旅客列车平稳操纵

合集下载

HXD3C型机车牵引旅客列车平稳操纵的方法

HXD3C型机车牵引旅客列车平稳操纵的方法

压力缓 解 到零 , 待列 车 已有 运行Байду номын сангаас趋 势 或 略 有 前移 后
再 提 主手 柄 至 “ ” 位 。制 动 缸 压 力 缓 解 到零 可 以
使 机车 和 车辆 的车 钩缓 冲装 置处 在 自由 压缩 、 伸 张
状态 , 启 动时车 钩缓 冲装 置 可 以很 好 地 吸 收 机 车 和
大, 减少 列 车 的冲动 。如有 必要 , 停 车 时可 以采用 带 电制动 的方 法 , 使 列 车 在 停 车 后 车 钩始 终 处 于 牵 引
状态。
动 时减 掉 1 / 3的牵 引力 ; 如线 路为 平直 道 , 启 车前 切 除 3 个 电机 , 启 动 时减掉 1 / 2的牵 引力 , 列车 启动 后 在 主手 柄牵 引状 态 下逐 个 恢 复 甩 除 电机 , 以保 证 列 车启动 平稳 。 ( 2 ) 采 取 主手柄 和 制 动手 柄 相 配合 的方 法启 动
逐 步上 升 , 列 车 始终呈 牵 引状态 。 1 . 3 下 坡 道 启 动 列 车 的 方 法
H X D 型机 车牵 引旅 客列 车平 稳操 纵 方 法 进行 了系 统研究 并 在车 间推 广应 用 , 取 得 了 良好 的效 果 。
在 下坡 道启 动列 车时 , 应采用“ 先 缓 后提 ” 的操 纵方法 。先 将单 独 制 动 阀置 于运 转 位 , 机 车 制 动缸
轨 道 交 通装 备 与技 术 第 6期 2 0 1 4年 1 1月
2 列 车 运 行 中 的操 纵
车辆 之 间产生 的作用 力 。 1 . 4 其 他 启 动 列 车 的 方 法
状态 , 确 保列 车启 动时 机车 与车辆 间 不产 生冲 动 。

机车高坡地段牵引旅客列车平稳操纵办法

机车高坡地段牵引旅客列车平稳操纵办法

机车高坡地段牵引旅客列车平稳操纵办法引言:XXX线最大坡道18‰,使用HXD3C型大功率电力机车牵引。

宜万线开通初期,旅客列车平稳操纵屡受部、局领导批评。

2011年5月初,成立攻关小组,对大功率机车高坡地段平稳操纵进行攻关。

经过反复验证,最终确定了大功率机车高坡地段平稳操纵办法。

该办法在宜万线推广后,取得了较好效果,受到了路局领导好评。

旅客列车平稳操纵基本原则:1.尽可能保持全列车钩处于一种状态(伸张或压缩)。

2.避免或减少牵引~制动间的频繁转换。

3.牵引力或制动力的上升与下降必须平滑。

4.列车在变坡点禁止进行空气制动和机车工况转换。

5.站内停车必须稳准停妥。

一、列车起动1.列车起动方法⑴平道起车法开车前先缓解列车空气制动,保持机车制动缸压力300KPa;将调速手柄置“*”位,牵引力保持14KN;机车制动缸压力缓解至200KPa,停顿2秒再缓慢缓解至零;列车平稳起动。

⑵坡道(大于1.0‰)起车法先将调速手柄置“*”位,保持牵引力为14KN;逐步缓解小闸,待机车与第一位车辆之间车钩伸张后再缓解大闸,使列车平稳起动。

2.全列起动后逐步提手柄至所需级位,使牵引力平滑上升,列车均匀加速。

3.通过侧向道岔时,机车保持一定的牵引力,使列车匀速通过道岔,注意不得超过道岔侧向限制速度。

4.全列车通过道岔后,逐步提手柄,保持牵引力逐步上升,迅速使列车达到运行图规定的速度,确保列车正点运行。

二、途中运行1.途中调速⑴空电配合调速法列车在长大下坡道调速时采用空电配合调速法。

保持机车电制动力,大闸实施初减。

车体稳定后,根据速度要求,适量追加减压,列车速度下降至所需速度后,缓解大闸,保持电制动,使车钩始终保持压缩状态,根据前方线路纵断面和列车运行速度情况适当调整电制动力。

⑵牵引辅助制动调速法列车在牵引状态下调速时,采取牵引辅助制动法调速。

①制动前,机车单电机牵引力控制在5~10KN,使列车车钩全部拉伸。

②采用早减压、少减压的方法进行制动调速,机车呈缓解状态。

平稳操纵七必须、七不准要求

平稳操纵七必须、七不准要求

一、平稳操纵七必须、七不准要求(一)、七必须:1、列车起动时,必须小电流起动全列后再加速。

2、起伏坡道运行时,必须保持车钩处于伸张状态。

3、长大下坡道运行时,必须动力制动与空气制动配合使用。

4、缓解制动时,必须先缓解空气制动后解除动力制动。

5、爬坡运行时,必须根据牵引吨数点式撒砂。

6、重联牵引时降速,必须重联机车先断电。

7、特快及重点列车,必须实行带载下闸。

(二)、七不准:1、列车有速度时,不准使用单阀制动。

2、自阀减压排风未止,不准追加减压(特殊情况除外)。

3、累计追加减压量不准超过初次减压量(特殊情况除外)。

4、坡道运行时,不准机车接近上坡道后才加载。

5、双机牵引时,不准重联转速高于本务机车。

6、列车速度低于100Km/h,初减不准超过100Kpa(特殊情况除外)。

7、带载下闸时,转速不准低于550转/分,做到停车后断电。

二、关于七必须、七不准解释(一)、七必须:1、列车起动时,必须小电流起动全列后再加速。

解释:在列车进行制动机试验后,将列车呈制动状态,单阀缓解机车制动,提手柄1位,将机车与车辆车钩拉伸后单阀制动,等待发车。

发车时,将手柄提1位,缓解列车制动,使列车缓慢起动,根据牵引辆数确认全列车钩拉伸后在逐渐加速。

侧向进出站时应尽量把速度控制在低于道岔限速10Km/h以下,待全列出站后立即加速,使列车速度尽快达到理想速度运行。

2、起伏坡道运行时,必须保持车钩处于伸张状态。

解释:线路坡道分为“凹形”和“凸形”两种,在“凹形”坡道运行时,列车进入变坡点时不断电,仍处于牵引状态,必要时牵引力还应适当加大,这样能够克服列车整列进入下坡道后,后部车辆受惯性和坡道的影响向前冲击,适当增加牵引力后,使列车始终处于牵引状态,这时乘务员要判明列车运行到坡底时能否超过线路限速,如需要调速时,要避开坡底,提早进行,当机车距坡底约300米左右,开始增加机车牵引力,因坡底是产生列车冲动最危险处所。

在“凸形”坡道运行时,列车在接近坡顶时,应减小机车的牵引力,但不许断电,应保持车钩处于拉伸状态即可,根据列车的长度,当列车1/3越过坡顶时,增加机车的牵引力。

旅客列车平稳操纵浅探

旅客列车平稳操纵浅探
适 的空气 制动 的初制 动时机 , 时候减压 过早 , 有 为确
= 22 N( 中 : : 车起 动 阻力 , 机 车 质 量 , 4 .k 式 耽 列 P: W 机 车单 位起 动基 本 阻 力 , : 动 地点 的加 算 坡 : i起
保旅客乘降及货物的装卸, 不得再次缓解 , 低速缓解
正点、 平稳 操 纵” 的要 求 , 必 要 对 引起旅 客 列 车 冲 有 动 的原 因进行 分析 , 而提 出强化 旅 客列 车 平 稳 运 进 行 的应对 措施 。
列车 的平稳运行是通过司乘 人员操纵来完成
1 引起旅客列车冲动的原 因分析
目前在 我 国铁 路运 营线 上 的旅 客列车 主要采 用 1 5型车钩 , 在 高 速旅 客 列 车 上 采 用 密 接 式 车 钩 。 仅
的, 在操 纵 中应 根据 牵 引 旅 客列 车 的辆 数 、 量 、 质 线 路选 择 合适 的工况 及 手柄 位 置 或 制 动 时 的减 压量 , 如果 选 择不 当会 因为操 纵 产生人 为 的冲动 源 。
在列车运行 中, 由于牵引、 惰行 、 制动等工况及线路 纵断 面的变 化 , 会引起 列车 纵 向运 动 的变化 , 成 均 造

要: 引起旅 客列车产生冲动 , 主要有线路 纵断面 自然形成 及司乘 人员操纵 不当或不精 心等原 因 , 车 的纵向 使列
力大于列 车连 接的车钩缓 冲器被完全压缩或伸 张 , 生刚性 冲动传递 引起列车 冲动。在分析 冲动原 因的基础 上提 产
出了在起 伏坡道及 小坡道上小牵 引力运行 , 改变工况时“ 等流牵引( 动力 制动) 的操 纵方法 , ” 对进站 时做 到“ 一次停 妥、 按标停车”, 以牵引计算为依据提供 了制动距离的参考值 。

[列车平稳操纵方法初探]火车的制动和缓解

[列车平稳操纵方法初探]火车的制动和缓解

[列车平稳操纵方法初探]火车的制动和缓解列车平稳操纵方法初探摘要:机车平稳操纵不仅是铁路运输安全行车的需要,也是“人民铁路为人民”体现机务部门优质服务,文明待客的窗口。

使每一位旅客都有宾至如归的感觉,安全、正点、平稳、舒适的到达目的地,是机车乘务员职业素质、业务技能水平的综合体现。

列车起动、运行、调速、停车的过程中,往往受一些主客观因素的影响产生不当的列车冲动从而影响列车的平稳操纵,本文就如何使列车平稳操纵进行简要的分析。

关键词:列车;操纵;平稳长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也进行一定程度上的探索,但因缺乏对机车、车辆的构造性能和牵引理论的了解,很大程度上制约了机车乘务员操纵水平的提高。

采用正确的额电力机车旅客操纵方法,将会在实际工作中起到决定性作用。

搞好电力机车旅客列车平稳操纵工作,将具有重要历史意义。

1历史意义1.1旅客列车的平稳操纵工作,是铁路适应市场经济的,关系到铁路在运输市场中的地位和铁路运输的经济效益。

1.2平稳操纵工作是铁路机务系统在服务质量上的具体表现,它直接反映出机务部门的工作水平和服务质量,若稍有失误必将影响铁路声誉。

1.3平稳操纵工作是机务段在管理水平、职工素质、机车质量等总体工作的体现。

平稳操纵工作不是一项单一的工作,对于机务段来讲反映的是综合水平,它涉及到机务段管理的方方面面,如平稳操纵的管理体制制度、职工平稳操纵的意识和平稳操纵的技术业务水平、机车设备的质量等等。

所以做好平稳操纵工作要综合各方面的因素,建立一整套平稳操纵的管理方法和管理模式,使其日常化、规范化、制度化。

列车在各种工况下,主要受作用于列车上与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力。

从车辆动力学上讲,只要车辆与车辆间隙不发生变化,均不会造成车辆的冲动。

但在实际的列车操作中,由于车钩的经常伸张或压缩状态,使列车产生冲动,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因。

电力机车牵引旅客列车的平稳操纵法_电力机车如何平稳过分相

电力机车牵引旅客列车的平稳操纵法_电力机车如何平稳过分相

电力机车牵引旅客列车的平稳操纵法_电力机车如何平稳过分相通过此论文,我总结我多年的行车经验结合实际,能够提高机车乘务员的自身操纵技能,而且为旅客列车平操工作提供了可供了可借鉴的经验,为司机树立了良好的形象,更为提高运输服务质量奠定了基础。

电力机车牵引旅客列车的平稳操纵法一、旅客列车平稳操纵的意义随着市场经济的快速发展,运输市场竟争日趋激烈,铁路本身如何适应市场参与竟争必将成为今后工作的重点。

旅客列车是铁路对外经营的一个窗口,而我们机车乘务员操纵水平的高低直接影响到铁路的声誉和效益。

二、影响平稳操纵的各种因素(1)、天气对平稳操纵的影晌雨、雪、霜、雾天气对平稳操纵的影响主要是空转。

空转发生时牵引力突然下降,原来列车在牵引时车钩在伸张状态,牵引力的突然消失会使车钩在拉伸状态时级冲器压缩的弹性势能释放,同时在列车基本阻力的作用下使机车减速快,但后部车辆降速慢,这样车辆与机车就产生了相对运动,形成了车辆对机车的撞击,造成了冲动。

消除空转后再加人牵引力,车钩由压缩状态又突然转变为伸张状态,车辆与机车产生相对运动,再次造成冲动。

(2)、线路情况对平稳操纵的影响1、平道平道是对平稳操纵最有利的线路。

在平道上列车所受到的力只有列车基本阻力。

影响平稳操纵的情况主要有空转、牵引力加人和退出时太快等,当牵引力加人太快时,因为在惰力运行时是客车车辆推着机车前进,车钩处于压缩状态,当机车主手柄提升太快时功率上升快,产生的合力也大,在较大的合力作用下机车产生的加速度也大,机车相对于车辆出现速度差,使后部车厢的乘客感觉后仰。

牵引力退出时机车主手柄如果由高位急剧回零,功率突然失去,这时的们况与空转相同,使后部车厢的乘客感觉前倾。

2、坡道列车运行在坡度不发生变化的坡道上的结果和平道相同。

但是铁路线路是由平道、上坡道、下坡道构成,且纵断面基本上随地形变化,没有一定规律可循,因此就出现了平道转坡道,坡道转平道,上坡道转下坡道,下坡道转上坡道等不同情况。

HXDB型旅客列车安全平稳操纵办法

HXDB型旅客列车安全平稳操纵办法
14
内容
1 2 3 4 5
15
旅客列车平稳操纵的原则 开车前的准备 列车起车
途中运行
列车进站停车
4
途中运行
1、由于HXD1B机车在使用定速键功能会造成机 车自动产生电阻制动的现象,所以在用HXD1B 机车牵引旅客列车的时候,将定速键设定为列车 限速,以防列车超速之用,在此基础上通过调节 手柄的级位来控制列车的速度,不得通过定速 产生电阻制动功能。
大闸减压同 时小闸缓解
向右
20
4
途中运行
6、过分相的操作。过分相前列车车辆呈拉伸状态,回手柄过快易产生较大冲动, 所以应适当早回手柄,缓慢进行,待手柄级位在25KN停留后片刻后再回完。由 于HXD1B机车在使用自动过分相功能会造成机车自动产生电阻制动的现象发生, 所以在用HXD1B机车牵引旅客列车过分相时采取人工的方式早断闸、晚合闸的 方法通过分相,避免自动过分相功能产生作用,合闸后手柄置于25KN停留片刻 后再平滑提高至目标级位。
武汉铁路局江岸机务段
HXD1B型机车牵引旅客列车
操纵办法
北线运用车间QC小组
二零一六年四月
内容
1 2 3 4 5
2
旅客列车平稳操纵的原则 开车前的准备
列车起车
途中运行
列车进站停车
1
旅客列车平稳操纵 的原则:
一稳
二快 三匀 四少 五准
HXD1B电力机车牵引旅客列车应遵守“一稳、二快、 三匀、四少、五准”的操纵原则,定速按钮原则上 用于控制列车限制速度,原则上通过人工早断晚合 方式通过分相区,避免使用自动过分相功能,确保 旅客列车安全、正点、平稳、舒适。
开车前的准备
2、了解列车编组情况,将列车长度换算成米,以作为站内停车是否过 标的依据

旅客列车平稳操纵资料

旅客列车平稳操纵资料

旅客列车平稳操纵前言随着市场经济的快速发展,运输市场的竞争也更加激烈,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,旅客列车是铁路运输行业的窗口,现形势下,旅客列车的含义不仅仅是是把旅客运到目的地,更重要的是要体现“安全,正点,平稳”,以优质的服务赢得市场,而作为机务部门,是旅客列车运输完成的主要部门,旅客列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路上的声誉,所以,提高旅客列车的操纵质量,就显得更加必须和重要。

长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也可能进行一定程度上的探索,但因为缺乏理论性,规范化,系统化,从很大程度上制约了机车乘务员操纵水平的提高。

结合本人多年操纵列车的实际经验,加上对牵引计算详细深入的学习,分析,现对旅客列车的平稳操纵做部分技术说明,主要说明平稳操纵及制动调速停车两大内容,顺便简单介绍列车运行时刻,线路平面纵断面的分析利用,希望对大部分机车乘务员的技术水平的提高能有所帮助。

一、平稳操纵平稳操纵是体现旅客列车操纵技术的一项很重要的内容,在说明中,将按照列车运行中的各种工况,从力学和列车运动方程式的角度进行说明。

由《牵引计算规程》(TB/T-1407-98)可知,列车在各种工况下,包括起动,加速,牵引运行,惰力运行,制动,调速,停车,主要受作用于列车上的与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力,从车辆运动力学上讲,只要车钩间隙不发生变化,无论是伸张还是压缩状态,均不会造成车辆的冲动,但在列车不同的运行工况中,这三种力或其中的一种或两种力可能同时或分别作用于列车上,这种力的作用结果就是造成了车钩间隙的变化,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因,平稳操纵的目的,就是尽量的减少或消除这种间隙的变化。

1、列车起动阶段;列车起动时,受两种力的作用,牵引力和运行阻力,其中,运行阻力主要是机车车辆上轴承轴颈的摩擦力,在坡道上起动时,还受列车本身重力的分力,也就是坡道附加阻力的作用,解决了这两种力的关系,也就解决了列车启动时的冲动列车缓解后,整个列车的车钩处于自由伸张状态,由于列车长度的原因,或处于不同的线路纵断面上,各车钩的自由状态不一致,列车在起动时,牵引力是由前部车辆依此向后传递,这就造成了各车辆车钩间隙不一致,受力也不一致,于是,冲动就产生了,理想状态是全列车各车钩都处于同样的伸张状态,并且,起动时要给于尽量小的牵引力,以减少车辆由静态转变为动态的刚性冲动,但是,由于机车本身的构造决定了其牵引力只能限制在某一个程度,尽管某些机车在手柄一位起动时还增加了微机限功功能,但在实际现场工作中,牵引力与车钩间隙变化的要求还是不匹配,结合实际工作经验,说明在以下两种情况下启动列车的方法,事实说明,这两种方法可有效的减少或消除不同线路上列车启动时的冲动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旅客列车平稳操纵列车平稳操纵前言随着市场经济的快速发展,运输市场的竞争也更加激烈,作为铁路运输企业必须尽快的适应市场经济发展的速度,这就要求铁路行业必须以更加优异的服务进入市场,争取市场,旅客列车是铁路运输行业的窗口,现形势下,旅客列车的含义不仅仅是是把旅客运到目的地,更重要的是要体现“安全,正点,平稳”,以优质的服务赢得市场,而作为机务部门,是旅客列车运输完成的主要部门,旅客列车的平稳操纵,不仅直接反映机务系统的形象,更影响到铁路上的声誉,所以,提高旅客列车的操纵质量,就显得更加必须和重要。

长期以来,机车乘务员的列车操纵技能,多源于师傅的言传身教,虽然也可能进行一定程度上的探索,但因为缺乏理论性,规范化,系统化,从很大程度上制约了机车乘务员操纵水平的提高。

结合本人多年操纵列车的实际经验,加上对牵引计算详细深入的学习,分析,现对旅客列车的平稳操纵做部分技术说明,主要说明平稳操纵及制动调速停车两大内容,顺便简单介绍列车运行时刻,线路平面纵断面的分析利用,希望对大部分机车乘务员的技术水平的提高能有所帮助。

一、平稳操纵平稳操纵是体现旅客列车操纵技术的一项很重要的内容,在说明中,将按照列车运行中的各种工况,从力学和列车运动方程式的角度进行说明。

由《牵引计算规程》(TB/T-1407-98)可知,列车在各种工况下,包括起动,加速,牵引运行,惰力运行,制动,调速,停车,主要受作用于列车上的与列车运行方向水平的三种力的作用,即:牵引力,运行阻力,制动力,从车辆运动力学上讲,只要车钩间隙不发生变化,无论是伸张还是压缩状态,均不会造成车辆的冲动,但在列车不同的运行工况中,这三种力或其中的一种或两种力可能同时或分别作用于列车上,这种力的作用结果就是造成了车钩间隙的变化,所以,车钩间隙的变化就是造成列车冲动最根本最直接的原因,平稳操纵的目的,就是尽量的减少或消除这种间隙的变化。

1、列车起动阶段;列车起动时,受两种力的作用,牵引力和运行阻力,其中,运行阻力主要是机车车辆上轴承轴颈的摩擦力,在坡道上起动时,还受列车本身重力的分力,也就是坡道附加阻力的作用,解决了这两种力的关系,也就解决了列车启动时的冲动列车缓解后,整个列车的车钩处于自由伸张状态,由于列车长度的原因,或处于不同的线路纵断面上,各车钩的自由状态不一致,列车在起动时,牵引力是由前部车辆依此向后传递,这就造成了各车辆车钩间隙不一致,受力也不一致,于是,冲动就产生了,理想状态是全列车各车钩都处于同样的伸张状态,并且,起动时要给于尽量小的牵引力,以减少车辆由静态转变为动态的刚性冲动,但是,由于机车本身的构造决定了其牵引力只能限制在某一个程度,尽管某些机车在手柄一位起动时还增加了微机限功功能,但在实际现场工作中,牵引力与车钩间隙变化的要求还是不匹配,结合实际工作经验,说明在以下两种情况下启动列车的方法,事实说明,这两种方法可有效的减少或消除不同线路上列车启动时的冲动。

(1)上坡道起动:上坡道起动时,列车缓解,机车制动,此时,受坡道附加阻力(与运行方向相反)的作用,全列车的车钩均处于伸张状态,对平稳起动有利,但必须注意的是起动时,必须先提手柄,使机车处于牵引状态方可缓解机车制动,以免先缓解机车制动而牵引力还未形成造成机车瞬间向后溜逸。

(2)平道,下坡道,或锅底型线路上的起动:列车缓解后,由于各车辆处于不同的线路纵断面,或受坡道附加阻力(与运行方向相同)的作用,各车钩状态不一致有的压缩有的伸张,比较复杂,这种情况对平稳起动是最为不利的,为解决这个问题,现在有两种观点,一是起动前抻钩,即缓解单阀,自阀制动,提一位手柄走车,目的是拉开车钩,但在实际试验中,结果是仅仅能拉开机车与第一辆车的车钩,使其处于伸张状态,后部车辆的车钩还是处于原来的状态,起动是后部车辆还是会产生冲动,这种方法不理想,还有一种就是起动时缓解单阀,待牵引力产生后再缓解自阀,以求在全列车车钩在缓解的瞬间加入牵引力,使车钩伸张,但在实际试验中,很难做到车钩在缓解时牵引力同时加入,也就是说,牵引力与车钩状态变化不能同步,所以,这种方法很难掌握,综合上述情况可知,在以上线路情况下起动时,车钩状态的变化是很难避免的,唯一的方法就是尽量减少机车的牵引力,使车钩状态的变化减慢,车钩间隙的变化减小,才能尽可能的减少冲动,结合实际,具体的做法就是,缓解后,单阀制动,使机车制动缸保持一定的压力,一般为30---50kpa,然后提手柄加载,提一位,使列车以尽量慢的速度起动,运行一段距离后(2---5米)再缓解机车制动,恢复正常运行。

2、起动后的加速阶段:在这个阶段,列车的牵引力迅速的增加,车辆的阻力由轴承轴颈的摩擦力逐渐转变为轮轨间的滚动或滑动阻力,以及振动形成的冲击力,此时,冲动产生的主要原因就是空转的发生,我们知道,牵引力大于轮轨间的粘着力时,就有可能产生空转,粘着条件被破坏的原因通常有两个,一是轮轨间摩擦力的突然减小,二是牵引力的突然加大。

(1)轮轨摩擦力的减小,常见的原因就是,轨面上有油,水,树叶或在降雾降雨的天气下,轨面上有大量较厚的铁锈时,通过道岔时,上述情况均会使车轮踏面与轨面的滚动摩擦变为滑动摩擦,造成粘着系数下降。

(2)牵引力突然加大,原因就是提手柄太快,使牵引力急剧上升。

由上可知,再加速过程中,内燃机车提手柄或电力机车进级,均应逐位进行,不能太快,无级调速内燃机车,提手柄一般以每次20转/分钟为宜,无论无级调速还是有级调速,都必须待柴油机转速平稳后方可提下一次,在全列车越过道岔前,一般掌握牵引电流不超过,DF4型--3000A,DF4D型--4000A,DF11型--5000A。

如轨面不清洁,有油,水,锈,或天气不良,以及通过侧向道岔,可提前撒砂(采用线式撒砂)或适当回手柄,防止空转的发生,减少列车的冲动。

3、牵引运行阶段:牵引运行时,列车所受的力主要为牵引力和轮轨间的滚动或滑动阻力,以及振动形成的冲击力,除高速列车外,一般不考虑空气阻力的问题,当列车在同样的线路纵断面上运行时,牵引力与运行阻力相对平衡,全列车的车钩处于伸张状态,一般不会产生冲动,但铁路的线路是由平道,上坡道,下坡道等不同的纵断面形成的,当列车由平道转入坡道,或坡道转入平道,或坡道转入另外一个坡道时,这种平衡关系将被破坏,就会产生冲动,(1)由平道转上坡道,或下坡道转平道、上坡道,由于机车的单位基本阻力大于车辆的单位基本阻力,或由于与列车运行方向相反的坡道附加阻力的原因,会造成机车运行阻力大于车辆运行阻力,使全列车的车钩由前向后逐渐压缩,形成较大的冲动,解决的方法就是,在进入上坡道时,特别是运行在锅底型的线路上,适当的提手柄,加大机车的牵引力,使全列车的车钩始终处于拉伸状态,就可有效的减少这种冲动。

(2)由平道转下坡道,或上坡道转下坡道(鱼背型线路)、平道,坡道附加阻力方向与运行方向一致,起的是牵引力的作用,列车车钩的相对静止状态也被破坏,也会形成刚性冲动,解决方法就是,在上述线路运行时,可适当减少机车牵引力,保持原来的平衡关系,也就避免了冲动的发生。

另外,如需要进行牵引力的变化,提回手柄应尽量缓慢进行,尤其是由牵引运行转惰力运行,不能将手柄直接回零,应先回至一位,待柴油机下降到最低转速且转速平稳后方可回零。

4、惰力运行阶段:此时,列车受的力主要为运行基本阻力或附加阻力,机车车辆的车钩随阻力的变化而变化,可能伸张也可能压缩,或有的伸张有的压缩,解决办法就是不要完全的解除机车的牵引力,应以较小的牵引力运行,当然,要考虑到此牵引力不能使列车速度超过线路限制速度或要求的运行速度。

5、调速:调速有两种方法,一是手柄调速,一是制动调速,(1)手柄调速,在运行速度与要求的速度相差不是很大且能满足列车运行时刻的前提下,应选择手柄调速,适当回手柄,根据具体情况减少或解除机车牵引力,使列车运行速度缓慢下降至低于要求的速度,尽量不采用制动调速,可有效的减少冲动。

(2)制动调速,根据实际情况,制动调速有两种方式,一是空气制动调速,一是电阻制动调速,在此主要讲电阻制动,在停车时再讲空气制动,电阻制动的原理是将列车运行的动能通过牵引电机转变为电能,再由电阻转变为热能,使列车惰力运行状况下的动能减少,达到维持或降低运行速度的目的,在这个制动过程中,只有机车能起制动作用,车辆是没有制动作用的,这就造成了机车在制动时,后部车辆在惯性作用下,由后向前压缩车钩,形成冲动,车辆越靠前,冲动越大,所以,非必要的时候,应尽量不要要使用电阻制动,如必须使用,应适当的掌握制动电流,使其由小向大缓慢的,逐渐的增加,以减缓车钩的压缩过程,减少冲动,经验数据如下:DF4D型----一位,150A 二位,220A500-550转/分钟,300A DF11型----二位,230A牵引16辆及其以内,在3%。

的下坡道上,维持原有速度需制动电流150A牵引16辆及其以内,在4-5%。

下坡道上,维持原有速度需制动电流200A 牵引16辆至19辆,在3%。

的下坡道上,维持原有速度需制动电流230A 牵引16辆至19辆,在4-5%的下坡道上,维持原有速度需制动电流320A6、制动,停车:使用空气制动进行制动调速或停车,是最容易产生冲动的情况,也是平稳操纵要掌握的主要内容,在列车进行制动时,在制动的初期并不是全列车同时产生制动作用,而是由前向后逐辆的从开始制动到产生与减压量相对应的制动力尤其是机车,机车制动缸的压力空气来源于总风缸,上闸快,也就造成了全列车由前向后依此制动,全列车的车钩由前向后依此压缩,后部车辆,还未产生制动作用的或未产生足够制动作用的车辆向前压缩前部车辆的车钩,造成较大的冲动。

解决这种冲动,一是列车制动的一致性要求比较好,二是在制动时,尽量使全列车的车钩处于拉伸状态,三是要尽量小的制动力。

实施制动前20-30秒,先提手柄1-2位,以较小的牵引力,使全列车的车钩在拉伸状态,自阀减压前,先推单阀,使机车工作风缸压力下降到530-550KPA左右,以保证在自阀实行制动后机车不上闸,自阀减压50KPA,排风停止后,经过5秒左右再将主手柄回零位。

制动停车是产生冲动的最主要的环节,由运动中的列车到完全停止,在这个过程中,不仅因制动时机车与列车制动力不协调,或前部车辆制动与后部车辆制动不一致造成冲动,并且,如果减压量比较大,还会造成较大的减速度,在低速或接近停车时,车辆闸瓦摩擦系数急剧加大,尽管没有明显的冲动,但却由于减速度过大,不能做到平稳,解决办法就是,在制动停车前,要准确的掌握减压量和制动距离,避免因初减不足或制动距离太短,造成制动后期大量追加。

特别要指出的是,如果需要在短时间内进行两次或多次制动,例如站外制动调速,站内制动停车,一定要注意两次制动间隔的时间,既保证首次制动缓解后到第二次或到下次制动,必须留有充分的充风时间,通常,确定列车是否充满风有三种方法,一是看机车总风缸压力表是否下降,二是计算充风时间,三是计算在某个速度点下充满风列车所要运行的距离,在正常运行中,建议采用第三种方法来确定充风。

相关文档
最新文档