红外谱图分析方法总结

合集下载

红外谱图峰位分析方法

红外谱图峰位分析方法

红外谱图分析(一)基团频率和特征吸收峰物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。

多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。

这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。

实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。

通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。

根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1氢键区2 500~2 000 cm-1产生吸收基团有O—H、C—H、N—H;叁键区2 000~1 500 cm-1C≡C、C≡N、C═C═C双键区1 500~1 000 cm-1C═C、C═O等单键区按吸收的特征,又可划分为官能团区和指纹区。

一、官能团区和指纹区红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。

4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。

由于基团的特征吸收峰一般位于高频围,并且在该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。

在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。

当分子结构稍有不同时,该区的吸收就有细微的差异。

这种情况就像每个人都有不同的指纹一样,因而称为指纹区。

指纹区对于区别结构类似的化合物很有帮助。

指纹区可分为两个波段(1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振动和C═S,S═O,P═O等双键的伸缩振动吸收。

(2)900~600 cm-1这一区域的吸收峰是很有用的。

如何解析红外光谱图

如何解析红外光谱图

碳氮伸展酰胺III,1400强峰显。胺尖常有干扰见,N-H伸展三千三, 叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。伸展弯曲互靠近,伯胺盐三千强峰 宽, 仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可 见。
硝基伸缩吸收大,相连基团可弄清。1350、1500,分为对称反对称。
6. 醚特征吸收:1300~1000cm-1 的伸缩振动,
脂肪醚:1150~1060cm-1 一个强的吸收峰
芳香醚:1270~1230cm-1(为Ar-O伸缩),1050~1000cm-1(为R-O伸
缩)
7.醛和酮:
醛的特征吸收:1750~1700cm-1(C=O伸缩),2820,2720cm-1(醛基C-
区 波数 域 (cm-1)
红外光谱的八个峰区
振动类 相关有机化合物中基团的

特征频率(cm-1)
O━H伸 缩 N━H 和 37500~ 3200(s,b) 酸 : 单体3560~
说明
无论单体还是缔 合体,νN━ 收都比νO━
O━H 伸缩 振动 区域
H伸缩)
脂肪酮:1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共
轭会使吸收频率降低
8.羧酸:羧酸二聚体:3300~2500cm-1 宽而强的O-H伸缩吸收
1720~1706cm-1 C=O伸缩吸收
1320~1210cm-1 C-O伸缩吸收 ,
920cm-1 成键的O-H键的面外弯曲振动
反式取代: 970~
=C━H 面 960(s)
外弯曲
同碳二取代:895~885
三取代: 840~
面内 弯曲 振动 区域

有机波谱学 红外光谱总结

有机波谱学 红外光谱总结

总结当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。

所以,红外红外光谱光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。

将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。

红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。

当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。

电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。

红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。

这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。

并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。

分子的振动形式可以分为两大类:伸缩振动和弯曲振动。

前者是指原子沿键轴方向的往复运动,振动过程中键长发生变化。

后者是指原子垂直于化学键方向的振动。

通常用不同的符号表示不同的振动形式,例如,伸缩振动可分为对称伸缩振动和反对称伸缩振动,分别用 Vs 和Vas 表示。

弯曲振动可分为面内弯曲振动(δ)和面外弯曲振动(γ)。

从理论上来说,每一个基本振动都能吸收与红外光谱仪其频率相同的红外光,在红外光谱图对应的位置上出现一个吸收峰。

实际上有一些振动分子没有偶极矩变化是红外非活性的;另外有一些振动的频率相同,发生简并;还有一些振动频率超出了仪器可以检测的范围,这些都使得实际红外谱图中的吸收峰数目大大低于理论值。

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读红外光谱图是一种常用的分析工具,可以帮助科学家们确定化合物的结构和功能。

通过分析红外光谱图,我们可以了解化合物中的官能团和化学键的存在与类型。

本文将详细介绍红外光谱图分析的步骤,帮助读者更好地理解和解读红外光谱图。

1.步骤一:获取红外光谱图在进行红外光谱图分析之前,首先需要获取待分析化合物的红外光谱图。

这可以通过红外光谱仪来实现。

红外光谱仪会向待分析样品中发射红外光,然后测量样品对不同波长光的吸收情况。

通过这个过程,我们可以得到一张红外光谱图。

2.步骤二:观察谱图的整体形态在获得红外光谱图后,我们首先要观察谱图的整体形态。

红外光谱图通常以波数为横坐标,吸收强度为纵坐标。

我们可以注意到谱图中的吸收峰和吸收带。

吸收峰通常表示特定官能团的存在,而吸收带则表示化学键的存在。

3.步骤三:确定吸收峰的位置接下来,我们需要确定红外光谱图中各个吸收峰的位置。

不同官能团和化学键在红外光谱图中有特定的吸收位置。

通过比对已知化合物的红外光谱图和待分析化合物的红外光谱图,我们可以初步确定各个吸收峰的位置。

4.步骤四:解读吸收峰的强度除了吸收峰的位置,吸收峰的强度也是红外光谱图分析的重要信息之一。

吸收峰的强度可以反映化合物中特定官能团或化学键的含量。

通过比较吸收峰的强度,我们可以推断化合物中不同官能团或化学键的相对含量。

5.步骤五:分析吸收带的形态除了吸收峰,红外光谱图中的吸收带也提供了重要的信息。

吸收带的形态可以帮助我们判断化学键的类型。

例如,C=O键通常表现为一个尖锐的吸收带,而-OH键则表现为一个宽而平坦的吸收带。

6.步骤六:结合上述信息解析化合物通过观察红外光谱图中吸收峰和吸收带的位置、强度和形态,我们可以逐步解析化合物的结构和功能。

我们可以根据已知的红外光谱图数据库,对比待分析化合物的红外光谱图,找到相似的谱图,从而确定化合物的结构和功能。

7.结论红外光谱图分析是一种重要的化学分析方法,可以帮助科学家们确定化合物的结构和功能。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外谱图如何解析

红外谱图如何解析

红外谱图如何解析(1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 其中:F:化合价为4价的原子个数(主要是C原子),T:化合价为3价的原子个数(主要是N原子),O:化合价为1价的原子个数(主要是H原子),F、T、O分别是英文4,3,1的首字母,这样我记起来就不会忘了。

比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度;(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200~2100 cm-1烯 1680~1640 cm-1芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区 ,以确定取代基个数和位置(顺反,邻、间、对);(4)碳骨架类型确定后,再依据其他官能团,如 C=O, O-H, C-N 等特征吸收来判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820 ,2720和1750~1700cm-1的三个峰,说明醛基的存在。

这是一个令人头疼的问题,有事没事就记一两个吧:1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1) C=C伸缩(1675~1640 cm-1)烯烃C-H面外弯曲振动(1000~675cm1)。

第六章 红外吸收光谱分析法

第六章 红外吸收光谱分析法

傅里叶变换红外光谱仪工作原理图
迈克尔干涉仪工作原理图
4. 色散型红外光谱仪主要部件
(1) 光源
能斯特灯:氧化锆、氧化钇和氧化钍烧结制成 的中空或实心圆棒,直径1-3 mm,长20-50mm; 室温下,非导体,使用前预热到800 C; 特点:发光强度大;寿命0.5-1年;
硅碳棒:两端粗,中间细;直径5 mm,长2050mm;不需预热;两端需用水冷却;
苯衍生物的C=C
苯衍生物在 1650 2000 cm-1 出现 C-H和C=C键的面内 变形振动的泛频吸收(强度弱),可用来判断取代基位置。
2000 1600
(3)C=O (1850 1600 cm-1 ) 碳氧双键的特征峰,强度大,峰尖锐。
饱和醛(酮)1740-1720 cm-1 ;强、尖;不饱和向低波移动;

O-H(氢键) S-H P-H CN
N-O N-N C-F C=N
N-H
C-H,N-H,O-H 3500 3000 2500 2000 1500 1000 指纹区 500
特征区
三、影响峰位变化的因素
化学键的振动频率不仅与其性质有关,还受分子的内部 结构和外部因素影响。相同基团的特征吸收并不总在一个固 定频率上。
—NH伸缩振动:
3500 3100 cm-1
(2)饱和碳原子上的—C—H
—CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动
3000 cm-1 以下
—CH2—
—C—H
2930 cm-1 反对称伸缩振动
2850 cm-1 2890 cm-1 对称伸缩振动 弱吸收
(3)不饱和碳原子上的=C—H( C—H )
化学键键强越强(即键的力常数K越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。

红外光谱总结

红外光谱总结

C-O-C 基团的不对称和对称伸缩振动;不对称伸缩振动的谱带强、宽且稳定,称为
酯谱带。特征:甲酸酯 1180cm-1,乙酸酯 1240cm-1,丙酸以上的酯 1190cm-1,甲酯 1165cm-1
5. 酰胺:
'.
.
酰胺的特征频率: 酰胺结构中既有羰基又有氨基。酰胺的特征频率主要是 ν(N-H)伸缩振 动:
红外光谱可以应用于化合物分子结构的测定、未知物鉴定以及混合物成分分析。
2.1 红外光谱的基本原理
2.1.1 红外吸收光谱
1. 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频
率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振
(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
(2)振动能级跃迁时,偶极矩的变化:根据量子理论,红外光谱的强度与分子振动时 偶极矩变化的平方成正比。同样,基频振动(v0→1),偶极矩的变化越大,吸收峰也越强。
(3)与振动形式有关:吸收峰强度:反对称伸缩振动>对称伸缩振动>>变形振动 (4)电子效应 诱导效应:通过影响化学键偶极矩的大小影响吸收强度 共轭效应:使π电子离域程度增大,极化程度增加,使不含饱和键的的伸缩振动强度增 加。 (5)氢键的影响:氢键作用会提高化学键的极化程度,伸缩振动吸收峰加宽、增强。. 红外吸收峰强度比紫外吸收峰小2~3个数量级; (6)振动耦合:使吸收增大。指分子内有近似相同振动频率且位于相邻部位的振动基 团产生两种以上的基团参加的混合振动。 (7)费米共振:使倍频或组频的吸收强度显著增加。指一个化学键的基频和它自己或 与之相连的另一化学键的某种振动的倍频或合频的偶合。
面内 OH
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外谱图分析方法总结
1. 简介
红外(Infrared)分析技术是一种非常重要的分析测试方法,它可以用来研究
物质的结构、组成、性质及相互作用等方面的信息。

红外谱图分析方法通过测量物质对红外辐射的吸收和散射,并结合相关的理论和数据库,得出样品的红外光谱图。

本文将总结常用的红外谱图分析方法。

2. 样品制备
在进行红外谱图分析之前,首先需要将待测的样品制备成适合红外光谱测量的
形式。

常见的样品制备方法包括固体试样法、液体试样法和气相试样法。

•固体试样法:将固体样品粉碎并与适量的无水氯化钾或氯化钠混合,制成样品块。

也可以使用压片法,将粉末样品压制成片。

•液体试样法:将液体样品滴在透明基片上,使其干燥后形成薄膜。

也可以将液体样品放入适合的红外吸收池中进行测量。

•气相试样法:将气体样品填充到气室中,通过红外吸收池进行测量。

3. 红外光谱测量仪器
进行红外谱图分析需要使用红外光谱测量仪器。

常见的红外光谱测量仪器有红
外光谱仪和红外光谱仪。

红外光谱仪主要由光源、干涉仪、样品室、探测器和数据采集系统等组成。


通过生成红外光源并使其通过样品,然后测量样品对不同波长的红外光的吸收情况。

常用的红外光谱仪有傅立叶红外光谱仪(FTIR)和分散式红外光谱仪。

红外光谱仪是一种通过获取光谱仪的光栅分散红外光的仪器。

它通过将红外光
分散为不同的波长,并通过探测器检测各个波长的红外光强度,得到红外光谱图。

4. 红外谱图解释
红外谱图是指样品在红外区域内的吸收峰和吸收强度的图谱。

通过研究红外谱图,可以得到样品的结构和组成等信息。

红外谱图的解释可以从以下几个方面进行:
•吸收峰的位置:吸收峰的位置与样品中存在的化学键相关。

不同化学键对应着不同波数的吸收峰。

•吸收峰的强度:吸收峰的强度与样品中某种化学键的含量相关。

吸收峰的强度越高,表示样品中该化学键的含量越多。

•布拉格方程:通过使用布拉格方程可以计算吸收峰的波数。

•参考谱库:借助谱库中的红外光谱标准数据,可以将待测样品的红外光谱与已知物质进行比对和鉴定。

5. 红外谱图分析方法
红外谱图分析方法可分为定性分析和定量分析。

5.1 定性分析
定性分析主要通过对红外谱图中的吸收峰位置和形状进行解释和比较,识别样
品中存在的化学键和官能团。

常用的定性分析方法包括:
•主峰法:根据红外谱图中吸收峰的位置、形状和强度,确定样品中的主要化学键,并参考谱库进行比对和鉴定。

•差傅里叶变换(Different Fourier Transform,DFT)法:对红外谱图进行傅里叶变换,得到样品的核磁共振谱。

利用核磁共振谱进行鉴定。

5.2 定量分析
定量分析主要通过测量红外谱图中吸收峰的强度或面积,来计算样品中某种化
学键或官能团的含量。

常用的定量分析方法包括:
•直接读数法:通过测量吸收峰的吸光度或吸收面积,根据标准曲线得到样品中某种化学键的含量。

•峰高法:通过测量吸收峰的峰高和吸收光程来计算含量。

•峰面积法:通过测量吸收峰的峰面积,根据标准曲线得到样品中某种化学键的含量。

6. 结论
红外谱图分析方法是一种非常重要的分析测试方法,它可以研究物质的结构、
组成、性质及相互作用等方面的信息。

在红外谱图分析过程中,需要进行样品制备、使用红外光谱测量仪器进行测量,然后对红外谱图进行解释和分析。

常见的红外谱图分析方法包括定性分析和定量分析。

定性分析通过解读红外谱图中的吸收峰位置和形状来识别样品中存在的化学键和官能团。

定量分析通过测量吸收峰的强度或面积来计算样品中某种化学键或官能团的含量。

注意:本文讨论的红外谱图分析方法仅作为参考,具体实验和分析方法应根据具体问题和需
求进行选择和设计。

相关文档
最新文档