复合材料细观力学基础讲义共73页

合集下载

第6章 复合材料细观力学PPT

第6章  复合材料细观力学PPT

物理关系
G , G , G Ⅱ
12
12 12 f 12
f 12 f m12
m12 m
于是
GⅡ 12
Gf
f
Gm m
6.3.3 植村-山胁的经验公式
E1 EⅠ1 E1Ⅱ
E2 (1 c)EⅠ2 cEⅡ2
1 (1 c)Ⅰ1 c1Ⅱ
2
E2 E1
1
G12 (1 c)GⅠ12 cG1Ⅱ2
(3)泊松比
I 1
,
I 2
当正轴σ1方向受力作用时,纵向泊 松比的定义为
I 1
2 1
单元的横向变形量Δb为 b b 2 b1I 1
从细观来看,单元的横向变形量应等于纤维与基 体的横向变形量之和,即
bbf 2 bm2 bff 2 bmm2 bfff1bmmm1
3
因为
1 f 1 m1
所以
E f 1 Em f 3(1 f )
(拉压 型)
Xc
Gm 1 f
(剪切 型)
7
练习题
• 用材料力学方法证明单向纤维复合材料中纤维所承受
载荷Pf与纵向总裁荷P之比为
Pf 1/(1 Em m )
P
Ef f
• 已知某纤维Xft=2000MPa,Ef1=90GPa,基体树脂 Xmt=220MPa,Em=3.5GPa.若基体的延伸率大于纤维,试 求由以上基体和纤维制得的复合材料单向板的临界纤
X ft
X mt
X ft
Em Ef1
vfmin称为纤维控制的最小体积含量
6.4.2 纵向压缩强度Xc
拉压型微屈曲引起破坏的纵向压缩强度
X c 2 f
E f Em f 3(1 f )

复合材料力学-PPT课件

复合材料力学-PPT课件

第3页/共18页
第 4 页 总 18 页
研究方法
如何将多夹杂问题转化为单夹杂问题进行求解是细观 力学的核心问题。对这个问题求解作不同的假设形成了许 多细观力学的近似方法。
成熟的细观力学方法
1、稀疏方法; 2、Mori-Tanaka法(背应力法); 3、自洽法(自相似理论); 4、广义自洽法; 5、Eshelby等效夹杂理论; 6、微分法; 7、Hashin变分原理求解上下限方法
第17页/共18页
第 18 页 总 18 页
感谢您的观看。
18
第18页/共18页
第1页/共18页
第 2 页 总 18 页
第2页/共18页
第 3 页 总 18 页
引言
建立复合材料的宏观性质与相材料微结构参数的关系是实现复合材 料设计乃至进一步优化的关键。细观力学的重要任务就是根据复合材料 的组成与内部细观结构预测复合材料的宏观性能。近年米,由于计算机 性能的快速提高。可以方便地进行高性能计算,满足细观力学精细网格 和大量运算的要求。应用细观尺度的有限元网格模拟宏观材料微结构组 成,为建立细观力学和宏观材料之间的联系提供了一条途径。
研究展望
第15页/共18页
第 16 页 总 18 页
第16页/共18页
第 17 页 总 18 页
参考文献
1、细观力学经典理论适用性探讨—张子明 2、复合材料有效弹性性质分析方法—胡更开 3、复合材料力学—沈观林,胡更开 4、复合材料细观力学研究进展—刘克明,金莹 5、混凝土细观力学研究进展综述—张楚汉
第4页/共18页
第 5 页 总 18 页
一、稀疏解法
第5页/共18页
第 6 页 总 18 页
二、自洽法
第6页/共18页

复合材料力学性能ppt课件

复合材料力学性能ppt课件

低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
.
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
应变硬化
E D A
D A
O A
B
y
图2.4 非晶态聚合物的应力. -应变曲线(玻璃态)
20
2.2 高分子材料的力学性能
.
21
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量





拉伸强度





断裂伸长率 小


很大

断裂能





F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
扭转
F
.
17
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试

实验条件:一定拉伸速率和温度
.
电子万能材料试验机
18
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
.
19

2024版复合材料力学讲课课件

2024版复合材料力学讲课课件

31
课程总结回顾
复合材料力学基础知识
涵盖了复合材料的组成、结构、性能 及其力学行为等方面的基本概念和原
理。
复合材料的力学性能
深入探讨了复合材料的强度、刚度、 韧性等力学性能,以及不同加载条件
下的力学响应。
复合材料的失效与破坏
分析了复合材料的失效模式、破坏机 理和寿命预测方法,为学生提供了对
复合材料耐久性的全面理解。
应力-应变关系
分析复合材料在不同加载条件下 的应力-应变关系,可以揭示其弹 性性能的变化规律。
弹性力学模型
建立复合材料的弹性力学模型, 如层合板理论、等效连续介质模 型等,可以预测其宏观弹性性能。
2024/1/25
16
塑性力学方法
01
屈服准则
通过确定复合材料的屈服准则, 可以判断其在复杂应力状态下的 塑性变形行为。
复合材料力学研究内容
1 2
复合材料的力学性能 研究复合材料的强度、刚度、韧性等力学性能。
复合材料的破坏机理 研究复合材料在不同应力状态下的破坏形式和机 理。
3
复合材料的优化设计 通过改变复合材料的组分、结构等,优化其力学 性能。
2024/1/25
5
复合材料力学发展历程
2024/1/25
起步阶段
01
随着汽车工业向电动化、智能化、轻量化方 向发展,复合材料的应用前景广阔。
2024/1/25
29
其他领域应用拓展及创新点
体育器材
复合材料可用于制造高性能的体育器材,如自行车 车架、高尔夫球杆、滑雪板等,提高运动成绩和体 验。
医疗器械
复合材料可用于制造医疗器械和人体植入物,如手 术器械、人工关节等,提高医疗器械的性能和人体 相容性。

材料力学性能 第十一章 复合材料的力学性能 材料力学性能 讲义 课件

材料力学性能 第十一章 复合材料的力学性能 材料力学性能 讲义 课件
由于载荷主要由纤维承担,所以随着变形的增加,纤 维载荷增加较快,当达到纤维抗拉强度时,纤维破断, 此时基体不能支持整个复合材料载荷,复合材料随之 破坏。
以上公式应满足两个条件: (1) 纤维受力过程中处于弹性变形状态; (2) 基体的断后伸长率大于纤维的断后伸长率。
8/8/2021
安徽工业大学 材料科学与工程学院
6
二、复合材料的特点
复合材料取决于基体和增强体的特性、含量、 分布等。
(1) 高比强度、比模量
8/8/2021
安徽工业大学 材料科学与工程学院
7
8/8/2021
安徽工业大学 材料科学与工程学院
8
(2) 各向异性
纤维增强复合材料在弹性常数、热膨胀系数、强度等方面具有明 显的各向异性。
通过铺层设计的复合材料,可能出现各种形式和不同程度的各向 异性。
8/8/2021
安徽工业大学 材料科学与工程学院
37
距离纤维末端z的纤维应力为:
由于纤维末端附近高的应力集中 或基体屈服,使纤维末端与基体 脱胶,一般 可忽略,则上式可 改成:
如果切应力沿纤维长度的变化已 知,则据上式就可以计算出数值。
实际上,切应力分布事先是未知 的,只能作为整个解的一部分来 求。
假设:纤维连续、均匀、平行排列于基体中,纤维与基体粘接 牢固,且纤维、基体和复合材料有相同的拉伸应变,基体将拉 伸力F通过界面完全传递给纤维。
8/8/2021
安徽工业大学 材料科学与工程学院
14
8/8/2021
安徽工业大学 材料科学与工程学院
15
8/8/2021
安徽工业大学 材料科学与工程学院
(5) 可设计性强
通过改变纤维、基体的种类和相对含量,纤维集合形式及排 布方式等可满足复合材料结构和性能的设计要求。

--复合材料力学第六章细观力学基础

--复合材料力学第六章细观力学基础
称为纵向有效模量的混合律。
(二)纵向泊松比
21
RVE的纵向应变关系式:
2 f 2V f m2Vm
两边同时除以 1 ,可得:
21 f V f mVm
(三)纵横(面内)剪切模量
G12
在剪应力作用下,RVE的剪应变有如下 关系:
12 f V f mVm

12
12
G12
可在复合圆柱模型上施加不同的均匀应力边界条件,利用 弹性力学方法进行求解而得到有效模量,结果为:
2
2Gm
E
f
rf2
ln(
R rf
)
其中 Gm 为基体剪切模量,rf 为纤维半经,R为纤维间距,
l为纤维长度,R与纤维的排列方式和 V f 有关。
ET(短) ET (长)
2、Halpin-Tsai方程
EL Em
1
2
l d
LV
f
1 LV f
ET
1 2TV f
Em 1 TV f
此时,对L取:
RVE的要求: 1 、 RVE 的 尺 寸 << 整 体 尺 寸 , 则宏观可看成一点;
2、RVE的尺寸>纤维直径;
3、RVE的纤维体积分数=复合材料的纤维体积分数。
纤维体积分数:
Vf
vf v
v f —纤维总体积;
v —复合材料体积
注意:
只有当所讨论问题的最小尺寸远大于代表性体积单元时,
复合材料的应力应变等才有意义。
并可由RVE的解向邻近单元连续拓展到整体时,所得的有效 弹性模量才是严格的理论解。
则只有满足上述条件的复合材料的宏观弹性模量才能通过 体积平均应力、应变进行计算;或按应变能计算。

复合材料细观力学 2

复合材料细观力学 2

? * ? ? (? CS1 ? C 0 )?1 ? C(? 0 ? ?~) ? ** ? ? (S2 ? I )?1(? 0 ? ?~)
其中? C ? C1 ? C 0 , K ? (S1 ? I )(? CS1 ? C 0 )?1 基体和纤维材料体平均 应力场分布
? m ? ? 0 ? ?~ ? C 0 (? 0 ? ?~) ? f ? ? 0 ? ?~ ? ? 1 ? C0 (? 0 ? ?~ ? ? 1 ? ? * )
基体材料断裂韧性为 Gc ,令Ga ? Gc得到基体开裂的临界条 件
? 损伤演化方程
Cijkl (n...) ? Cijkl (C1, C 0 , f1, f2,? ,? ) 当外载由? 0增加到? 0 ? d? 0时,微裂纹个数由n增加到n ? dn 1 [ C ?1(n...)? 02 ? C ?1(n ? dn...)(? 0 ? d? 0 )2 ] ? EAdn
? W1
?
?
1 2
? 0? *dV
V1
微裂纹夹杂引起的自由能变化
? ? W ? W ? W1 ? W0
?
?
1 2
?
V2
0? **dV
设裂纹厚度远小于其半径t / a ? 0,取单个圆币型裂纹体积? ? 4 ?a 2t 3
? ? W ? ? 2 ?a 2
3
? 0t(S2 ? I )?1(? 0 ? ?~)dV
? ? m ? C 0 (S1 ? I )? *
纤维与基体界面上应力 分布:
?
C ij
?
?
f ij
?
C0 ijkl
(?
C
? M n 0
*
pqmn mn kp q

8-第八章_复合材料细观力学

8-第八章_复合材料细观力学

纤维和基体必然承受相同的横向应力,均等于单元受
到的横向应力,有 f 2 m2 2
纤维和基体的横向应变为
f2
2
Ef
,
m2
2
Em
单元的横向变形是纤维和基体的变形之和,则有
w wf wm f 2wf m2wm
(8.8)
图8.6 代表性体积单元体 2方向拉伸示意图
Em
(8.9)
式(8.9)表示沿2方向的弹性模量倒数(柔量)满足混合律,该式可改写
成无量纲形式,即
ET
1

1
Em f Em / E f m 1 f 1 Em / E f
(8.10)
对于不同的弹性模量比Ef/Em,按式(8.10)确定的ET/Em随f 的变化曲线如图8.7
上述确定横向弹性模量ET时没有考虑纤维与基体之间的变形协调。通常纤 维和基体的泊松比不同,沿1方向的应变也不同,引起纤维与基体在界面处变
形不一致,这不符合实际情况(实际相同)。为了克服上述模型的缺点,可假
定沿1方向纤维与基体的应变相等,即 f 1 m1
(8.11)
为了保证变形协调,纤维和基体均为二向应力状态。当
图8.8 代表性体积单元体纯剪切示意图

由以上各式,可得复合 材料的表观面内剪切弹
1 f m f 1 f
GLT G f Gm G f Gm
GLT 性模量的表达式为:
(8.21) 这是复合材料的剪切模量倒数混合律。 上式亦可表示成无量纲形式,即
GLT
所示,在表8.1中列出ET/Em的一些数值。显然,要使横向弹性模量提高到基 体模量的2倍,需要50%以上的纤维体积分数。所以,一般纤维增强复合材料 的纤维体积分数都比较高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档