2017届高三数学一轮总复习第二章函数与基本初等函数Ⅰ课时跟踪检测文
2017版高考数学(文)(全国)一轮复习文档:第二章 函数概念与基本初等函数I 2.3 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2.(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a 对称.( √)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a〉0)的周期函数.( √)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.( √)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建)下列函数为奇函数的是()A.y=错误!B.y=|sin x|C.y=cos x D.y=e x-e-x答案D解析对于D,f(x)=e x-e-x的定义域为R,f(-x)=e-x-e x=-f(x),故y=e x-e-x为奇函数.而y=错误!的定义域为{x|x≥0},不具有对称性,故y=错误!为非奇非偶函数.y=|sin x|和y=cos x为偶函数.故选D.2.已知函数f(x)为奇函数,且当x〉0时,f(x)=x2+错误!,则f(-1)等于( )A.-2 B.0 C.1 D.2答案A解析f(-1)=-f(1)=-(1+1)=-2。
高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ word版含答案

第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ第一节函数及其表示 突破点(一) 函数的定义域基础联通 抓主干知识的“源”与“流”1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.考点贯通 抓高考命题的“形”与“神”求给定解析式的函数的定义域(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] 若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点(2)求x与y的对应关系时需逐个计算,比较繁杂列表法能鲜明地显示自变量与函数值之间的数量关系只能列出部分自变量及其对应的函数值,难以反映函数变化的全貌图象法形象直观,能清晰地呈现函数的增减变化、点的对称关系、最大(小)值等性质作出的图象是近似的、局部的,且根据图象确定的函数值往往有误差考点贯通抓高考命题的“形”与“神”求函数的解析式[典例](1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=12x3-12x2-xB.y=12x3+12x2-3xC.y=14x3-xD.y=14x3+12x2-2x(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x+1).(3)用1x代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0).答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12错误!未找到引用源。
高三数学(文)一轮复习课时跟踪训练:第二章函数的概念与基本初等函数课时跟踪训练11含解析

课时跟踪训练(十一)[基础巩固]一、选择题1.函数y=-e x的图象()A.与y=e x的图象关于y轴对称B.与y=e x的图象关于坐标原点对称C.与y=e-x的图象关于y轴对称D.与y=e-x的图象关于坐标原点对称[解析]y=-e x的图象与y=e x的图象关于x轴对称,与y=e-x 的图象关于坐标原点对称.[答案] D2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1[解析]由题图可知,函数在定义域内为减函数,所以0<a<1.又当x=0时,y>0,即log a c>0,所以0<c<1.3.(2018·河北保定模拟)函数y=e cos x(-π≤x≤π)的大致图象为()[解析]当x=0时,则y=e cos0=e;当x=π时,则y=e cosπ=1 e.可排除A,B,D,选C.[答案] C4.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()[解析]要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后再向左平移一个单位得到y=-f(x+1)的图象,根据上述步骤可知C正确.5.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f(x)-f(-x)x<0的解集为()A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)[解析]因为f(x)为奇函数,所以不等式f(x)-f(-x)x<0可化为f(x)x <0,即xf(x)<0,f(x)的大致图象如图所示.所以xf(x)<0的解集为(-1,0)∪(0,1).[答案] D6.(2016·全国卷Ⅱ)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1x与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则∑i=1m(x i+y i)=()A.0 B.mC.2m D.4m[解析]由f(-x)=2-f(x)可知f(x)的图象关于点(0,1)对称,又易知y =x +1x =1+1x 的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,∴∑i =1m(x i +y i )=0×m 2+2×m2=m .故选B.[答案] B 二、填空题7.函数y =(2m +1)x与函数y =⎝ ⎛⎭⎪⎫12x的图象关于y 轴对称,则实数m 的值为________.[解析] ∵函数y =(2m +1)x 与函数y =⎝ ⎛⎭⎪⎫12x =2-x 的图象关于y 轴对称,∴2m +1=2,得m =12.[答案] 128.若函数y =f (x +3)的图象经过点P (1,4),则函数y =f (x )的图象必经过点________.[解析] 解法一:函数y =f (x )的图象是由y =f (x +3)的图象向右平移3个单位长度而得到的.故y =f (x )的图象经过点(4,4).解法二:由题意得f (4)=4成立,故函数y =f (x )的图象必经过点(4,4).[答案] (4,4)9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.[解析] 当x ∈[-1,0]时,设y =kx +b ,由图象得⎩⎪⎨⎪⎧ -k +b =0,k ×0+b =1,解得⎩⎪⎨⎪⎧k =1,b =1,∴y =x +1;当x ∈(0,+∞)时,设y =a (x -2)2-1, 由图象得0=a ·(4-2)2-1,解得a =14, ∴y =14(x -2)2-1. 综上可知,f (x )=⎩⎨⎧x +1,x ∈[-1,0],14(x -2)2-1,x ∈(0,+∞).[答案]f (x )=⎩⎨⎧x +1,x ∈[-1,0],14(x -2)2-1,x ∈(0,+∞).10.(2018·湖南邵阳调研改编)已知函数y =|x 2-1|x -1的图象与函数y=kx -2的图象恰有两个交点,求实数k 的取值范围.[解] 根据绝对值的意义, y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1).在直角坐标系中作出该函数的图象,如图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.[能力提升]11.(2017·河南濮阳检测)函数f (x )=x x 2+a的图象可能是( )A .①③B .①②④C .②③④D .①②③④[解析] 取a =0,可知④正确;取a =-4,可知③正确;取a =1,可知②正确;无论a 取何值都无法作出图象①,故选C.[答案] C12.(2018·河北衡水中学三调)函数f (x )=⎝ ⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )[解析] 由于f (x )=⎝ ⎛⎭⎪⎫21+e x -1cos x =1-e x 1+e x ·cos x ,而g (x )=1-e x1+e x 是奇函数,h (x )=cos x 是偶函数,所以f (x )是奇函数,图象应关于原点对称,据此排除选项A ,C ;又因为f ⎝ ⎛⎭⎪⎫π2=0,在⎝ ⎛⎭⎪⎫0,π2上,1-e x 1+e x <0,cos x >0,从而必有f (x )<0,即在⎝ ⎛⎭⎪⎫0,π2上,函数图象应该位于x 轴下方,据此排除选项D ,B 选项符合,故选B.[答案] B13.(2017·广东汕头一模)函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=x +sin xB .f (x )=cos xx C .f (x )=x cos x D .f (x )=x ⎝⎛⎭⎪⎫x -π2⎝⎛⎭⎪⎫x -3π2[解析] 由题意可得,当x =0时函数有意义,故排除B ;由图象关于原点对称,知函数f (x )是奇函数,故排除D ;当x =π2时,y =0,故排除A ,所以选C.[答案] C14.(2017·辽宁沈阳二模)已知函数f(x)=ln(x+m)的图象与g(x)的图象关于x+y=0对称,且g(0)+g(-ln2)=1,则m=________.[解析]设点(x,y)在g(x)的图象上,因为函数f(x)的图象与g(x)的图象关于x+y=0对称,则(-y,-x)在f(x)的图象上,所以-x=ln(-y+m),即y=m-e-x,因此g(x)=m-e-x.又因为g(0)=m-1,g(-ln2)=m-2,所以m-1+m-2=1,解得m=2.[答案] 215.(2017·山东泰安模拟改编)已知函数f(x)=log a x(a>0且a≠1)和函数g(x)=sinπ2x,若f(x)与g(x)的图象有且只有3个交点,求a的取值范围.[解]由对数函数以及三角函数的图象,如图,可得⎩⎪⎨⎪⎧a>1,f(9)>1,f(5)<1,或⎩⎪⎨⎪⎧0<a<1,f(7)<-1,f(3)>-1,解得5<a<9或17<a<13.16.已知函数f(x)的图象与函数h(x)=x+1x+2的图象关于点A(0,1)对称.(1)求f(x)的解析式;(2)若g(x)=f(x)+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.[解](1)设f(x)图象上任一点P(x,y),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上, 即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0). (2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x 2. ∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故a 的取值范围是[3,+∞).[延伸拓展](2017·江西赣州十四校联考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是边AA 1,CC 1上的中点,点M 是BB 1上的动点,过点E ,M ,F 的平面与棱DD 1交于点N ,设BM =x ,平行四边形EMFN 的面积为S ,设y =S 2,则y 关于x 的函数y =f (x )的图象大致是( )[解析] 由对称性可知,四边形EMFN 是菱形,所以S =12EF ×MN ,而EF =2,MN =2 ⎝ ⎛⎭⎪⎫12-x 2+⎝ ⎛⎭⎪⎫222=2 ⎝ ⎛⎭⎪⎫x -122+12,所以S =2×⎝ ⎛⎭⎪⎫x -122+12,即f (x )=2⎝⎛⎭⎪⎫x -122+1,故选A. [答案] A合理分配高考数学答题时间找准目标,惜时高效——合理分配高考数学答题时间经过漫长的第一、第二轮复习,对于各知识点的演练同学们已经烂熟于心,我们把这称为战术上的纯熟。
高三数学(文)一轮复习课时跟踪训练:第二章 函数的概念与基本初等函数 课时跟踪训练5 Word版含解析

课时跟踪训练(五)【基础巩固]一、选择题1、已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,f (x -3),x >0,则f (5)=( )A 、32B 、16 C.12D.132【解析] f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=2-1=12,故选C. 【答案] C2、(2018·烟台模拟)函数y =2x -1的定义域是(-∞,1)∪【2,5),则其值域是( )A 、(-∞,0)∪⎝ ⎛⎦⎥⎤12,2 B 、(-∞,2] C.⎝⎛⎭⎪⎫-∞,12∪【2,+∞) D 、(0,+∞)【解析] ∵x ∈(-∞,1)∪【2,5), 则x -1∈(-∞,0)∪【1,4)、∴2x -1∈(-∞,0)∪⎝ ⎛⎦⎥⎤12,2. 【答案] A3、(2017·北京东城第一学期联考)若函数f (sin x )=3-cos2x ,则f (cos x )=( )A 、3-cos2xB 、3-sin2xC 、3+cos2xD 、3+sin2x【解析] f (sin x )=3-cos2x =2+2sin 2x ,所以f (cos x )=2+2cos 2x =3+cos2x .【答案] C4、下列函数中,值域是(0,+∞)的是( ) A 、y =15-x +1B 、y =⎝ ⎛⎭⎪⎫12x-1 C 、y =⎝ ⎛⎭⎪⎫131-xD 、y =1-2x【解析] A 项,因为5-x +1>1,所以函数值域为(0,1);B 、D 项的函数值域为【0,+∞);C 项,因为1-x ∈R ,根据指数函数的性质可知函数的值域为(0,+∞),故选C.【答案] C5、已知f ⎝⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A 、(x +1)2 B 、(x -1)2 C 、x 2-x +1D 、x 2+x +1【解析] f ⎝ ⎛⎭⎪⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎪⎫x +1x 2-x +1x +1,令x +1x =t ,得f (t )=t 2-t +1,即f (x )=x 2-x +1.【答案] C6、(2018·江西临川一中月考)若函数y =ax 2+2ax +3的值域为【0,+∞),则a 的取值范围是( )A 、(3,+∞)B 、【3,+∞)C 、(-∞,0]∪【3,+∞)D 、(-∞,0)∪【3,+∞)【解析] 令f (x )=ax 2+2ax +3,∵函数y =ax 2+2ax +3的值域为【0,+∞),∴f (x )=ax 2+2ax +3的函数值取遍所有的非负实数,∴a 为正实数,∴该函数图象开口向上,∴只需ax 2+2ax +3=0的判别式Δ=(2a )2-12a ≥0,即a 2-3a ≥0,解得a ≥3或a ≤0(舍去)、故选B.【答案] B 二、填空题7、函数y =1-x2x +5的值域为________、【解析] y =1-x 2x +5=-12(2x +5)+722x +5=-12+722x +5.∵722x +5≠0,∴y ≠-12,∴函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12.【答案] ⎩⎨⎧⎭⎬⎫y |y ≠-128、已知f ⎝⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=________.【解析] ∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x 2=⎝⎛⎭⎪⎫x -1x 2+2(x ≠0),∴f (x )=x 2+2,∴f (3)=32+2=11.【答案] 119、若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为________、【解析] 设f (x )=ax 2+2x +1,由题意知, f (x )取遍所有的正实数、当a =0时, f (x )=2x +1符合条件;当a ≠0时,则⎩⎨⎧a >0,Δ=4-4a ≥0,解得0<a ≤1.所以0≤a ≤1.【答案] 【0,1] 三、解答题10、求下列函数的值域: (1)y =1-x 21+x 2;(2)y =-2x 2+x +3; (3)y =x +1x +1; (4)y =x +4-x 2.【解] (1)y =1-x 21+x 2=-1-x 2+21+x 2=-1+21+x 2. 由1+x 2≥1,得0<21+x2≤2, 所以-1<-1+21+x 2≤1. 故函数的值域为(-1,1]、 (2)y =-2x 2+x +3=-2⎝⎛⎭⎪⎫x -122+258.由0≤-2⎝ ⎛⎭⎪⎫x -122+258≤258,得0≤y ≤524.故函数的值域为⎣⎢⎡⎦⎥⎤0,524.(3)当x >0时,x +1x ≥2,当且仅当x =1时取等号, 所以x +1x +1≥3;当x <0时,x +1x =-⎝ ⎛⎭⎪⎪⎫-x +1-x ≤-2, 当且仅当x =-1时取等号,所以x +1x +1≤-1. 故函数的值域为(-∞,-1]∪【3,+∞)、 (4)设x =2cos θ(0≤θ≤π),则y =x +4-x 2 =2cos θ+4-4cos 2θ=2cos θ+2sin θ=22sin ⎝ ⎛⎭⎪⎫θ+π4 由0≤θ ≤π,得π4≤θ+π4≤5π4,所以-22≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,-2≤y ≤22,故函数的值域为【-2,22]、【能力提升]11、下列函数中,不满足f (2x )=2f (x )的是( ) A 、f (x )=|x | B 、f (x )=x -|x | C 、f (x )=x +1D 、f (x )=-x【解析] 选项A,f (2x )=|2x |=2|x |,2f (x )=2|x |,故f (2x )=2f (x );选项B,f (2x )=2x -|2x |=2x -2|x |,2f (x )=2x -2|x |,故f (2x )=2f (x );选项C,f (2x )=2x +1,2f (x )=2x +2,故f (2x )≠2f (x );选项D,f (2x )=-2x,2f (x )=-2x ,故f (2x )=2f (x )、故选C.【答案] C12、已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A 、(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12 【解析] 因为当x ≥1时, f (x )=ln x ≥0, f (x )的值域为R ,所以当x <1时,f (x )=(1-2a )x +3a 的值域包含一切负数、当a =12时,(1-2a )x +3a =32不成立;当a >12时,(1-2a )x +3a >1+a ,不成立;当a <12时,(1-2a )x +3a <1+a .由1+a ≥0,得a ≥-1.所以-1≤a <12.故选C.【答案] C13、定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈【-2,2]的最大值等于__________、【解析]由已知得1⊕x =⎩⎨⎧1-2≤x ≤1,x 21<x ≤2,当x ∈【-2,2]时,2⊕x =2,∴f (x )=⎩⎨⎧x -2,-2≤x ≤1,x 3-2,1<x ≤2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数、∴f (x )的最大值为f (2)=23-2=6.【答案] 614、(2013·安徽卷)定义在R 上的函数f (x )满足f (x +1)=2f (x )、若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________________.【解析] 当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )【1-(1+x )]=-x (1+x ),又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-x (x +1)2.【答案] -x (x +1)215、已知函数f (x )=(1-a 2)x 2+3(1-a )x +6. (1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为【0,+∞),求实数a 的取值范围、 【解] (1)①若1-a 2=0,即a =±1,(ⅰ)当a =1时,f (x )=6,定义域为R ,符合要求; (ⅱ)当a =-1时, f (x )=6x +6,定义域不为R .②若1-a 2≠0,g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数, ∵f (x )的定义域为R ,∴g (x )≥0,∀x ∈R 恒成立,∴⎩⎨⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≤0⇔⎩⎨⎧-1<a <1,(a -1)(11a +5)≤0⇒-511≤a <1.综合①②得a 的取值范围是⎣⎢⎡⎦⎥⎤-511,1.(2)∵函数f (x )的值域为【0,+∞),∴函数g (x )=(1-a 2)x 2+3(1-a )x +6取一切非负实数, ①当1-a 2≠0时有⎩⎨⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≥0⇔⎩⎨⎧-1<a <1,(a -1)(11a +5)≥0⇒-1<a ≤-511.②当1-a 2=0时a =±1,当a =1时,f (x )=6不合题意、 当a =-1时,f (x )=6x +6的值域为【0,+∞),符合题目要求、故所求实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,-511. 16、已知二次函数f (x )=ax 2+bx (a 、b 是常数,且a ≠0)满足条件:f (2)=0,且方程f (x )=x 有两个相等实根、(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为【m ,n ]和【2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由、【解] (1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.①由f (2)=0,得4a +2b =0,②由①、②得,a =-12,b =1,故f (x )=-12x 2+x .(2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12, 则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1, ∴当n ≤14时,f (x )在【m ,n ]上为增函数、于是有⎩⎨⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎨⎧m =-2或m =0,n =-2或n =0.又m <n ≤14,∴⎩⎨⎧m =-2,n =0.故存在实数m =-2,n =0,使f (x )的定义域为【m ,n ],值域为【2m,2n ]、【延伸拓展]设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f 【g (x )]、若f (x )=⎩⎪⎨⎪⎧ x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则( )A 、(f ·f )(x )=f (x )B 、(f ·g )(x )=f (x )C 、(g ·f )(x )=g (x )D 、(g ·g )(x )=g (x )【解析] 对于A,(f ·f )(x )=f 【f (x )]=⎩⎨⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.【答案] A。
高三数学(文)一轮复习课时跟踪训练:第二章 函数的概念与基本初等函数 课时跟踪训练9 Word版含解析

课时跟踪训练(九)[基础巩固]一、选择题1.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( )A .[9,81]B .[3,9]C .[1,9]D .[1,+∞)[解析] 由题得32-b =1,∴b =2,∴f (x )=3x -2,又x ∈[2,4],∴f (x )∈[1,9],选C.[答案] C2.(2017·北京卷)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x,则f (x )( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数[解析] 因为f (x )=3x-⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x -⎝ ⎛⎭⎪⎫13-x =⎝⎛⎭⎪⎫13x -3x =-⎣⎢⎡⎦⎥⎤3x -⎝ ⎛⎭⎪⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,所以f (x )=3x -⎝ ⎛⎭⎪⎫13x 在R 上是增函数.故选A.[答案] AA .-2a 3bB .-8a bC .-6a bD .-6ab[解析] =-6ab ,故选C.[答案] C4.设a =40.8,b =80.46,c =⎝ ⎛⎭⎪⎫12-1.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a[解析] ∵a =40.8=21.6,b =80.46=21.38,c =⎝ ⎛⎭⎪⎫12-1.2=21.2,1.6>1.38>1.2,y =2x 为R 上的增函数,∴a >b >c . [答案] A5.函数y =⎝ ⎛⎭⎪⎫12的单调增区间是( ) A.⎣⎢⎡⎦⎥⎤-1,12 B .(-∞,-1]C .[2,+∞)D .⎣⎢⎡⎦⎥⎤12,2[解析] 由-x 2+x +2≥0,解得-1≤x ≤2,故函数y =⎝ ⎛⎭⎪⎫12的定义域为[-1,2].根据复合函数“同增异减”原则,得所求增区间为⎣⎢⎡⎦⎥⎤12,2.[答案] D6.(2017·山东潍坊三模)已知a =⎝ ⎛⎭⎪⎫12-43 ,b =⎝ ⎛⎭⎪⎫14- 25 ,c =⎝⎛⎭⎪⎫125-13 ,则( )A .a <b <cB .b <c <aC .c <b <aD .b <a <c[解析] 因为a =⎝ ⎛⎭⎪⎫12-43 =2 43 ,b =⎝ ⎛⎭⎪⎫14- 25 =245 ,c =⎝⎛⎭⎪⎫125-13 =523,显然有b <a ,又a =423 <5 23=c ,故b <a <c .[答案] D 二、填空题 7.不等式2-x 2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. [解析] 2-x 2+2x>2-x -4,∴-x 2+2x >-x -4,即x 2-3x -4<0,∴-1<x <4.[答案] {x |-1<x <4}8.已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.[解析] 因为f (x )=a -x =⎝⎛⎭⎪⎫1a x , 且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a >1,解得0<a <1. [答案] (0,1) 三、解答题9.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________.[解析] 当a >1时,f (x )为增函数,∴⎩⎨⎧a 0-1=0a 2-1=2,∴a =3;当0<a <1时,f (x )为减函数,∴⎩⎨⎧a 0-1=2a 2-1=0无解,故a = 3. [答案]310.化简下列各式:(1)⎝ ⎛⎭⎪⎫2790.5+0.1-2+⎝ ⎛⎭⎪⎫21027-23 -3π0+3748;[解] (1)原式=⎝ ⎛⎭⎪⎫25912 +10.12+⎝ ⎛⎭⎪⎫6427-23-3+3748=53+100+916-3+3748=100.[能力提升]11.(2017·西安调研)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2][解析] 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.[答案] B12.(2017·河南安阳模拟)已知函数f (x )=a x (a >0,且a ≠1),如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2[解析] ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0. 又∵f (x )=a x ,∴f (x 1)·f (x 2)=a x 1·a x 2=a x 1+x 2=a 0=1. [答案] A13.(2017·四川巴中检测)定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=e x ,给出如下结论:①f (x )=e x -e -x2且0<f (1)<g (2);②∀x ∈R ,总有[g (x )]2-[f (x )]2=1;③∀x ∈R ,总有f (-x )g (-x )+f (x )g (x )=0;④∃x 0∈R ,使得f (2x 0)>2f (x 0)g (x 0).其中所有正确结论的序号是( )A .①②③B .②③C .①③④D .①②③④[解析] 由题意得,⎩⎨⎧f (x )+g (x )=e x ,f (-x )+g (-x )=-f (x )+g (x )=e -x ⇒⎩⎪⎨⎪⎧f (x )=e x -e -x 2,g (x )=e x+e -x2.①:0<f (1)=e -e -12<e 2<e 2+e -22=g (2),故①正确;②:[g (x )]2-[f (x )]2=⎝⎛⎭⎪⎪⎫e x +e -x 22-⎝ ⎛⎭⎪⎪⎫e x -e -x 22=1,故②正确; ③:f (-x )g (-x )+f (x )g (x )=-f (x )g (x )+f (x )g (x )=0,故③正确;④2f (x 0)g (x 0)=2·=f (2x 0),故④错误,即正确的结论为①②③,故选A.[答案] A14.(2018·河北保定联考)已知奇函数y =⎩⎪⎨⎪⎧f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0且a ≠1)对应的图象如图所示,那么g (x )=__________.[解析] 函数f (x )的图象过点⎝⎛⎭⎪⎫1,12,所以a =12.当x <0时,g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x=-2x .[答案] -2x15.(2017·陕西西安二模)若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎝⎛⎭⎪⎫x 0,13,则函数f (x )在[0,3]上的最小值等于________.[解析] 令x -2=0得x =2,且f (2)=1-2a ,所以函数f (x )的图象恒过定点(2,1-2a ),因此x 0=2,a =13,于是f (x )=⎝ ⎛⎭⎪⎫13x -2-23,f (x )在R 上单调递减,故函数f (x )在[0,3]上的最小值为f (3)=-13.[答案] -1316.(2017·天津期末)已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.[解] (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ), ∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立,⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立, ⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝⎛⎭⎪⎫x +122-14对一切x ∈R 都成立, ⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0,又⎝ ⎛⎭⎪⎫t +122≥0, ∴⎝ ⎛⎭⎪⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.[延伸拓展]设[x ]表示不超过实数x 的最大整数,如[2.6]=2,[-2.6]=-3.设g (x )=a xa x +1(a >0,且a ≠1),那么函数f (x )=⎣⎢⎡⎦⎥⎤g (x )-12+⎣⎢⎡⎦⎥⎤g (-x )-12的值域为( )A .{-1,0,1}B .{0,1}C .{1,-1}D .{-1,0}[解析] ∵g (x )=a x a x +1,∴g (-x )=1a x +1,∴0<g (x )<1,0<g (-x )<1,g (x )+g (-x )=1. 当12<g (x )<1时,0<g (-x )<12,∴f (x )=-1. 当0<g (x )<12时,12<g (-x )<1,∴f (x )=-1. 当g (x )=12时,g (-x )=12,∴f (x )=0. 综上,f (x )的值域为{-1,0},故选D. [答案] D。
(江苏专用)2017届高三数学一轮总复习 第二章 函数与基本初等函数Ⅰ课时跟踪检测 文

第二章函数与基本初等函数Ⅰ第一节函数的概念及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应法则.(3)相同函数:如果两个函数的定义域和对应法则完全一致,则这两个函数相同,这是判断两函数相同的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题体验]1.(教材习题改编)下列五个对应f,不是从集合A到集合B的函数的是________(填序号).①A =⎩⎨⎧⎭⎬⎫12,1,32 ,B ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12 =-6,f (1)=-3,f ⎝ ⎛⎭⎪⎫32 =1;②A ={1,2,3},B ={7,8,9},f (1)=f (2)=7,f (3)=8; ③A =B ={1,2,3},f (x )=2x -1; ④A =B ={x |x ≥-1},f (x )=2x +1;⑤A =Z ,B ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1.解析:根据函数定义,即看是否是从非空数集A 到非空数集B 的映射.③中集合A 中的元素3在集合B 中无元素与之对应,故不是A 到B 的函数.其他均满足.答案:③2.(教材习题改编)若f (x )=x -x 2,则f ⎝ ⎛⎭⎪⎫12 =________.解析:f ⎝ ⎛⎭⎪⎫12 =12-⎝ ⎛⎭⎪⎫12 2=14.答案:143.(教材习题改编)用长为30 cm 的铁丝围成矩形,若将矩形面积S (cm 2)表示为矩形一边长x (cm)的函数,则函数解析式为________,其函数定义域为________.解析:矩形的另一条边长为15-x ,且x >0,15-x >0. 故S =x (15-x ),定义域为(0,15). 答案:S =x (15-x ) (0,15)4.函数f (x )=x -4|x |-5的定义域是________________.答案:[4,5)∪(5,+∞)1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,若A ,B 不是数集,则这个映射便不是函数.3.误把分段函数理解为几个函数组成. [小题纠偏]1.函数y =x 与函数y =xx________(填“是”或“不是”)同一函数. 解析:函数y =x 的定义域为[0,+∞),y =xx的定义域为(0,+∞).因为两个函数的定义域不同,所以不表示同一函数.答案:不是2.函数f (x )=x -1·x +1的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧x -1≥0,x +1≥0,所以x ≥1,所以函数f (x )的定义域是[1,+∞).答案:[1,+∞)3.一个面积为100的等腰梯形,上底长为x ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为______________________________________________________________.解析:由x +3x2·y =100,得2xy =100,所以y =50x(x >0).答案:y =50x(x >0)4.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t.∴f (x )=5x +1x2(x ≠0).答案:5x +1x2(x ≠0)考点一 函数的定义域常考常新型考点——多角探明[命题分析]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.[题点全练]角度一:求给定函数解析式的定义域1.(2016·南师附中月考)y =x -12x-log 2(4-x 2)的定义域是________. 解析:要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2). 答案:(-2,0)∪[1,2) 2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f x +x -1的定义域是________.解析:令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]答案:[0,1)∪(1,2 015]4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为________. 解析:因为f (x 2+1)的定义域为[-1,1], 则-1≤x ≤1,故0≤x 2≤1, 所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则, 所以1≤lg x ≤2,即10≤x ≤100, 所以函数f (lg x )的定义域为[10,100]. 答案:[10,100]角度三:已知定义域确定参数问题 5.(2016·苏北四市调研)若函数f (x )= 2ax ax22+--1的定义域为R ,则a 的取值范围为______________________.解析:因为函数f (x )的定义域为R , 所以222ax ax +--1≥0对x ∈R 恒成立,即2ax ax22+-≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0, 解得-1≤a ≤0. 答案:[-1,0][方法归纳] 函数定义域的2种求法考点二 求函数的解析式重点保分型考点——师生共研[典例引领](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1,求f (x ).解:(1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )1x-1,将f ⎝ ⎛⎭⎪⎫1x =2fx x-1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,可求得f (x )=23x +13.[由题悟法] 求函数解析式的4个方法[即时应用]1.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.2.根据下列条件求各函数的表达式:(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(2)已知f ⎝⎛⎭⎪⎫x +1x =x 3+1x3,求f (x ).解:(1)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,所以a =2,b =7,所以f (x )=2x +7.(2)因为f ⎝⎛⎭⎪⎫x +1x =x 3+1x3=⎝ ⎛⎭⎪⎫x +1x 3-3⎝ ⎛⎭⎪⎫x +1x ,所以f (x )=x 3-3x (x ≥2或x ≤-2).考点三 分段函数重点保分型考点——师生共研[典例引领]1.已知f (x )=⎩⎨⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.解析:由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2. 答案:22.(2015·山东高考改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a的取值范围是________.解析:由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案:⎣⎢⎡⎭⎪⎫23,+∞ [由题悟法]分段函数2种题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1,所以实数x 0的值为-1或1.答案:-1或12.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-x -2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -2≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是________. 解析:要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6. 答案:[-3,6)2.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于________.解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a=74.答案:743.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为________________________.解析:设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x . 答案:g (x )=3x 2-2x4.已知函数f (x )=⎩⎪⎨⎪⎧a -x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:145.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3. 答案:(-1,3)二保高考,全练题型做到高考达标1.函数f (x )=10+9x -x2x -的定义域为________.解析:要使函数f (x )有意义,则x 须满足 ⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,①x >1,x ≠2,解①得,-1≤x ≤10.所以函数f (x )的定义域为(1,2)∪(2,10]. 答案:(1,2)∪(2,10]2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x 2,x <0,则f (f (-2))=________.解析:因为f (-2)=(-2)2=4,而f (4)=4+1=5,所以f (f (-2))=5.答案:53.(2016·福建四地六校联考)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________.解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2. 答案:24.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))>g (f (x ))的x 的值是________.解析:当x =1时,f (g (1))=1,g (f (1))=3,不满足f (g (x ))>g (f (x ));当x =2时,f (g (2))=3,g (f (2))=1,满足f (g (x ))>g (f (x ));当x =3时,f (g (3))=1,g (f (3))=3,不满足f (g (x ))>g (f (x )).答案:25.已知函数f (x )=⎩⎪⎨⎪⎧3x,0≤x ≤1,92-32x ,1<x ≤3,当t ∈[0,1]时,f (f (t ))∈[0,1],则实数t的取值范围是________.解析:当t ∈[0,1]时,f (t )=3t∈[1,3];当3t=1,即t =0时,f (1)=3∉[0,1],不符合题意,舍去;当3t ∈(1,3]时,f (3t )=92-32×3t ∈[0,1],由f (3t )=92-32×3t ≥0,得3t≤3,所以t ≤1;由f (3t )=92-32×3t ≤1,得3t≥73,所以t ≥log 373.综上所述,实数t 的取值范围是⎣⎢⎡⎦⎥⎤log 373,1.答案:⎣⎢⎡⎦⎥⎤log 373,16.(2016·南京一中检测)已知f (x )=⎩⎨⎧x 12,x ∈[0,+,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 1212=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π67.已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]8.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x . 答案:g (x )=9-2x9.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12. 故x 的取值范围为⎣⎢⎡⎭⎪⎫716,12. 10.(1)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式;(2)若函数f (x )=xax +b(a ≠0),f (2)=1,且方程f (x )=x 有唯一解,求f (x )的解析式. 解:(1)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).(2)由f (2)=1,得22a +b =1,即2a +b =2.由f (x )=x ,得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0, 解此方程得x =0或x =1-ba, 又因为方程有唯一解,故1-b a=0,解得b =1,代入2a +b =2,得a =12,所以f (x )=2x x +2. 三上台阶,自主选做志在冲刺名校1.(2016·金陵中学月考)已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12.即a 的取值范围是⎣⎢⎡⎭⎪⎫-1,12. 答案:⎣⎢⎡⎭⎪⎫-1,122.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则使不等式解析:∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x-x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x≤x +4成立; 当x =2时,2x =4,x +4=6,2x≤x +4成立; 当x ≥3(x ∈N *)时,2x>x +4. 故满足条件的x 的集合是{1,2}. 答案:{1,2}3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是单调增函数或单调减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,单调增区间和单调减区间统称为函数y =f (x )的单调区间.2.函数的最值 [小题体验]1.(教材习题改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ①y =1-3x ;②y =-1x;③y =x 2+1;④y =|x +1|.解析:y =1-3x 在区间(0,2)上是减函数,故①错误,其余均正确.故填②③④. 答案:②③④2.(教材习题改编)若函数y =ax 2+(2a +1)x 在(-∞,2]上是增函数,则实数a 的取值范围是________.解析:应分函数为一次函数还是二次函数两种情况:①若a =0,则y =x 在(-∞,2]上是增函数,所以a =0符合题意;②若a ≠0,则⎩⎪⎨⎪⎧a <0,-2a +12a ≥2,解得-16≤a <0.综合①②得实数a 的取值范围是⎣⎢⎡⎦⎥⎤-16,0. 答案:⎣⎢⎡⎦⎥⎤-16,0 3.已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为______. 答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f x等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的单调增区间是________.解析:由题意画出函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的图象如图所示,所以函数的单调增区间是(-∞,0)和[0,+∞).答案:(-∞,0)和[0,+∞)2.设函数f (x )是(-3,3)上的增函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.解析:由题意,得⎩⎪⎨⎪⎧m -1>2m -1,-3<m -1<3,-3<2m -1<3,所以-1<m <0.答案:(-1,0)3.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]考点一 函数单调性的判断基础送分型考点——自主练透[题组练透]1.函数y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案:⎣⎢⎡⎦⎥⎤0,32 2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-x 22-=a x 2-x 1x 1x 2+x 21-x 22-.∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数.法二(导数法):f ′(x )=a x 2--2ax 2x 2-2=-a x 2+x 2-2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤:(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间重点保分型考点——师生共研[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-x -2+2,x ≥0,-x +2+2,x <0.画出函数图象如图所示,单调增区间为(-∞,-1]和[0,1],单调减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数.而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1)和(1+2,+∞);单调减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝ ⎛⎭⎪⎫13x x 1223-+的单调递增区间为________. 解析:令u =2x 2-3x +1=2⎝ ⎛⎭⎪⎫x -342-18.因为u =2⎝ ⎛⎭⎪⎫x -342-18在⎝ ⎛⎦⎥⎤-∞,34上单调递减,函数y =⎝ ⎛⎭⎪⎫13u在R 上单调递减.所以y =⎝ ⎛⎭⎪⎫1322x 3x 1-+在⎝⎛⎦⎥⎤-∞,34上单调递增.答案:⎝ ⎛⎦⎥⎤-∞,34考点三 函数单调性的应用常考常新型考点——多角探明[命题分析]高考对函数单调性的考查多以填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值 1.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2016·苏州调研)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为_____.解析:因为f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c . 答案:b >a >c角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是________.解析:2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.答案:(8,9]角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.解析:当a =0时,f (x )=2x -3, 在定义域R 上是单调递增的, 故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.答案:⎣⎢⎡⎦⎥⎤-14,0 5.已知函数f (x )=⎩⎪⎨⎪⎧a -x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.已知函数y =f (x )的图象如图所示,那么该函数的单调减区间是________.解析:由函数的图象易知,函数f (x )的单调减区间是[-3,-1]和[1,2]. 答案:[-3,-1]和[1,2]2.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2]. 答案:[1,2]3.(2016·学军中学检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 答案:(-∞,1] 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________. 解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f a =1,f b =13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 二保高考,全练题型做到高考达标1.函数f (x )=x -a x 在[1,4]上单调递增,则实数a 的最大值为________. 解析:令x =t ,所以t ∈[1,2],即f (t )=t 2-at ,由f (x )在[1,4]上递增,知f (t )在[1,2]上递增,所以a2≤1,即a ≤2,所以a 的最大值为2.答案:22.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 解析:设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调增区间为[3,+∞). 答案:[3,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.解析:由f (x )在R 上是减函数,得0<a <1,且-0+3a ≥a 0,由此得a ∈⎣⎢⎡⎭⎪⎫13,1.答案:⎣⎢⎡⎭⎪⎫13,1 4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案:65.(2016·南通调研)已知f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是________.解析:当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧3a -1<0,g ,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13. 此时,log a x 是减函数,符合题意.答案:⎣⎢⎡⎭⎪⎫17,136.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x=14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞). 答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 答案:[0,1)9.(2016·苏州调研)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎢⎡⎦⎥⎤12,2上为增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1]. 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=⎩⎪⎨⎪⎧e x-k ,x ≤0,-k x +k ,x >0是R 上的增函数,则实数k 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧e 0-k ≤k ,1-k >0,解得12≤k <1.答案:⎣⎢⎡⎭⎪⎫12,1 2.(2016·泰州中学期中)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值范围是________.解析:设y =log 12t ,t =x 2-ax +a .因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞, 2 ]上为单调减函数, 且t min >0,故需⎩⎪⎨⎪⎧a 2≥ 2,22-2a +a >0,解得22≤a <2+2 2. 答案:[22,22+2)3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节 函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期.[小题体验]1.(教材习题改编)函数f (x )=mx 2+(2m -1)x +1是偶函数,则实数m =________. 解析:由f (-x )=f (x ),得2m -1=0,即m =12.答案:122.(教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )=________.解析:若x <0,则-x >0,f (-x )=-x 3-x +1,由于f (x )是奇函数,所以f (-x )=-f (x ),所以f (x )=x 3+x -1.答案:x 3+x -13.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 使f (-x )=-f (x )或f (-x )=f (x ).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b =________. 解析:∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.答案:132.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.解析:由题意得,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-12 2+2=1.答案:13.函数f (x )=(2x +2)2+x2-x的奇偶性为________. 解析:由2+x2-x ≥0,得函数f (x )=(2x +2)2+x2-x的定义域为[-2,2),不关于原点对称,所以函数f (x )为非奇非偶函数.答案:非奇非偶考点一 函数奇偶性的判断基础送分型考点——自主练透[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x; (4)f (x )=4-x2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x2|x +3|-3=4-x 2x +-3=4-x2x,∴f (-x )=-f (x ), ∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞), 关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性题点多变型考点——纵引横联[典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解] (1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f (0)=0,f (1)=1,f (2)=0,f (3)=f (-1)=-f (1)=-1.又∵f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0,∴f (0)+f (1)+f (2)+…+f (2 015)=0.[类题通法]1.判断函数周期性的2个方法 (1)定义法. (2)图象法.2.周期性3个常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f x,则T =2a ; (3)若f (x +a )=-1f x,则T =2a .(a >0)[越变越明][变式1] 若母题中条件变为“f (x +2)=-1f x”,求函数f (x )的最小正周期.解:∵对任意x ∈R ,都有f (x +2)=-1f x, ∴f (x +4)=f (x +2+2)=-1fx +=-1-1f x=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12) =…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4). 又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 故x ∈[2,4]时,f (x )=x 2-6x +8. [破译玄机]利用函数的周期性,求函数的解析式,应把问题转化为已知区间上的相应问题,即把区间[2,4]转化为[-2,0]上.考点三 函数性质的综合应用常考常新型考点——多角探明[命题分析]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合;(3)周期性与奇偶性结合; (4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.已知f (x )是R 上的偶函数,且当x >0时,f (x )=x 2-x -1,则当x <0时,f (x )=________.解析:∵f (x )是定义在R 上的偶函数, ∴当x <0时,-x >0.由已知f (-x )=(-x )2-(-x )-1=x 2+x -1=f (x ), ∴f (x )=x 2+x -1. 答案:x 2+x -1 2.设函数f (x )=x +x +a x为奇函数,则a =________. 解析:∵f (x )=x +x +ax为奇函数,∴f (1)+f (-1)=0, 即++a1+-1+-1+a-1=0,∴a =-1. 答案:-1角度二:单调性与奇偶性结合3.(2016·刑台摸底考试)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为________.解析:依题意得,f ′(x )>0,则f (x )是定义在(-1,1)上的奇函数、增函数.不等式f (1-a )+f (1-a 2)<0等价于f (1-a 2)<-f (1-a )=f (a -1),则-1<1-a 2<a -1<1,由此解得1<a < 2.答案:(1,2)角度三:周期性与奇偶性结合4.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为________.解析:∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1), ∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4. 答案:(-1,4)角度四:单调性、奇偶性与周期性结合5.已知函数f (x )是定义在R 上以5为周期的奇函数,若f (-1)>1,f (2 016)=a +3a -3,则a 的取值范围是________.解析:因为f (x )的周期为5, 所以f (2 016)=f (1), 又因为f (x )是奇函数, 所以f (-1)=-f (1), 即f (2 016)=-f (-1)<-1, 所以a +3a -3<-1,解得0<a <3. 答案:(0,3)[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快1.函数f (x )=1x-x 的图象关于________对称.解析:因为函数f (x )的定义域为(-∞,0)∪(0,+∞),且对定义域内每一个x ,都有f (-x )=-1x+x =-f (x ),所以函数f (x )是奇函数,其图象关于原点对称.答案:原点2.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y 轴对称;④没有一个函数既是奇函数又是偶函数.其中正确的结论是________(填序号).解析:函数y =1x 2是偶函数,但不与y 轴相交,故①错;函数y =1x是奇函数,但不过原点,故②错;由偶函数的性质,知③正确;函数f (x )=0既是奇函数又是偶函数,故④错.答案:③3.(2016·南通调研)设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=________.解析:因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.答案:124.设奇函数f (x )的定义域为[-6,6].若当x ∈[0,6]时,f (x )的图象如图所示,则不等式f (x )>0的解集是________.解析:奇函数的图象关于原点对称,作出函数f (x )在[-6,0]上的图象(图略),由图象,可知不等式f (x )>0的解集是[-6,-2)∪(0,2).答案:[-6,-2)∪(0,2)5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),。
高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析
第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。
高三数学(文)一轮复习课时跟踪训练:第二章 函数的概念与基本初等函数 课时跟踪训练12 Word版含解析
课时跟踪训练(十二)[基础巩固]一、选择题1.若函数f (x )在区间[-2,2]上的图象是连续不断的曲线,且f (x )在(-2,2)内有一个零点,则f (-2)·f (2)的值( )A .大于0B .小于0C .等于0D .不能确定[解析] 若函数f (x )在(-2,2)内有一个零点,且该零点是变号零点,则f (-2)·f (2)<0,否则, f (-2)·f (2)>0,故选D.[答案] D2.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的取值为( )A .0B .-14C .0或-14D .2[解析] 当a =0时,函数f (x )=-x -1为一次函数,则-1是函数的零点,即函数仅有一个零点;当a ≠0时,函数f (x )=ax 2-x -1为二次函数,并且仅有一个零点,则一元二次方程ax 2-x -1=0有两个相等实根.∴Δ=1+4a =0,解得a =-14.综上,当a =0或a =-14时,函数仅有一个零点. [答案] C3.(2017·湖北襄阳四校联考)函数f (x )=3x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3[解析] 由题意知f (x )单调递增,且f (0)=1+0-2=-1<0,f (1)=3+1-2=2>0,即f (0)·f (1)<0且函数f (x )在(0,1)内连续不断,所以f (x )在区间(0,1)内有一个零点.[答案] B4.(2018·长沙模拟)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] ∵f (1)=-⎝ ⎛⎭⎪⎫12-1=-2<0,f (2)=ln2-⎝ ⎛⎭⎪⎫120=ln2-1<0.f (3)=ln3-12=ln3-lne12 ,∵3>e12,∴f (3)>0,故x 0∈(2,3),选C.[答案] C5.(2017·辽宁大连二模)已知偶函数y =f (x )(x ∈R )满足f (x )=x 2-3x (x ≥0),若函数g (x )=⎩⎨⎧log 2x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( )A .1B .3C .2D .4[解析] 作出函数f (x )与g (x )的图象如图,由图象可知两个函数有3个不同交点,所以函数y =f (x )-g (x )有3个零点,故选B.[答案] B6.(2017·河北承德模拟)若函数f (x )=⎩⎪⎨⎪⎧2x -2a ,x ≤0,x 2-4ax +a ,x >0有三个不同的零点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞ B .⎝ ⎛⎦⎥⎤14,12C .(-∞,0)∪⎝ ⎛⎦⎥⎤14,12D .(-∞,0)∪⎝ ⎛⎭⎪⎫14,+∞ [解析] 由题意知,当x ≤0时,函数f (x )有1个零点,即2x -2a =0在x ≤0上有根,所以0<2a ≤1解得0<a ≤12;当x >0时函数f (x )有2个零点,只需⎩⎪⎨⎪⎧16a 2-4a >0,4a >0,a >0,解得a >14,综上可得实数a 的取值范围是14<a ≤12.[答案] B 二、填空题7.已知函数f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在(1,3)内近似解的过程中,取区间中点x 0=2,那么下一个有根区间为________.[解析] f (1)=31+3-8=-2<0,f (2)=32+6-8=7>0,f (3)=33+9-8=28>0,故下一个有根区间为(1,2).[答案] (1,2)8.(2017·四川绵阳模拟)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.[解析] 由题意,知函数f (x )在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以⎩⎪⎨⎪⎧ f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧-a <0,4-1-a >0,解得0<a <3,故填(0,3).[答案] (0,3)9.已知函数f (x )=⎩⎪⎨⎪⎧ax 2+2x +1,x ≤0,ax -3,x >0,有3个零点,则实数a的取值范围是________.[解析] 因为函数f (x )有3个零点,所以当x >0时,方程ax -3=0有解,故a >0,所以当x ≤0时,需满足⎩⎨⎧-22a<0,Δ=4-4a >0,即0<a <1.综上,a 的取值范围是(0,1).[答案] (0,1) 三、解答题10.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.图(1)[解] (1)作出g (x )=x +e 2x (x >0)的大致图象如图(1). 可知若使y =g (x )-m 有零点,则只需m ≥2e.(2)若g (x )-f (x )=0有两个相异实根,即g (x )与f (x )的图象有两个不同的交点,图(2)作出g (x )=x +e 2x (x >0)的大致图象如图(2). ∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. ∴其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).[能力提升]11.(2017·云南昆明一模)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若函数f (x ),g (x )的零点分别为a ,b ,则有( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0[解析] 易知函数f (x ),g (x )在定义域上都是单调递增函数,且f (0)=-1<0,f (1)=e -1>0,g (1)=-2<0,g (2)=ln2+1>0,所以a ,b 存在且唯一,且a ∈(0,1),b ∈(1,2),从而f (1)<f (b )<f (2),g (0)<g (a )<g (1),于是f (b )>0,g (a )<0,即g (a )<0<f (b ).[答案] A12.(2017·甘肃省兰州市高三诊断)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,则实数a 的值是( )A .n (n ∈Z )B .2n (n ∈Z )C .2n 或2n -14(n ∈Z )D .n 或n -14(n ∈Z )[解析] 依题意得,函数y =f (x )是周期为2的偶函数,在[0,2)上,由图象(图略)易得,当a =0或-14时,直线y =x +a 与函数y =f (x )的图象有两个不同的公共点,∵函数f (x )的周期为2,∴a 的值为2n 或2n -14(n ∈Z ).[答案] C13.(2017·陕西省宝鸡市高三一检)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x <1,log 2x ,x ≥1,若函数y =f (x )-k 有且只有两个零点,则实数k 的取值范围是________.[解析] ∵当x <1时,2-x>12;当x ≥1时,log 2x ≥0,依题意函数y =f (x )的图象和直线y =k 的交点有两个,∴k >12.[答案] ⎝ ⎛⎭⎪⎫12,+∞ 14.(2017·云南省高三统一检测)已知y =f (x )是R 上的偶函数,对于任意的x ∈R ,均有f (x )=f (2-x ),当x ∈[0,1]时,f (x )=(x -1)2,则函数g (x )=f (x )-log 2017|x -1|的所有零点之和为________.[解析] 因为函数f (x )是偶函数,f (x )=f (2-x ),所以f (x )=f (-x )=f (x +2),所以函数f (x )的周期为2,又当x ∈[0,1]时,f (x )=(x -1)2,将偶函数y =log 2017|x |的图象向右平移一个单位长度得到函数y =log 2017|x -1|的图象,由此可在同一平面直角坐标系下作函数y =f (x )与y =log 2017|x -1|的图象(图略),函数g (x )的零点,即为函数y =f (x )与y =log 2017|x -1|图象的交点的横坐标,当x >2018时,两函数图象无交点,又两函数图象在[1,2018]上有2016个交点,由对称性知两函数图象在[-2016,1]上也有2016个交点,且它们关于直线x =1对称,所以函数g (x )的所有零点之和为4032.[答案] 403215.(2018·烟台模拟)已知二次函数f (x )=x 2+(2a -1)x +1-2a , (1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围.[解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点, 只需⎩⎨⎧f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎨⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为{a ⎪⎪⎪⎭⎬⎫12<a <34.16.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x -4ln x 的零点个数.[解] (1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R },∴f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2(x >0), ∴g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2.令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下:又因为g (x )在(3,+∞)上单调递增,因而g (x )在(3,+∞)上只有1个零点.故g (x )在(0,+∞)上仅有1个零点.[延伸拓展](2017·郑州市高三一测)对于函数f (x )与g (x ),若存在λ∈{x ∈R |f (x )=0},μ∈{x ∈R |g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________.[解析] 易知函数f (x )为增函数,且f (2)=e 2-2+2-3=0,所以函数f (x )=e x -2+x -3只有一个零点x =2,则取λ=2,由|2-μ|≤1,知1≤μ≤3.由f (x )与g (x )互为“零点密切函数”知函数g (x )=x 2-ax -x +4在区间[1,3]内有零点,即方程x 2-ax -x +4=0在[1,3]内有解,所以a =x +4x -1,而函数a =x +4x -1在[1,2]上单调递减,在[2,3]上单调递增,所以当x =2时,a 取最小值3,又当x =1时,a =4,当x =3时,a =103,所以a max =4,所以实数a 的取值范围是[3,4].[答案] [3,4]。
高考数学一轮复习 第二章 函数概念与基本初等函数Ⅰ 课时跟踪检测4 理 新人教A版
课时跟踪检测(四)[高考基础题型得分练]1.下图中可作为函数y =f (x )的图象的是( )A BC D答案:D解析:由函数的定义知,只有D 是“多对一”函数,而A ,B ,C 均为“一对多”,故选D.2.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 的值为( ) A .-74B .74 C .43 D .-43答案:B解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,由f (a )=6知,4a -1=6,解得a =74.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案:B解析:设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .4.[2017·吉林实验中学高三上学期二模]下列函数中,与函数y =13x的定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x答案:D 解析:函数y =13x的定义域为{x |x ≠0}.A 项,y =1sin x 的定义域为{x |x ≠k π,k ∈Z };B 项,y =ln x x 的定义域为{x |x >0};C 项,y =x e x的定义域为R ;D 项,y =sin x x的定义域为{x |x ≠0}.5.[2017·豫南豫北十校模拟]已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧cos πx 6,0<x ≤8,log 2x ,x >8,则f (f (-16))=( )A .-12B .-32C .12D .32答案:C解析:因为f (x )为奇函数,所以f (f (-16))=-f (f (16))=-f (4)=-cos 2π3=12,故选C.6.[2017·云南师范大学附属中学第七次月考]已知f (x )=⎩⎪⎨⎪⎧sin π8x ,x ≥0,f x ++2,x <0,则f (-2 016)=( )A .810B .809C .808D .806答案:B解析:f (-2 016)=f (-2 011)+2=f (-2 006)+4=…=f (-1)+403×2=f (4)+404×2=808+sin ⎝ ⎛⎭⎪⎫π8×4=809. 7.[2017·安徽六校联考]已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D . 2答案:B解析:当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2. 当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解.所以x 0=2,故选B.8.[2017·河北唐山期末]已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a的取值范围是( )A .(-∞,-1]B .⎝⎛⎭⎪⎫-1,12C .⎣⎢⎡⎭⎪⎫-1,12D .⎝ ⎛⎭⎪⎫0,12 答案:C解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12.故a 的取值范围是⎣⎢⎡⎭⎪⎫-1,12.9.已知函数f (x )和g (x )的定义域和值域都是集合{1,2,3},对应法则如下表.则右表中的空应填写的是________. 答案:2 1 3 3 2 1解析:f (g (1))=f (1)=2,f (g (2))=f (3)=1,f (g (3))=f (2)=3, 则第一行三个空分别填写2,1,3,同理g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, 第二行三个空分别填写3,2,1.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.答案:(-1,3)解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2, 即a 2-2a -3<0,解得-1<a <3.11.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.答案:-34解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a ),得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a ,由f (1-a )=f (1+a ),得-1-a =2+3a , 解得a =-34.综上可知,a 的值为-34.12.已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1, 则f (f (-3))=________,f (x )的最小值是________.答案:0 22-3 解析:∵-3<1,∴f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=1+21-3=0.当x ≥1时,f (x )=x +2x-3≥22-3(当且仅当x =2时,等号成立);当x <1时,x 2+1≥1, ∴f (x )=lg(x 2+1)≥0. 又22-3<0, ∴f (x )min =22-3.[冲刺名校能力提升练]1.[2017·湖北武汉调考]函数f (x )=⎩⎪⎨⎪⎧πx 2,-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 的所有可能值为( )A .1或-22B .-22 C .1 D .1或22答案:A 解析:∵f (1)=e 1-1=1且f (1)+f (a )=2,∴f (a )=1,当-1<a <0时,f (a )=sin(πa 2)=1, ∵0<a 2<1,∴0<πa 2<π, ∴πa 2=π2⇒a =-22;当a ≥0时,f (a )=ea -1=1⇒a =1.2.[2017·福建四地六校联考]若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( )A .2B .0C .1D .-1答案:A解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②,得f (1)=2.3.[2017·福建福州质检]已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -3,x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(-1,1)B .(0,1)C .(0,1]D .(-1,0)答案:B解析:由题意得,函数f (x )=2x在[2,+∞)上是减函数,且0<f (x )≤1,f (x )=(x -1)3在(-∞,2)上是增函数,且f (x )<1,若关于x 的方程f (x )=k 有两个不同的实根,则0<k <1.4.已知函数f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________.答案:7解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得 f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2, f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2, f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2, 又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7. 5.已知函数f (x )(x ∈R )满足f (x )=2bxax -1(a ≠0),f (1)=1,且使f (x )=2x 成立的实数x 只有一个,求函数f (x )的解析式.解:由f (x )=2bxax -1(a ≠0),f (1)=1,得a =2b +1.①又f (x )=2x 只有一个解,即2bxax -1=2x 只有一个解, 也就是2ax 2-2(1+b )x =0(a ≠0)只有一个解,所以b =-1,代入①中得a =-1,所以f (x )=2x x +1. 6.如果对任意实数x ,y ,都有f (x +y )=f (x )·f (y ),且f (1)=2. (1)求f (2),f (3),f (4)的值; (2)求f f+f f+f f+…+f f+f f+f f+f f的值.解:(1)因为对任意实数x ,y ,都有f (x +y )=f (x )·f (y ),且f (1)=2, 所以f (2)=f (1+1)=f (1)·f (1)=22=4,f (3)=f (2+1)=f (2)·f (1)=23=8, f (4)=f (3+1)=f (3)·f (1)=24=16.(2)∵f x +f x=f x ff x=f (1)=2,∴f f +f f +f f+…+f f=2+2+2+…+21 008个=2×1 008=2 016.。
高三数学(文)一轮复习课时跟踪训练:第二章 函数的概念与基本初等函数 课时跟踪训练4 Word版含解析
课时跟踪训练(四)【基础巩固】一、选择题1、如图,是张大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象、若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )【解析】 据图象可知在第一段时间张大爷离家距离随时间的增加而增加,在第二段时间内,张大爷离家的距离不变,第三段时间内,张大爷离家的距离随时间的增加而减少,最后回到始点位置,对比各选项,只有D 选项符合条件、【答案】 D2、已知函数f (x )=|x -1|,则下列函数中与f (x )相等的函数是( ) A 、g (x )=|x 2-1||x +1|B 、g (x )=⎩⎪⎨⎪⎧|x 2-1||x +1|,x ≠-1,2,x =-1C 、g (x )=⎩⎪⎨⎪⎧x -1,x >0,1-x ,x ≤0D 、g (x )=x -1【解析】 ∵g (x )=⎩⎨⎧|x 2-1||x +1|=|x -1|,x ≠-1,2,x =-1与f (x )的定义域和对应关系完全一致,故选B.【答案】 B3、(2018·河南濮阳检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( )A.⎝⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12 C 、(-1,0)∪⎝ ⎛⎭⎪⎫0,12D 、(-∞,-1)∪⎝ ⎛⎭⎪⎫-1,12 【解析】要使函数有意义,需满足⎩⎨⎧1-2x >0,x +1≠0,解得x <12且x ≠-1,故函数的定义域为(-∞,-1)∪⎝ ⎛⎭⎪⎫-1,12. 【答案】 D4、(2017·山西太原一模)若函数f (x )满足f (1-ln x )=1x ,则f (2)等于( )A.12 B 、e C.1eD 、-1【解析】 解法一:令1-ln x =t ,则x =e 1-t,于是f (t )=1e 1-t ,即f (x )=1e 1-x ,故f (2)=e. 解法二:由1-ln x =2,得x =1e ,这时1x =11e =e,即f (2)=e.【答案】 B5、(2018·四川成都检测)已知函数f (x )=⎩⎪⎨⎪⎧f (-x ),x >2,ax +1,-2≤x ≤2,f (x +5),x <-2,若f (2018)=0,则a =( )A 、0 B.12 C 、-12D 、-2【解析】 由于f (2018)=f (-2018)=f (-404×5+2)=f (2)=2a +1=0,故a =-12.【答案】 C6、已知实数a <0,函数f (x )=⎩⎪⎨⎪⎧x 2+2a ,x <1,-x ,x ≥1,若f (1-a )≥f (1+a ),则实数a 的取值范围是( )A 、(-∞,-2】B 、【-2,-1】C 、【-1,0)D 、(-∞,0)【解析】 当a <0时,1-a >1,1+a <1,所以f (1-a )=-(1-a )=a -1,f (1+a )=(1+a )2+2a =a 2+4a +1, 由f (1-a )≥f (1+a )得a 2+3a +2≤0,解得-2≤a ≤-1,所以a ∈【-2,-1】,故选B. 【答案】 B7、若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝⎛⎦⎥⎤0,34B.⎝⎛⎭⎪⎫0,34C.⎣⎢⎡⎦⎥⎤0,34 D.⎣⎢⎡⎭⎪⎫0,34 【解析】 ∵y =mx -1mx 2+4mx +3的定义域为R ,∴mx 2+4mx +3恒不为0.当m =0时,mx 2+4mx +3=3满足题意; 当m ≠0时,Δ=16m 2-12m <0,解得0<m <34.综上,0≤m <34,即m ∈⎣⎢⎡⎭⎪⎫0,34.【答案】 D 二、填空题8、设函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,f (x -3)+2,x >0,则f (9)=________.【解析】 f (9)=f (6)+2=f (3)+4=f (0)+6=0+2+6=8. 【答案】 89、(2017·江苏泰州检测)已知函数f (x )=3-2x +1的定义域为A ,值域为B ,则A ∩B =________.【解析】 由题意,知A =R ,B =(1,+∞),所以A ∩B =(1,+∞)、 【答案】 (1,+∞)10、(2017·山东潍坊检测)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫1-a 2x 的定义域是⎝ ⎛⎭⎪⎫12,+∞,则实数a 的值为________、 【解析】 由函数f (x )=lg ⎝ ⎛⎭⎪⎫1-a 2x 的定义域是⎝ ⎛⎭⎪⎫12,+∞,易知当x =12时,1-a 2x =0,即1-a2=0,所以a = 2.【答案】2【能力提升】11、(2017·山东潍坊二模)函数f (x )=1ln (5-2x )+e x -1的定义域为( )A 、【0,+∞)B 、(-∞,2】C 、【0,2】D 、【0,2)【解析】要使函数有意义,应有⎩⎨⎧ln (5-2x )>0,e x-1≥0,解得0≤x <2,故定义域为【0,2),选D. 【答案】 D12、(2017·河南新乡调研)已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫110x ,x ≤10,-lg (x +2),x >10,若f (8-m 2)<f (2m ),则实数m 的取值范围是( )A 、(-4,2)B 、(-4,1)C 、(-2,4)D 、(-∞,-4)∪(2,+∞)【解析】 由函数f (x )的图象可知函数f (x )在R 上单调递减,因此由f (8-m 2)<f (2m )可得8-m 2>2m ,解得-4<m <2.故选A.【答案】 A13、已知函数f (x )的定义域为【3,6】,则函数y =f (2x )log 12(2-x )的定义域为________、【解析】 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0,所以⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1,解得32≤x <2,故函数的定义域为⎣⎢⎡⎭⎪⎫32,2. 【答案】 ⎣⎢⎡⎭⎪⎫32,2 14、(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________、 【解析】 由题意,当x >12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +2x -12>1恒成立,即x >12满足题意;当0<x ≤12时,f (x )+f ⎝ ⎛⎭⎪⎫x -12=2x +x -12+1>1恒成立,即0<x ≤12满足题意;当x ≤0时,f (x )+f ⎝⎛⎭⎪⎫x -12=x +1+x -12+1>1,解得x >-14,即-14<x ≤0.综上,x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞. 【答案】 ⎝ ⎛⎭⎪⎫-14,+∞15、如图,点M 是边长为1的正方形ABCD 的边CD 的中点、当点P 在正方形的边上沿A —B —C 运动时,点P 经过的路程为x ,△APM 的面积为y ,求y 关于x 的函数关系式、【解】 利用分段函数建立关系式、当点P 在线段AB 上,即0<x ≤1时,y =12x ;当点P 在线段BC 上,即1<x ≤2时,y =12×⎝ ⎛⎭⎪⎫12+1×1-12(x -1)×1-12×(2-x )×12=14(3-x )、所以所求函数关系式为y =⎩⎪⎨⎪⎧12x ,0<x ≤1,14(3-x ),1<x ≤2.【延伸拓展】(2018·安徽合肥模拟)设集合A =⎣⎢⎡⎭⎪⎫0,12,B =⎣⎢⎡⎦⎥⎤12,1,函数f (x )=⎩⎨⎧x +12,x ∈A ,2(1-x ),x ∈B .若x 0∈A ,且f 【f (x 0)】∈A ,则x 0的取值范围是( )A.⎝ ⎛⎦⎥⎤0,14 B.⎝ ⎛⎦⎥⎤14,12 C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤0,38 【解析】 因为x 0∈A ,即0≤x 0<12, 所以f (x 0)=x 0+12,12≤x 0+12<1, 即12≤f (x 0)<1,即f (x 0)∈B ,所以f 【f (x 0)】=2【1-f (x 0)】=1-2x 0. 因为f 【f (x 0)】∈A , 所以0≤1-2x 0<12,解得14<x 0≤12.又因为0≤x 0<12, 所以14<x 0<12,故选C. 【答案】 C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章函数与基本初等函数Ⅰ第一节函数的概念及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应法则.(3)相同函数:如果两个函数的定义域和对应法则完全一致,则这两个函数相同,这是判断两函数相同的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题体验]1.(教材习题改编)下列五个对应f,不是从集合A到集合B的函数的是________(填序号).①A =⎩⎨⎧⎭⎬⎫12,1,32 ,B ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12 =-6,f (1)=-3,f ⎝ ⎛⎭⎪⎫32 =1;②A ={1,2,3},B ={7,8,9},f (1)=f (2)=7,f (3)=8; ③A =B ={1,2,3},f (x )=2x -1; ④A =B ={x |x ≥-1},f (x )=2x +1;⑤A =Z ,B ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1.解析:根据函数定义,即看是否是从非空数集A 到非空数集B 的映射.③中集合A 中的元素3在集合B 中无元素与之对应,故不是A 到B 的函数.其他均满足.答案:③2.(教材习题改编)若f (x )=x -x 2,则f ⎝ ⎛⎭⎪⎫12 =________.解析:f ⎝ ⎛⎭⎪⎫12 =12-⎝ ⎛⎭⎪⎫12 2=14.答案:143.(教材习题改编)用长为30 cm 的铁丝围成矩形,若将矩形面积S (cm 2)表示为矩形一边长x (cm)的函数,则函数解析式为________,其函数定义域为________.解析:矩形的另一条边长为15-x ,且x >0,15-x >0. 故S =x (15-x ),定义域为(0,15). 答案:S =x (15-x ) (0,15)4.函数f (x )=x -4|x |-5的定义域是________________.答案:[4,5)∪(5,+∞)1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,若A ,B 不是数集,则这个映射便不是函数.3.误把分段函数理解为几个函数组成. [小题纠偏]1.函数y =x 与函数y =xx________(填“是”或“不是”)同一函数. 解析:函数y =x 的定义域为[0,+∞),y =xx的定义域为(0,+∞).因为两个函数的定义域不同,所以不表示同一函数.答案:不是2.函数f (x )=x -1·x +1的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧x -1≥0,x +1≥0,所以x ≥1,所以函数f (x )的定义域是[1,+∞).答案:[1,+∞)3.一个面积为100的等腰梯形,上底长为x ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为______________________________________________________________.解析:由x +3x2·y =100,得2xy =100,所以y =50x(x >0).答案:y =50x(x >0)4.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t.∴f (x )=5x +1x2(x ≠0).答案:5x +1x2(x ≠0)考点一 函数的定义域常考常新型考点——多角探明[命题分析]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.[题点全练]角度一:求给定函数解析式的定义域1.(2016·南师附中月考)y =x -12x-log 2(4-x 2)的定义域是________. 解析:要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2). 答案:(-2,0)∪[1,2) 2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f x +x -1的定义域是________.解析:令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]答案:[0,1)∪(1,2 015]4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为________. 解析:因为f (x 2+1)的定义域为[-1,1], 则-1≤x ≤1,故0≤x 2≤1, 所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则, 所以1≤lg x ≤2,即10≤x ≤100, 所以函数f (lg x )的定义域为[10,100]. 答案:[10,100]角度三:已知定义域确定参数问题 5.(2016·苏北四市调研)若函数f (x )= 2ax ax22+--1的定义域为R ,则a 的取值范围为______________________.解析:因为函数f (x )的定义域为R , 所以222ax ax +--1≥0对x ∈R 恒成立,即2ax ax22+-≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0, 解得-1≤a ≤0. 答案:[-1,0][方法归纳] 函数定义域的2种求法考点二 求函数的解析式重点保分型考点——师生共研[典例引领](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1,求f (x ).解:(1)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x代替x ,得f ⎝ ⎛⎭⎪⎫1x =2f (x )1x-1,将f ⎝ ⎛⎭⎪⎫1x =2fx x-1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,可求得f (x )=23x +13.[由题悟法] 求函数解析式的4个方法[即时应用]1.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1.2.根据下列条件求各函数的表达式:(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(2)已知f ⎝⎛⎭⎪⎫x +1x =x 3+1x3,求f (x ).解:(1)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,所以a =2,b =7,所以f (x )=2x +7.(2)因为f ⎝⎛⎭⎪⎫x +1x =x 3+1x3=⎝ ⎛⎭⎪⎫x +1x 3-3⎝ ⎛⎭⎪⎫x +1x ,所以f (x )=x 3-3x (x ≥2或x ≤-2).考点三 分段函数重点保分型考点——师生共研[典例引领]1.已知f (x )=⎩⎨⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.解析:由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2. 答案:22.(2015·山东高考改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x, x ≥1,则满足f (f (a ))=2f (a )的a的取值范围是________.解析:由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案:⎣⎢⎡⎭⎪⎫23,+∞ [由题悟法]分段函数2种题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.(2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1,所以实数x 0的值为-1或1.答案:-1或12.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-x -2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-x -2≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是________. 解析:要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6. 答案:[-3,6)2.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a 等于________.解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a=74.答案:743.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为________________________.解析:设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x . 答案:g (x )=3x 2-2x4.已知函数f (x )=⎩⎪⎨⎪⎧a -x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:145.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3. 答案:(-1,3)二保高考,全练题型做到高考达标1.函数f (x )=10+9x -x2x -的定义域为________.解析:要使函数f (x )有意义,则x 须满足 ⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,①x >1,x ≠2,解①得,-1≤x ≤10.所以函数f (x )的定义域为(1,2)∪(2,10]. 答案:(1,2)∪(2,10]2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x 2,x <0,则f (f (-2))=________.解析:因为f (-2)=(-2)2=4,而f (4)=4+1=5,所以f (f (-2))=5.答案:53.(2016·福建四地六校联考)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________.解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2. 答案:24.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))>g (f (x ))的x 的值是________.解析:当x =1时,f (g (1))=1,g (f (1))=3,不满足f (g (x ))>g (f (x ));当x =2时,f (g (2))=3,g (f (2))=1,满足f (g (x ))>g (f (x ));当x =3时,f (g (3))=1,g (f (3))=3,不满足f (g (x ))>g (f (x )).答案:25.已知函数f (x )=⎩⎪⎨⎪⎧3x,0≤x ≤1,92-32x ,1<x ≤3,当t ∈[0,1]时,f (f (t ))∈[0,1],则实数t的取值范围是________.解析:当t ∈[0,1]时,f (t )=3t∈[1,3];当3t=1,即t =0时,f (1)=3∉[0,1],不符合题意,舍去;当3t ∈(1,3]时,f (3t )=92-32×3t ∈[0,1],由f (3t )=92-32×3t ≥0,得3t≤3,所以t ≤1;由f (3t )=92-32×3t ≤1,得3t≥73,所以t ≥log 373.综上所述,实数t 的取值范围是⎣⎢⎡⎦⎥⎤log 373,1.答案:⎣⎢⎡⎦⎥⎤log 373,16.(2016·南京一中检测)已知f (x )=⎩⎨⎧x 12,x ∈[0,+,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 1212=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π67.已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]8.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x . 答案:g (x )=9-2x9.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12. 故x 的取值范围为⎣⎢⎡⎭⎪⎫716,12. 10.(1)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式;(2)若函数f (x )=xax +b(a ≠0),f (2)=1,且方程f (x )=x 有唯一解,求f (x )的解析式. 解:(1)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).(2)由f (2)=1,得22a +b =1,即2a +b =2.由f (x )=x ,得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0, 解此方程得x =0或x =1-ba, 又因为方程有唯一解,故1-b a=0,解得b =1,代入2a +b =2,得a =12,所以f (x )=2x x +2. 三上台阶,自主选做志在冲刺名校1.(2016·金陵中学月考)已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12.即a 的取值范围是⎣⎢⎡⎭⎪⎫-1,12. 答案:⎣⎢⎡⎭⎪⎫-1,122.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则使不等式解析:∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x-x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x≤x +4成立; 当x =2时,2x =4,x +4=6,2x≤x +4成立; 当x ≥3(x ∈N *)时,2x>x +4. 故满足条件的x 的集合是{1,2}. 答案:{1,2}3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是单调增函数或单调减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,单调增区间和单调减区间统称为函数y =f (x )的单调区间.2.函数的最值 [小题体验]1.(教材习题改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ①y =1-3x ;②y =-1x;③y =x 2+1;④y =|x +1|.解析:y =1-3x 在区间(0,2)上是减函数,故①错误,其余均正确.故填②③④. 答案:②③④2.(教材习题改编)若函数y =ax 2+(2a +1)x 在(-∞,2]上是增函数,则实数a 的取值范围是________.解析:应分函数为一次函数还是二次函数两种情况:①若a =0,则y =x 在(-∞,2]上是增函数,所以a =0符合题意;②若a ≠0,则⎩⎪⎨⎪⎧a <0,-2a +12a ≥2,解得-16≤a <0.综合①②得实数a 的取值范围是⎣⎢⎡⎦⎥⎤-16,0. 答案:⎣⎢⎡⎦⎥⎤-16,0 3.已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为______. 答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f x等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的单调增区间是________.解析:由题意画出函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的图象如图所示,所以函数的单调增区间是(-∞,0)和[0,+∞).答案:(-∞,0)和[0,+∞)2.设函数f (x )是(-3,3)上的增函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.解析:由题意,得⎩⎪⎨⎪⎧m -1>2m -1,-3<m -1<3,-3<2m -1<3,所以-1<m <0.答案:(-1,0)3.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]考点一 函数单调性的判断基础送分型考点——自主练透[题组练透]1.函数y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎢⎡⎦⎥⎤0,32.答案:⎣⎢⎡⎦⎥⎤0,32 2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2x 21-x 22-=a x 2-x 1x 1x 2+x 21-x 22-.∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数.法二(导数法):f ′(x )=a x 2--2ax 2x -=-a x 2+x -.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤:(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间重点保分型考点——师生共研[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-x -2+2,x ≥0,-x +2+2,x <0.画出函数图象如图所示,单调增区间为(-∞,-1]和[0,1],单调减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数.而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1)和(1+2,+∞);单调减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝ ⎛⎭⎪⎫13x x 1223-+的单调递增区间为________. 解析:令u =2x 2-3x +1=2⎝ ⎛⎭⎪⎫x -342-18.因为u =2⎝ ⎛⎭⎪⎫x -342-18在⎝ ⎛⎦⎥⎤-∞,34上单调递减,函数y =⎝ ⎛⎭⎪⎫13u在R 上单调递减.所以y =⎝ ⎛⎭⎪⎫1322x 3x 1-+在⎝⎛⎦⎥⎤-∞,34上单调递增.答案:⎝ ⎛⎦⎥⎤-∞,34考点三 函数单调性的应用常考常新型考点——多角探明[命题分析]高考对函数单调性的考查多以填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值 1.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2016·苏州调研)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为_____.解析:因为f (x )的图象关于直线x =1对称.由此可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c . 答案:b >a >c角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是________.解析:2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.答案:(8,9]角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.解析:当a =0时,f (x )=2x -3, 在定义域R 上是单调递增的, 故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.答案:⎣⎢⎡⎦⎥⎤-14,0 5.已知函数f (x )=⎩⎪⎨⎪⎧a -x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.解析:要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.已知函数y =f (x )的图象如图所示,那么该函数的单调减区间是________.解析:由函数的图象易知,函数f (x )的单调减区间是[-3,-1]和[1,2]. 答案:[-3,-1]和[1,2]2.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2]. 答案:[1,2]3.(2016·学军中学检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 答案:(-∞,1] 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________. 解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f a =1,f b =13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 二保高考,全练题型做到高考达标1.函数f (x )=x -a x 在[1,4]上单调递增,则实数a 的最大值为________. 解析:令x =t ,所以t ∈[1,2],即f (t )=t 2-at ,由f (x )在[1,4]上递增,知f (t )在[1,2]上递增,所以a2≤1,即a ≤2,所以a 的最大值为2.答案:22.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 解析:设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调增区间为[3,+∞). 答案:[3,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.解析:由f (x )在R 上是减函数,得0<a <1,且-0+3a ≥a 0,由此得a ∈⎣⎢⎡⎭⎪⎫13,1.答案:⎣⎢⎡⎭⎪⎫13,1 4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案:65.(2016·南通调研)已知f (x )=⎩⎪⎨⎪⎧a -x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是________.解析:当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧3a -1<0,g ,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13. 此时,log a x 是减函数,符合题意.答案:⎣⎢⎡⎭⎪⎫17,136.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x=14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞). 答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 答案:[0,1)9.(2016·苏州调研)已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎢⎡⎦⎥⎤12,2上为增函数,∴f ⎝ ⎛⎭⎪⎫12=1a -2=12,f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1]. 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=⎩⎪⎨⎪⎧e x-k ,x ≤0,-k x +k ,x >0是R 上的增函数,则实数k 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧e 0-k ≤k ,1-k >0,解得12≤k <1.答案:⎣⎢⎡⎭⎪⎫12,1 2.(2016·泰州中学期中)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值范围是________.解析:设y =log 12t ,t =x 2-ax +a .因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞, 2 ]上为单调减函数, 且t min >0,故需⎩⎪⎨⎪⎧a 2≥ 2,22-2a +a >0,解得22≤a <2+2 2. 答案:[22,22+2)3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节 函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期.[小题体验]1.(教材习题改编)函数f (x )=mx 2+(2m -1)x +1是偶函数,则实数m =________. 解析:由f (-x )=f (x ),得2m -1=0,即m =12.答案:122.(教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )=________.解析:若x <0,则-x >0,f (-x )=-x 3-x +1,由于f (x )是奇函数,所以f (-x )=-f (x ),所以f (x )=x 3+x -1.答案:x 3+x -13.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________.答案:-11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 使f (-x )=-f (x )或f (-x )=f (x ).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b =________. 解析:∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.答案:132.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.解析:由题意得,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-12 2+2=1.答案:13.函数f (x )=(2x +2)2+x2-x的奇偶性为________. 解析:由2+x2-x ≥0,得函数f (x )=(2x +2)2+x2-x的定义域为[-2,2),不关于原点对称,所以函数f (x )为非奇非偶函数.答案:非奇非偶考点一 函数奇偶性的判断基础送分型考点——自主练透[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x; (4)f (x )=4-x2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x2|x +3|-3=4-x 2x +-3=4-x2x,∴f (-x )=-f (x ), ∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞), 关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性题点多变型考点——纵引横联[典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解] (1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f (0)=0,f (1)=1,f (2)=0,f (3)=f (-1)=-f (1)=-1.又∵f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0,∴f (0)+f (1)+f (2)+…+f (2 015)=0.[类题通法]1.判断函数周期性的2个方法 (1)定义法. (2)图象法.2.周期性3个常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f x,则T =2a ; (3)若f (x +a )=-1f x,则T =2a .(a >0)[越变越明][变式1] 若母题中条件变为“f (x +2)=-1f x”,求函数f (x )的最小正周期.解:∵对任意x ∈R ,都有f (x +2)=-1f x, ∴f (x +4)=f (x +2+2)=-1fx +=-1-1f x=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12) =…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4). 又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 故x ∈[2,4]时,f (x )=x 2-6x +8. [破译玄机]利用函数的周期性,求函数的解析式,应把问题转化为已知区间上的相应问题,即把区间[2,4]转化为[-2,0]上.考点三 函数性质的综合应用常考常新型考点——多角探明[命题分析]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合;(3)周期性与奇偶性结合; (4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.已知f (x )是R 上的偶函数,且当x >0时,f (x )=x 2-x -1,则当x <0时,f (x )=________.解析:∵f (x )是定义在R 上的偶函数, ∴当x <0时,-x >0.由已知f (-x )=(-x )2-(-x )-1=x 2+x -1=f (x ), ∴f (x )=x 2+x -1. 答案:x 2+x -1 2.设函数f (x )=x +x +a x为奇函数,则a =________. 解析:∵f (x )=x +x +ax为奇函数,∴f (1)+f (-1)=0, 即++a1+-1+-1+a-1=0,∴a =-1. 答案:-1角度二:单调性与奇偶性结合3.(2016·刑台摸底考试)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为________.解析:依题意得,f ′(x )>0,则f (x )是定义在(-1,1)上的奇函数、增函数.不等式f (1-a )+f (1-a 2)<0等价于f (1-a 2)<-f (1-a )=f (a -1),则-1<1-a 2<a -1<1,由此解得1<a < 2.答案:(1,2)角度三:周期性与奇偶性结合4.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为________.解析:∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1), ∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4. 答案:(-1,4)角度四:单调性、奇偶性与周期性结合5.已知函数f (x )是定义在R 上以5为周期的奇函数,若f (-1)>1,f (2 016)=a +3a -3,则a 的取值范围是________.解析:因为f (x )的周期为5, 所以f (2 016)=f (1), 又因为f (x )是奇函数, 所以f (-1)=-f (1), 即f (2 016)=-f (-1)<-1, 所以a +3a -3<-1,解得0<a <3. 答案:(0,3)[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快1.函数f (x )=1x-x 的图象关于________对称.解析:因为函数f (x )的定义域为(-∞,0)∪(0,+∞),且对定义域内每一个x ,都有f (-x )=-1x+x =-f (x ),所以函数f (x )是奇函数,其图象关于原点对称.答案:原点2.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y 轴对称;④没有一个函数既是奇函数又是偶函数.其中正确的结论是________(填序号).解析:函数y =1x 2是偶函数,但不与y 轴相交,故①错;函数y =1x是奇函数,但不过原点,故②错;由偶函数的性质,知③正确;函数f (x )=0既是奇函数又是偶函数,故④错.答案:③3.(2016·南通调研)设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=________.解析:因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.答案:124.设奇函数f (x )的定义域为[-6,6].若当x ∈[0,6]时,f (x )的图象如图所示,则不等式f (x )>0的解集是________.解析:奇函数的图象关于原点对称,作出函数f (x )在[-6,0]上的图象(图略),由图象,可知不等式f (x )>0的解集是[-6,-2)∪(0,2).答案:[-6,-2)∪(0,2)5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),。