产品作为功率超声应用行业的核心关键部件广泛应用于声化学、塑料焊接、金属焊接、橡胶切割、无纺布焊接等领域。
超声波换能器的原理和使用

超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗很少一部分功率(小于10%)。
所以,使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
超声波换能器分类:1、柱型2、倒喇叭型3、钢后盖型4、中间夹铝片型主要适用于超声波塑料焊接机、超声波切割刀、超声波金属焊接机,超声波清洗机,超声波声化学设备等。
超声波换能器在合适的电场激励下能发生有规律的振动,其振幅一般10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。
连上通过合理设计的变幅杆后,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。
因加工方式和要求不同,换能器的工作方式大致可分为连续工作(如花边机,CD机,清洗机,拉链机)和脉冲工作(如塑料焊机),不同的工作方式对换能器的要求是不同的。
一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇的,有停顿,但瞬间电流很大。
平均而言,二种状态的功率都是很大的。
使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。
换能器的频率相对而言还比较直观些。
该频率是指用频率(函数)发生器,毫伏表,示波器等通过传输线路法测得的频率,或用网络阻抗分析仪等类似仪表测得的频率。
一般通称小信号频率。
与它相对应的是上机频率,即客户将换能器通过电缆连到机箱上,通电后空载或有载时测得的实际工作频率。
因客户匹配电路各不相同,同样的换能器在不同的驱动电源(电箱)表现出来的频率是不同的,这样的频率不能作为交流讨论的依据。
让换能器和驱动电源、模具良好配合以形成一台完整的超声波设备可以简称为匹配。
由于匹配对整机性能的影响是决定性的,无论怎样强调匹配的重要性都不为过。
匹配最主要考虑的因素是换能器的电容量,其次是换能器的频率。
换能器与驱动电源的匹配主要有4个方面,即阻抗匹配、频率匹配、功率匹配、容抗匹配。
第三章医用超声换能器

第三章医⽤超声换能器第三章医⽤超声换能器应⽤超声波进⾏诊断时,⾸先要解决的问题是如何发射和接收超声波,通过使⽤超声换能器可以解决这个问题。
⽬前医学超声设备⼤多采⽤声电换能器来实现超声波的发射与接收。
声电换能器按⼯作原理分为两⼤类,即电场式和磁场式。
电场式中,利⽤电场所产⽣的各种⼒效应来实现声电能量的相互转换,其内部储能元件是电容,它⼜分为压电式、电致伸缩式、电容式。
磁场式中,是借助磁场的⼒效应实现声电能量的互相转换,内部储能元件是电感,它⼜分为电动式、电磁式、磁致伸缩式。
在医学超声⼯程中,使⽤的最多的是压电式超声换能器。
§3.1 压电效应与压电材料特性⼀、压电效应压电效应是法国物理学家Pierre Curie 和Jacqnes Curie 兄弟于1880年发现的。
图3-1 压电效应⽰意图对某些单晶体或多晶体电介质,如⽯英晶体、陶瓷、⾼分⼦聚合材料等,当沿着⼀定⽅向对其施加机械⼒⽽使它变形时,内部就产⽣极化现象,同时在它的两个对应表⾯上便产⽣符号相反的等量电荷,并且电荷密度与机械⼒⼤⼩成⽐例;⽽且当外⼒取消后,电荷也消失,⼜重新恢复不带电状态,这种现象称为正压电效应,如图3-1。
当作⽤⼒的⽅向改变时,电荷的极性也随着改变。
相反,当在电介质的极化⽅向上施加电场(加电压)作⽤时,这些电介质晶体会在⼀定的晶轴⽅向产⽣机械变形;外加电场消失,变形也随之消失,这种现象称为逆压电效应(电致伸缩)。
如果在电介质的两⾯外加交变电场时,电介质产⽣压缩及伸张,即产⽣振动,此振动加到弹性介质上,介质亦将振动,产⽣机械波。
如外加交变电场频率⾼于20KHz,则这种波即是超声波。
超声接收换能器采⽤了正压电效应,将来⾃⼈体中的声压转变为电压。
超声波发射换能器采⽤了逆压电效应,将电压转变为声压,并向⼈体发射。
压电效应是可逆的,压电材料既具有正压电效应,⼜具有逆压电效应。
医学超声设备中,常采⽤同⼀压电换能器作为发射和接收探头,但发射与接收必须分时⼯作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技术支持:上海谐鸣超声
压电(超声)换能器的分类
超声换能器应用范围较广,型号类别较多,换能器制作材料主要有压电陶瓷、单晶、复合材料和磁致伸缩材料等,其中压电陶瓷使用较多,这里简单的介绍一下压电换能器的主要分类,大致如下:
1、根据换能器工作过程声波的传播介质分:
A.气介换能器:以气体做为声波的传播媒介,如空气测距和气体流量换能
器等;
B.液介换能器:以液体做为声波的传播媒介,如水下测距和液体流量换能
器等;
C.固介换能器:以固体做为声波的传播媒介,如无损检测换能器基本属于
该类;
2、根据换能器工作过程中所起的作用分:
A.发射型换能器:换能器只用来发射声波(信号);
B.接收型换能器:换能器只用来接收声波(信号);
C.收发共用型换能器:换能器既用于发射又用来接收声波(信号);
3、根据换能器的振动模式分:
A.夹心/纵向振子换能器:按一定的结构将机械部件和压电陶瓷通过预应力
组合在一起,如超声清洗和焊接用的换能器一般都是属于该类型;
B.弯曲振动(叠片)换能器:以弯曲振动的模式发射和接收声波(信号),
如倒车雷达上所使用的换能器属于该类型;
C.普通/常规换能器:仅单独使用压电陶瓷,利用其本身各种振动模式,通
过胶黏剂固定密封于壳体内,该类型换能器使用场合较普遍,无损检测
换能器大多属于该类型;
D.其他振动模式换能器:如弯张型、钹式等,但应用少,在此不一一罗列;
4、根据换能器的带宽分:有宽带和窄带换能器,水声上用的较多;
5、根据换能器耐温性分:普通型,中温型和高温型换能器;
6、根据换能器耐压力性分:普通型和高压型换能器;
7、根据换能器频率分:低频、中频和高频换能器;
换能器分类较多,以上罗列了部分分类形式,仅供参考。
(上海谐鸣超声)
1。