高考数学 文科17题
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2022年全国统一高考数学试卷(文科)(全国一卷)

全国统一高考数学试卷(文科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个2.(5分)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i3.(5分)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1C.y=﹣x2+4D.y=2﹣|x|4.(5分)椭圆=1的离心率为()A.B.C.D.5.(5分)执行如图的程序框图,如果输入的N是6,那么输出的p是()A.120B.720C.1440D.50406.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.7.(5分)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.9.(5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18B.24C.36D.4810.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)11.(5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称12.(5分)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k ﹣垂直,则k=.14.(5分)若变量x,y满足约束条件,则z=x+2y的最小值为.15.(5分)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.三、解答题(共8小题,满分70分)17.(12分)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20.(12分)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.21.(12分)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.24.设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.。
2023年全国统一高考数学试卷(文科)(甲卷)(解析版)

2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。
新高考文科数学试卷

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = 2x - 3,若f(x)的图像关于点(1,-1)对称,则函数f(x)的图像上一点(a,b)的对称点为()。
A.(2a-2,2b+2)B.(2a-2,2b-2)C.(2a+2,2b+2)D.(2a+2,2b-2)2. 下列各式中,正确的是()。
A. (a+b)² = a² + b² + 2abB. (a-b)² = a² - b² - 2abC. (a+b)³ = a³ + b³ + 3a²b + 3ab²D. (a-b)³ = a³ - b³ - 3a²b + 3ab²3. 已知数列{an}的前n项和为Sn,若Sn = 3n² - 2n,则数列{an}的通项公式为()。
A. an = 6n - 5B. an = 3n - 2C. an = 2n - 1D. an = 3n² - 2n4. 若复数z满足|z-1| = |z+1|,则复数z的实部为()。
A. 0B. 1C. -1D. 不存在5. 已知函数f(x) = x² - 4x + 4,则f(x)的图像的对称轴为()。
A. x = 2B. y = 2C. x = -2D. y = -26. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则sinA + sinB + sinC的值为()。
A. 6B. 7C. 8D. 97. 已知等差数列{an}的首项为a₁,公差为d,若a₁ + a₂ + a₃ = 9,a₁ + a₄ + a₅= 15,则数列{an}的通项公式为()。
A. an = 3n - 2B. an = 3n + 2C. an = 2n - 1D. an = 2n + 18. 下列各式中,正确的是()。
1993年全国统一高考数学试卷(文科)

1993年全国统一高考数学试卷(文科)一、选择题(共17小题,每小题4分,满分68分) 1.(4分)函数f (x )=sinx+cosx 的最小正周期是( )A . 2πB .C . πD .2.(4分)如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为( )A .B .C .D . 23.(4分)(2012•北京模拟)和直线3x ﹣4y+5=0关于x 轴对称的直线的方程为( )A . 3x+4y ﹣5=0B . 3x+4y+5=0C . ﹣3x+4y ﹣5=0D . ﹣3x+4y+5=04.(4分)i 2n ﹣3+i 2n ﹣1+i 2n+1+i 2n+3的值为( )A . ﹣2B . 0C . 2D . 45.(4分)在[﹣1,1]上是( )A . 增函数且是奇函数B . 增函数且是偶函数C . 减函数且是奇函数D . 减函数且是偶函数6.(4分)的值为( )A .B .C .D .7.(4分)(2002•江苏)集合,则()A . M =NB . M ⊃NC . M ⊂ND . M ∩N=∅8.(4分)sin20°cos70°+sin10°sin50°的值是( )A .B .C .D .9.(4分)圆x 2+y 2=1上的点到直线3x+4y ﹣25=0的距离的最小值是( )A . 6B . 4C . 5D . 110.(4分)若a 、b 是任意实数,且a >b ,则( )A . a 2>b 2B .C . l g (a ﹣b )>0D .11.(4分)一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线12.(4分)圆柱轴截面的周长l为定值,那么圆柱体积的最大值是()A.B.C.D.13.(4分)(+1)4(x﹣1)5展开式中x4的系数为()A.﹣40 B.10 C.40 D.4514.(4分)直角梯形的一个内角为45°,下底长为上底长的,这个梯形绕下底所在的直线旋转一周所成的旋转体的全面积为(5+)π,则旋转体的体积为()A.2πB.C.D.15.(4分)已知a1,a2,…,a8为各项都大于零的等比数列,公式q≠1,则()A.a1+a8>a4+a5B.a1+a8<a4+a5C.a1+a8=a4+a5D.a1+a8和a4+a5的大小关系不能由已知条件确定16.(4分)(2014•黄山一模)设有如下三个命题:甲:相交直线l、m都在平面α内,并且都不在平面β内;乙:直线l、m中至少有一条与平面β相交;丙:平面α与平面β相交.当甲成立时()A.乙是丙的充分而不必要条件B.乙是丙的必要而不充分条件C.乙是丙的充分且必要条件D.乙既不是丙的充分条件又不是丙的必要条件17.(4分)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有()A.6种B.9种C.11种D.23种二、填空题(共6小题,每小题4分,满分24分)18.(4分)设a>1,则=_________.19.(4分)若双曲线=1与圆x2+y2=1没有公共点,则实数k的取值范围为_________.20.(4分)从1,2,…,10这十个数中取出四个数,使它们的和为奇数,共有_________种取法(用数字作答).21.(4分)设f (x)=4x﹣2x+1,则f﹣1(0)=_________.22.(4分)建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为_________.23.(4分)如图,ABCD是正方形,E是AB的中点,如将△DAE和△CBE分别沿虚线DE和CE折起,使AE与BE重合,记A与B重合后的点为P,则面PCD与面ECD所成的二面角为_________度.三、解答题(共5小题,满分58分)24.(10分)求tan20°+4sin20°的值.25.(12分)已知f(x)=log a(a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x取值范围.26.(12分)已知数列S n为其前n项和.计算得观察上述结果,推测出计算S n的公式,并用数学归纳法加以证明.27.(12分)已知:平面α∩平面β=直线a.α,β同垂直于平面γ,又同平行于直线b.求证:(1)a⊥γ;(2)b⊥γ.28.(12分)在面积为1的△PMN中,tan∠PMN=,tan∠MNP=﹣2.建立适当的坐标系,求以M,N为焦点且过点P的椭圆方程.1993年全国统一高考数学试卷(文科)参考答案与试题解析一、选择题(共17小题,每小题4分,满分68分)1.(4分)函数f(x)=sinx+cosx的最小正周期是()A.2πB.C.πD.考点:三角函数中的恒等变换应用.分析:把三角函数式整理变形,变为f(x)=Asin(ωx+φ)的形式,再用周期公式求出周期,变形时先提出,式子中就出现两角和的正弦公式,公式逆用,得到结论.解答:解:∵f(x)=sinx+cosx=(=,∴T=2π,故选A点评:本题关键是逆用公式,抓住公式的结构特征对提高记忆公式起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.2.(4分)如果双曲线的焦距为6,两条准线间的距离为4,那么该双曲线的离心率为()A.B.C.D.2考点:双曲线的简单性质.专题:计算题.分析:由双曲线的焦距为6,两条准线间的距离为4,能求出a,c,从而得到该双曲线的离心率.解答:解:由题意知,∴a2=6,c=3,∴.故选C.点评:本题考查双曲线的离心率、准线方程、焦距,要求熟练掌握双曲线的性质.3.(4分)(2012•北京模拟)和直线3x﹣4y+5=0关于x轴对称的直线的方程为()D.﹣3x+4y+5=0A.3x+4y﹣5=0 B.3x+4y+5=0 C.﹣3x+4y﹣5=0考点:与直线关于点、直线对称的直线方程.分析:求出和直线3x﹣4y+5=0关于x轴对称的直线的斜率,再求出直线3x﹣4y+5=0和x轴的交点,可求答案.解答:解:和直线3x﹣4y+5=0关于x轴对称的直线,其斜率与直线3x﹣4y+5=0的斜率相反,设所求直线为3x+4y+b=0,两直线在x轴截距相等,所以所求直线是3x+4y+5=0.故选B.点评:本题是直线的对称问题,一般要用垂直平分解答;本题方法较多,由于对称轴是坐标轴,所以借助斜率,比较简单.4.(4分)i 2n ﹣3+i 2n ﹣1+i 2n+1+i 2n+3的值为( )A . ﹣2B . 0C . 2D . 4考点: 复数代数形式的混合运算.分析: 利用i 的幂的运算性质,对n 为奇数和偶数分类讨论,可以得到结果.解答: 解:因为i 4n =1,i 4n+1=i ,i 4n+2=﹣1,i 4n+3=﹣i ;由复数i 2n ﹣3+i 2n ﹣1+i 2n+1+i 2n+3=2(i 2n+1+i 2n+3),当n 是偶数时2(i 2n+1+i 2n+3)=2(i+i 3)=0;当n 是奇数时2(i 2n+1+i 2n+3)=2(i 3+i )=0.故选B .点评: 本题考查复数i 的幂的运算,复数代数形式的运算,是基础题.5.(4分)在[﹣1,1]上是( )A . 增函数且是奇函数B . 增函数且是偶函数C . 减函数且是奇函数D . 减函数且是偶函数考点: 幂函数的性质.专题: 数形结合.分析: 做出幂函数的图象,根据幂函数的图象与性质:可得在[﹣1,1]上的单调性和奇偶性. 解答: 解:考查幂函数.∵>0,根据幂函数的图象与性质可得在[﹣1,1]上的单调增函数,是奇函数.故选A .点评:本题主要考查幂函数的图象与性质,幂函数是重要的基本初等函数模型之一.学习幂函数重点是掌握幂函数的图形特征,即图象语言,熟记幂函数的图象、性质.6.(4分)的值为( ) A .B .C .D .考点:极限及其运算. 专题: 计算题.分析:分子分母都除以n2,原式简化为,由此可得到的值.解答:解:==.点评:本题考查数列的极限,解题时要注意正确选用公式.7.(4分)(2002•江苏)集合,则()A.M=N B.M⊃N C.M⊂N D.M∩N=∅考点:集合的包含关系判断及应用.分析:首先分析M、N的元素,变形其表达式,使分母相同,观察分析其分子间的关系,即可得答案.解答:解:对于M的元素,有x=π,其分子为π的奇数倍;对于N的元素,有x=π,其分子为π的整数倍;分析易得,M⊂N;故选C.点评:本题考查集合的包含关系的判断,注意先化简元素的表达式,进而找其间的关系.8.(4分)sin20°cos70°+sin10°sin50°的值是()A.B.C.D.考点:三角函数中的恒等变换应用.分析:从题目的结构形式来看,本题是要逆用两角和或差的正弦余弦公式,但是题目又不完全符合,因此有一个整理的过程,整理发现,刚才直观的认识不准确,要前后两项都用积化和差,再合并同类项.解答:解:原式=]==,故选A点评:在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.本题开始考虑时差点出错,这是解题时好多同学要经历的过程.9.(4分)圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是()A.6B.4C.5D.1考点:直线与圆的位置关系.分析:先求圆心到直线的距离,再减去半径即可.解答:解:圆的圆心坐标(0,0),到直线3x+4y﹣25=0的距离是,所以圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是5﹣1=4故选B.点评:本题考查直线和圆的位置关系,数形结合的思想,是基础题.10.(4分)若a、b是任意实数,且a>b,则()A.a2>b2B.C.l g(a﹣b)>0 D.考点:不等式比较大小.专题:综合题.分析:由题意可知a>b,对于选项A、B、C举出反例判定即可.解答:解:a、b是任意实数,且a>b,如果a=0,b=﹣2,显然A不正确;如果a=0,b=﹣2,显然B无意义,不正确;如果a=0,b=﹣,显然C,lg>0,不正确;满足指数函数的性质,正确.故选D.点评:本题考查比较大小的方法,考查各种代数式的意义和性质,是基础题.11.(4分)一动圆与两圆x2+y2=1和x2+y2﹣8x+12=0都外切,则动圆圆心轨迹为()A.圆B.椭圆C.双曲线的一支D.抛物线考点:双曲线的定义.专题:计算题.分析:设动圆P的半径为r,然后根据⊙P与⊙O:x2+y2=1,⊙F:x2+y2﹣8x+12=0都外切得|PF|=2+r、|PO|=1+r,再两式相减消去参数r,则满足双曲线的定义,问题解决.解答:解:设动圆的圆心为P,半径为r,而圆x2+y2=1的圆心为O(0,0),半径为1;圆x2+y2﹣8x+12=0的圆心为F(4,0),半径为2.依题意得|PF|=2+r|,|PO|=1+r,则|PF|﹣|PO|=(2+r)﹣(1+r)=1<|FO|,所以点P的轨迹是双曲线的一支.故选C.点评:本题主要考查双曲线的定义.12.(4分)圆柱轴截面的周长l为定值,那么圆柱体积的最大值是()A.B.C.D.考点:旋转体(圆柱、圆锥、圆台).专题:计算题;综合题.分析:设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值.解答:解:圆柱底面半径R,高H,圆柱轴截面的周长L为定值:4R+2H=L,H=﹣2R,V=SH=πR2H=πR2(﹣2R)=πR2﹣2πR3求导:V'=πRL﹣6πR2令V'=0,πRL﹣6πR2=0,πR(L﹣6R)=0,L﹣6R=0,R=,当R=,圆柱体积的有最大值,圆柱体积的最大值是:V=πR2﹣2πR3=故选A.点评:本题考查旋转体的体积,导数的应用,是中档题.13.(4分)(+1)4(x﹣1)5展开式中x4的系数为()A.﹣40 B.10 C.40 D.45考点:二项式定理的应用.专题:计算题.分析:先将展开式的系数转化成几个二项展开式系数乘积的和,再利用二项展开式的通项公式求出各个二项式的系数.解答:解:展开式中x4的系数是下列几部分的和:的常数项与(x﹣1)5展开式的含x4的项的系数的乘积含x项的系数与(x﹣1)5展开式的含x3的项的系数的乘积含x2项的系数与(x﹣1)5展开式的含x2的项的系数的乘积∵展开式的通项为(x﹣1)5展开式的通项为T k+1=C5r x5﹣r(﹣1)r=(﹣1)r C5r x5﹣r∴展开式中x4的系数为C40(﹣C51)++C44(﹣C53)=45故选项为D点评:本题考查数学的等价转化的能力和二项展开式的通项公式的应用.14.(4分)直角梯形的一个内角为45°,下底长为上底长的,这个梯形绕下底所在的直线旋转一周所成的旋转体的全面积为(5+)π,则旋转体的体积为()A.2πB.C.D.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:由题意可知,这个几何体的面积是圆柱中一个圆加一个长方形加一个扇形的面积,而这个几何体的体积是一个圆锥加一个同底圆柱的体积.再根据题目中的条件求解即可.解答:解:这个几何体的面积是圆柱中一个圆加一个长方形加一个扇形的面积,圆的面积,直角腰为半径,长方形的面积,圆的周长为长,上底为宽,扇形的面积,圆的周长为弧长,另一腰则为扇形的半径.设上底为x,则下底为,直角腰为,另一腰为整个面积式子为,解得x=±2,因为x>0,所以x=﹣2舍去,x=2.而这个几何体的体积是一个圆锥加一个同底圆柱的体积,圆锥的高,下底减上底得圆锥的高为1,圆柱体积=Sh=h=π×12×2=2π,圆锥体积=π所以整个几何体的体积为.故选D.点评:本题考查学生的空间想象能力,和逻辑思维能力,等量之间的转换,是中档题.15.(4分)已知a1,a2,…,a8为各项都大于零的等比数列,公式q≠1,则()A.a1+a8>a4+a5B.a1+a8<a4+a5C.a1+a8=a4+a5D.a1+a8和a4+a5的大小关系不能由已知条件确定考点:等比数列.分析:用作差法比较即可.解答:解:a1+a8﹣(a4+a5)=a1(1+q7﹣q3﹣q4)=a1(1+q)(q2+q+1)(q﹣1)2(1+q2)又∵a1>0,a1,a2,…,a8为各项都大于零的等比数列∴q>0∴a1+a8﹣(a4+a5)>0故选A点评:本题考查比较法和等比数列通项公式的应用.16.(4分)(2014•黄山一模)设有如下三个命题:甲:相交直线l、m都在平面α内,并且都不在平面β内;乙:直线l、m中至少有一条与平面β相交;丙:平面α与平面β相交.当甲成立时()A.乙是丙的充分而不必要条件B.乙是丙的必要而不充分条件C.乙是丙的充分且必要条件D.乙既不是丙的充分条件又不是丙的必要条件考点:空间中直线与平面之间的位置关系;充要条件.专题:证明题;压轴题.分析:判断乙是丙的什么条件,即看乙⇒丙、丙⇒乙是否成立.当乙成立时,直线l、m中至少有一条与平面β相交,则平面α与平面β至少有一个公共点,故相交相交.反之丙成立时,若l、m中至少有一条与平面β相交,则l∥m,由已知矛盾,故乙成立.解答:解:当甲成立,即“相交直线l、m都在平面α内,并且都不在平面β内”时,若“l、m中至少有一条与平面β相交”,则“平面α与平面β相交”成立;若“平面α与平面β相交”,则“l、m中至少有一条与平面β相交”也成立故选C.点评:本题考查空间两条直线、两个平面的位置关系判断、充要条件的判断,考查逻辑推理能力.17.(4分)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有()A.6种B.9种C.11种D.23种考点:排列、组合及简单计数问题.专题:计算题;压轴题.分析:首先计算4个数字填入4个空格的所有情况,进而分析计算四个数字全部相同,有1个数字相同的情况,有2个数字相同情况,有3个数字相同的情况数目,由事件间的相互关系,计算可得答案.解答:解:根据题意,数字1,2,3,4填入标号为1,2,3,4的四个方格里,共A44=24种填法,其中,四个数字全部相同的有1种,有1个数字相同的有4×2=8种情况,有2个数字相同的有C42×1=6种情况,有3个数字相同的情况不存在,则每个方格的标号与所填的数字均不相同的填法有24﹣1﹣8﹣6=9种,故选B.点评:本题考查排列、组合的运用,注意此类题目的操作性很强,必须实际画图操作,认真分析.二、填空题(共6小题,每小题4分,满分24分)18.(4分)设a>1,则=﹣a2.考点:极限及其运算.专题:计算题.分析:当n→∞时,a n→∞.由此能够推导出=的值.解答:解:===﹣a2.点评:本题考查极限的应用,解题时要注意等价转化的前提条件.19.(4分)若双曲线=1与圆x2+y2=1没有公共点,则实数k的取值范围为{k|或}.考点:双曲线的简单性质.专题:计算题.分析:由双曲线=1与圆x2+y2=1没有公共点知圆半径的长小于双曲线的实半轴的长,由此可以求出实数k的取值范围.解答:解:∵双曲线=1与圆x2+y2=1没有公共点,∴|3k|>1,∴.解得或.实数k的取值范围为{k|或}.答案为{k|或}.点评:熟练掌握圆和双曲线的图象和性质即可顺利求解.20.(4分)从1,2,…,10这十个数中取出四个数,使它们的和为奇数,共有100种取法(用数字作答).考点:组合及组合数公式;排列、组合的实际应用.分析:根据题意,将这10个数分为奇数与偶数两个组,每组各5个数;分析可得,若取出的四个数的和为奇数,则取出的四个数必有1个或3个奇数;分别求出两种情况下的取法情况数,相加可得答案.解答:解:根据题意,将这10个数分为奇数与偶数两个组,每组各5个数;若取出的四个数的和为奇数,则取出的四个数必有1个或3个奇数;若有1个奇数时,有C51•C53=50种取法,若有3个奇数时,有C51•C53=50种取法,故符合题意的取法共50+50=100种取法;故答案为100.点评:本题考查利用组合解决常见计数问题的方法,解本题时,注意先分组,进而由组合的方法,结合乘法计数原理进行计算.21.(4分)设f (x)=4x﹣2x+1,则f﹣1(0)=1.考点:反函数.专题:计算题.分析:欲求f﹣1(0),根据反函数的定义知,只要求出使等式4x﹣2x+1=0,成立的x的值即可.解答:解:∵4x﹣2x+1=0,2x(2x﹣2)=0,∴2x﹣2=0得:x=1.∴f﹣1(0)=1.故答案为1.点评:本题主要考查了反函数的概念,属于基础题之列.22.(4分)建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为1760.考点:函数模型的选择与应用.专题:应用题;压轴题.分析:欲求水池的最低造价,先设长x,则宽,列出总造价,是一个关于x的函数式,最后利用基本不等式求出此函数式的最小值即可.解答:解:设长x,则宽,造价y=4×120+4x×80+×80≥1760,当且仅当:4x×80=×80,即x=2时取等号.故答案为:1760.点评:本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.23.(4分)如图,ABCD是正方形,E是AB的中点,如将△DAE和△CBE分别沿虚线DE和CE折起,使AE与BE重合,记A与B重合后的点为P,则面PCD与面ECD所成的二面角为30度.考点:与二面角有关的立体几何综合题.专题:计算题;压轴题.分析:二面角的度量关键在于作出它的平面角,取CD的中点M,连接PM、EM,因为PD=PC,所以PM⊥CD;同理因为ED=EC,所以EM⊥CD,故∠PME即为面PCD与面ECD所成二面角的平面角.解答:解:设正方形的边长为2,取CD的中点M,连接PM、EM,∵PD=PC,∴PM⊥CD∵ED=EC,∴EM⊥CD故∠PME即为面PCD与面ECD所成二面角的平面角.在△PME中:PE=1,PM=,EM=2,∴cos∠PME=∴∠PME=30°故答案为:30.点评:本小题主要考查棱锥的结构特征,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.三、解答题(共5小题,满分58分)24.(10分)求tan20°+4sin20°的值.考点:同角三角函数基本关系的运用.专题:计算题.分析:首先利用弦切互化公式及正弦的倍角公式对原式进行变形,再两次运用和差化积公式,同时结合正余弦互化公式,则问题解决.解答:解:tan20°+4sin20°=======2sin60°=.点评:本题考查三角函数式的恒等变形及运算能力.25.(12分)已知f(x)=log a(a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x取值范围.考点:对数函数的定义域;函数奇偶性的判断.分析:(1)求对数函数的定义域,只要真数大于0即可,转化为解分式不等式.(2)利用奇偶性的定义,看f(﹣x)和f(x)的关系,注意到和互为倒数,其对数值互为相反数;也可计算f(﹣x)+f(x)=0得到.(3)有对数函数的图象可知,要使f (x)>0,需分a>0和a<0两种境况讨论.解答:解:(1)由对数函数的定义知.如果,则﹣1<x<1;如果,则不等式组无解.故f(x)的定义域为(﹣1,1)(2)∵,∴f(x)为奇函数.(3)(ⅰ)对a>1,log a等价于,①而从(1)知1﹣x>0,故①等价于1+x>1﹣x,又等价于x>0.故对a>1,当x∈(0,1)时有f(x)>0.(ⅱ)对0<a<1,log a等价于0<.②而从(1)知1﹣x>0,故②等价于﹣1<x<0.故对0<a<1,当x∈(﹣1,0)时有f(x)>0.点评:本题考查对数函数的性质:定义域、奇偶性、单调性等知识,难度一般.26.(12分)已知数列S n为其前n项和.计算得观察上述结果,推测出计算S n的公式,并用数学归纳法加以证明.考点:数列递推式;数学归纳法.专题:证明题.分析:观察分析题设条件可知.然后再用数学归纳法进行证明.解答:解:观察分析题设条件可知证明如下:(1)当n=1时,,等式成立.(Ⅱ)设当n=k时等式成立,即则======由此可知,当n=k+1时等式也成立.根据(1)(2)可知,等式对任何n∈N都成立点评:本题考查数列性质的综合应用,解题时要注意数学归纳法的证明步骤,注意培养计算能力.27.(12分)已知:平面α∩平面β=直线a.α,β同垂直于平面γ,又同平行于直线b.求证:(1)a⊥γ;(2)b⊥γ.考点:直线与平面垂直的判定.专题:证明题;压轴题.分析:(1)在γ内任取一点P并于γ内作直线PM⊥AB,PN⊥AC,由面面垂直的性质得PM⊥α,PM⊥a;同理证明PN⊥a,这样a垂直于面γ内的2条相交直线,从而a⊥γ.(2)通过α,β同垂直于平面γ,又同平行于直线b,利用线面平行的性质定理证明,b∥a,由(1)知a⊥γ,从而证得b⊥γ.解答:证明:(1)设α∩γ=AB,β∩γ=AC.在γ内任取一点P并于γ内作直线PM⊥AB,PN⊥AC.∵γ⊥α,∴PM⊥α.而a⊂α,∴PM⊥a.同理PN⊥a.又PM⊂γ,PN⊂γ,∴a⊥γ.(2)于a上任取点Q,过b与Q作一平面交α于直线a1,交β于直线a2.∵b∥α,∴b∥a1.同理b∥a2.∵a1,a2同过Q且平行于b,∵a1,a2重合.又a1⊂α,a2⊂β,∴a1,a2都是α、β的交线,即都重合于a.∵b∥a1,∴b∥a.而a⊥γ,∴b⊥γ.点评:本题考查证明线面垂直的证明方法.28.(12分)在面积为1的△PMN中,tan∠PMN=,tan∠MNP=﹣2.建立适当的坐标系,求以M,N为焦点且过点P的椭圆方程.考点:椭圆的标准方程.专题:计算题;压轴题.分析:以MN所在直线为x轴,MN的垂直平分线为y轴建立直角坐标系,设以M,N为焦点且过点P的椭圆方程和焦点坐标,根据tanM=,tanα=tg(π﹣∠MNP)=2,得直线PM和PN的直线方程,将此二方程联立解得x和y,可知点P的坐标,根据,|MN|=2c,MN上的高为点P的纵坐标,根据三角形面积公式表示出出△MNP的面积求得c,则点P的坐标可得.由两点间的距离公式求得|PM|和|PN|,进而根据椭圆的定义求得a,进而求得b,则椭圆方程可得.解答:解:如图,以MN所在直线为x轴,MN的垂直平分线为y轴建立直角坐标系,设以M,N为焦点且过点P的椭圆方程为,焦点为M(﹣c,0),N(c,0).由tan∠PMN=,tan∠MNP=﹣2,tanα=tan(π﹣∠MNP)=2,得直线PM和直线PN的方程分别为y=(x+c)和y=2(x﹣c).将此二方程联立,解得x=c,y=c,即P点坐标为(c,c).在△MNP中,|MN|=2c,MN上的高为点P的纵坐标,故.由题设条件S△MNP=1,∴c=,即P点坐标为.由两点间的距离公式,.得.又b2=a2﹣c2=,故所求椭圆方程为.点评:本题主要考查坐标系、椭圆的概念和性质、直线方程以及综合应用能力.。
2017年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2017 年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12 小题,每小题5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5 分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=|| C.∥D.||>||5.(5 分)若a>1,则双曲线﹣y2=1 的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5 分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5 分)设x,y 满足约束条件,则z=2x+y 的最小值是()A.﹣15 B.﹣9 C.1 D.98.(5 分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5 分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2 位优秀,2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5 分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.511.(5 分)从分别写有1,2,3,4,5 的5 张卡片中随机抽取1 张,放回后再随机抽取1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5 分)过抛物线C:y2=4x 的焦点F,且斜率为的直线交C 于点M(M 在x 轴上方),l为C 的准线,点N 在l 上,且MN⊥l,则M 到直线NF 的距离为()A.B.2C.2D.3二、填空题,本题共4 小题,每小题5 分,共20 分13.(5 分)函数f(x)=2cosx+sinx 的最大值为.14.(5 分)已知函数f(x)是定义在R 上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5 分)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为.16.(5 分)△ABC 的内角A,B,C 的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70 分.解答应写出文字说明,证明过程或演算步骤,第17 至21 题为必考题,每个试题考生都必须作答.第22、23 题为选考题,考生根据要求作答.(一)必考题:共60 分.17.(12 分)已知等差数列{a n}的前n 项和为S n,等比数列{b n}的前n 项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12 分)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD 面积为2,求四棱锥P﹣ABCD 的体积.19.(12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.050 0.010 0.001K 3.841 6.635 10.828K2=.20.(12 分)设O 为坐标原点,动点M 在椭圆C:+y2=1 上,过M 作x 轴的垂线,垂足为N,点P 满足= .(1)求点P 的轨迹方程;(2)设点Q 在直线x=﹣3 上,且•=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F.21.(12 分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0 时,f(x)≤ax+1,求a 的取值范围.选考题:共10 分。
2024年高考真题文科数学(全国甲卷)无答案

2024年普通高等学校招生全国统一考试全国甲卷文科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3 C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73 C.1 D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.2C.12D.328.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.2D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.。
2022年成人高考数学(文科)真题试卷及答案

2022年成人高考数学(文科)真题试卷第Ⅰ卷 选择题(共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的).1. 若集合{}22<-=x x M ,{}43210,,,,=N ,则=N M ( ). A.{}2 B.{}210,,C.{}321,,D.{}43210,,,, 2. 设函数22)1(+=+x x f ,则=)(x f ( ).A.12-xB.x 2C.12+xD.22+x3. 函数y =( ).A.{}|31x x -≤≤B.{}|31x x x ≤-≥-或C.{}|13x x ≤≤D.{}|13x x x ≤≥或 4. 下列函数中,为奇函数的是( ).A.2cos y x =B.sin y x =C.2x y -=D.1y x =+ 5. 下列函数中,为减函数的是( ).A.cos y x =B.3x y =C.13log y x = D.231y x =-6. 函数21(0)y x x =+>的图像在( ).A.第一象限B.第二象限C.第三象限D.第四象限7. 设α是三角形的一个内角,若cos α=,则sin α=( ).B.12C.D.12-8. 如果点()2,4-在一个反比例函数的图像上,那么下列四个点中也在该反比例函数图像上的是( ).A.()2,4-B.()4,2--C.()2,4--D.()2,4 9. 已知1sin cos 5αα-=,则sin 2α=( ). A.2425-B.725-C.725D.242510. 设甲:ABC∆∽'''A B C ∆,乙:ABC ∆≌'''A B C ∆,则( ).A.甲是乙的必要条件但不是充分条件B.甲是乙的充分条件但不是必要条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件11. 已知向量,i j 为互相垂直的单位向量.向量2a i mj =+,若2a =,则m =( ). A.-2 B.-1 C.0 D.112. 用1,2,3,4组成没有重复数字的三位数,其中偶数共有( ). A.24个 B.12个 C.6个 D.3个13. 中心在坐标原点,对称轴为坐标轴,且一个顶点为()3,0,虚轴长为8的双曲线方程为( ).A.221916y x -=B.221916x y -=C.221649y x -=D.221964x y -= 14. 函数4xy =的图像与直线4y =的交点坐标为( ).A.(0,4)B.(4,64)C.(1,4)D.(4,16)15. 已知直线:3250l x y --=,圆22:(1)(1)4C y x ++=-,则C 上到l 的距离为1的点共有( ).A.1个B.2个C.3个D.4个16. 对于函数2()(0)f x ax bx c a =++≠,有下列两个命题:①如果0c =,那么()y f x =的图像经过坐标原点 ②如果0a <,那么()y f x =的图像与x 轴有公共点 则( ).A.①②都为真命题B.①为真命题,②为假命题 B.①为假命题,②为真命题 D.①②都为假命题17. 袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则这两个球都为红球的概率为( ). A.815 B.415 C.215 D.115第Ⅱ卷 非选择题(共65分)二、填空题(本大题共4小题;每小题4分,共16分).18. 点()4,5关于直线y x =的对称点的坐标为 . 19. 22255log 3log log 38+-= . 20. 某校学生参加一次科技知识竞赛,抽取了其中8为同学的分数作为样本,数据如下:90,90,75,70,80,75,85,75则该样本的平均数为: .21. 设函数()sin f x x x =,则'()f x = .三、解答题(本大题共4小题,共49分). 22. (本小题满分12分)在ABC ∆中,120O B =,30o C =,4BC =,求ABC ∆的面积. 23. (本小题满分12分)已知,,a b c 成等差数列,,,1a b c +成等比数列,若6b =,求a 和c . 24. (本小题满分12分)已知直线l 的斜率为1,l 过抛物线21:2C x y =的焦点,且与C 交于,A B 两点. (1)求l 与C 的准线的交点坐标; (2)求AB .25. (本小题满分13分)设函数()34f x x x =-.(1)求()'2f;(2)求()f x 在区间[]12-,的最大值与最小值.2021年成人高考数学(文科)真题试卷一.选择题:本大题共17小题;每小题5分,共85分,在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............. 1.设集合{}51<≤-=x x A ,{}22<<-=x x B ,则=B A ( )(A ){}21<≤-x x (B ){}22<<-x x (C ){}52<<-x x (D ){}51<≤-x x2.已知 0sin <α ,且 0tan <α ,则α是 ( )(A )第一象限角 (B )第二象限角 (C )第三象限角 (D )第四象限角 3.下列函数中,既是偶函数又是周期函数的为 ( )(A )x y 2sin = (B )2x y =(C )x y tan = (D )x y 3cos = 4.023)43(81log )31(++-的值为 ( )(A )31 (B )25 (C )24 (D )13 5.函数x x y 22sin 3cos 5-=的最小正周期为 ( )(A ) π4 (B )π2 (C )π (D )2π 6.设甲:函数xky =的图像经过点)31(,,乙: 3=k 则 ( )(A )甲是乙的必要条件但不是充分条件 (B )甲是乙的充分条件但不是必要条件 (C )甲是乙的充要条件 (D )甲既不是乙的充分条件也不是乙的必要条件7.下列函数中,在()∞+,0为增函数的是 ( ) (A )x x y +=2(B )x y 21log = (C )xy ⎪⎭⎫ ⎝⎛=41 (D )x y cos =8.不等式 11>-x 的解集为 ( )(A ){}2>x x (B ){}0<x x (C ){}20<<x x (D ){}2,0><x x x 或 9.从5位工人中选2人,分别担任保管员和质量监督员,则不同的选法共有 ( ) (A )10 (B )20 (C )60 (D ) 120 10.若00>>b a ,,则 =ba2log ( )(A )b a 22log 21log 21- (B )b a 22log 21log 21+ (C ) b a 22log 21log -(D ) b a 22log log 21- 11.直线2-=x y 与坐标轴分别交于B A ,两点,O 为坐标原点,则AOB ∆的面积为( ) (A )1(B )2(C )4(D )2412.甲.乙各进行一次射击,若甲击中目标的概率是0.4,乙击中目标的概率是0.5,且甲乙是否击中目标相互独立,则甲乙都击中目标的概率是 ( ) (A )0.9 (B )0.5 (C )0.4(D )0.213.双曲线19422=-y x 的渐近线方程为 ( )(A )094=±y x (B )049=±y x (C )032=±y x (D ) 023=±y x 14.已知函数()11-=x x f ,则 ()2f 与()2-f 的等差中项为 ( ) (A )21 (B )1 (C ) 31 (D ) 54 15.过抛物线x y C 4:2=的焦点作x 轴的垂线,交C 于B A 、两点,则=AB ( ) (A )2 (B )4(C )24(D )816.若向量)4,3(=a ,则与a 同方向的单位向量为 ( ) (A ))1,0((B ))0,1( (C ))54,53( (D ))53,54(17.已知函数3)(ax x f =,9)3('=f ,则 =a ( )(A )91 (B )31(C )1 (D )3 二.填空题:本大题共4小题;每小题4分,共16分,把答案写在答题卡相应题号后......... 18.函数xxy +=1的定义域为 19.已知函数12)(+=x x f ,则=)2(x f 20..圆522=+y x 在点)2,1(处的切线方程为 21.若28,37,x ,30四个数的平均数为35,则x=三.解答题:本大题共4小题,共49分.解答应写出推理.演算步骤,并将其写在答题卡相应的题号后.......... 22.(本小题满分12分)已知B A 、为⊙O 上的两点,且33=AB ,O ABO 30=∠,求⊙O 的半径. 23.(本小题满分12分)已知{}n a 是公差不为0的等差数列,且1262a a a ,,成等比数列,761262=++a a a ,求{}n a 的通项公式.24.(本小题满分12分)已知函数()22223+-=x x x f(1)求()x f ';(2)求()x f 在[]2,2-上的最大值和最小值. 25.(本小题满分13分)已知椭圆方程)0(1:2222>>=+b a by a x C ,)1,0(-M ,)21,3(N 为C 上两点.(1)求C 的方程(2)求C 的左焦点到直线MN 的距离.2022年成人高考数学(文科)真题试卷参考答案一、选择题.1.C 2.B 3.D 4.B 5.C 6.A 7.D 8.A 9.D 10.A 11.C 12.B 13.B 14.C 15.D 16.B 17.C二、填空题.18.()5,419. 320. 8021. sin cos x x x +三、解答题.22. 解:因为18030o o A B C =--=,所以4AB BC ==. 因此ABC ∆的面积01sin1202S AB BC =⨯⨯⨯= 23. 解:由已知得12(1)36a c a c +=⎧⎨+=⎩解得48a c =⎧⎨=⎩或93a c =⎧⎨=⎩24. 解:(1)C 的焦点为1(0,)8,准线方程为18y =-. 由题意得l 的方程为81+=x y . 因此l 与C 的准线的交点坐标为11(,)48--. (2)由2182y x y x⎧=+⎪⎨⎪=⎩得:21208x x --=.设11(,)A x y ,22(,)B x y ,则12121113,2244x x y y +=+=+=. 因此12114AB y y =++=. 25. 解:(1)因为'2()34f x x =-,所以'2(2)3248f =⨯-=.(2)令'()0f x =得1x =,2x =.因为11x <-,(1)3f -=,f =(2)0f =.因此()f x 在区间[]12-,的最大值为3,最小值为2021年成人高考数学(文科)真题试卷答案一.选择题(共17小题;每小题5分,共85分)1.A2.D3.D4.B5.C6.C7.A.8.D9.B10.A11.B12.D13.C14.C15.B16.C17.【参考答案】B二.填空题(共4小题;每小题4分,共16分)18.【参考答案】{}01|≠-≥x x x ,且 19.【参考答案】14+x 20.【参考答案】052=-+y x21.【参考答案】45三.解答题(共4小题,12+12+12+13分,共49分)22.【参考答案】解 :如图:过O 作AB OC ⊥于C ,易知233=BC ,因为O ABO 30=∠,所以 r OB OC 2121==,所以222)233(2+⎪⎭⎫ ⎝⎛=r r ,所以3=r .23.【参考答案】122+=n a n .24.【参考答案】解:(1)x x x f 46)(2'-=(2)令046)(2'=-=x x x f ,得:01=x ,322=x 10)2(,2746)32(,2)0(,22)2(===-=-f f f f第 11 页 共 11 页 所以22)2(,10)2(min max -=-===f y f y . 25.【参考答案】解:(1)由)1,0(-M 在椭圆上,知:1=b 将)21,3(N 坐标代入椭圆方程得:14132=+a ,解得:2=a . 故椭圆方程14:22=+y x C . (2)775。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科17题解法及评分细则
第一问:
解法一:因为三棱柱的侧面是正方形,
所以11,CC BC CC AC ^^,BC AC C =I .----------------------------1分 所以1CC ^底面ABC .-----------------------------------------------2分 因为BD Ì底面ABC ,所以1CC BD ^.-------------------------------3分 由已知可得,底面ABC 为正三角形.
因为D 是AC 中点,所以BD AC ^.--------------------------------------------------------4分 因为1
AC CC C ?,所以BD ^平面11ACC A .-------------------------------------- 5分
解法二:因为三棱柱的侧面是正方形,
所以11,CC BC CC AC ^^,BC AC C =I .----------------------------1分 所以1CC ^底面ABC .-----------------------------------------------2分 又1CC Ì平面11ACC A ,所以平面11ACC A ⊥平面ABC ,----------------3分 因为D 是AC 中点,所以BD AC ^.--------------------------------------------------------4分 又BD ⊂平面ABC ,且平面ABC ⋂平面11,
ACC A AC =
所以BD ^平面11ACC A .------------------------------------------------------------------ 5分 (若用空间向量证明可按步骤相应给分)
第二问 解法一:
如图,连接1B C 交1BC 于点O ,连接OD . -----6分 显然点O 为1B C 的中点.----------------------7分 因为D 是AC 中点, 所以1//AB OD .--------8分
又因为OD Ì平面1BC D ,1AB Ë平面1BC D ,---9分 所以直线
1//AB 平面1BC D . -------------------10分
解法二:取11A C 的中点G ,连接1,AG B G ,
所以四边形1ADC G 为平行四边形,所以AG //1DC ,-----------------6分
A
B
C D
A 1
B 1
C 1
O
因为AG ⊄平面1BDC ,1DC ⊂平面1BDC
所以AG //平面1BDC --------------------------------------------------------------7分 同理,1B G //平面1BDC ----------------------------------------------------------8分 又1AG B G G ⋂=,所以平面1AB G //平面1BDC --------------------------9分 又1AB ⊂平面1BDC ,所以直线
1//AB 平面1BC D . -----------------10分
第三问:
在平面D BC 1内的平面区域(包括边界)存在一点E ,使CE ⊥DM . 此时点E 是在线段1C D 上. 证明如下:
过C 作1CE C D ⊥交线段1C D 于E ,-------------------------------11分 由(Ⅰ)可知BD ^平面11ACC A ,而CE ⊂平面11ACC A , 所以BD CE ^.----------------------------------------------------------12分 又1CE C D ⊥,1BD C D D =I ,所以CE ^平面D BC 1.---13分 又DM ⊂D BC 1,所以CE ⊥DM . -----------------------14分 (若用空间向量证明可按步骤相应给分)
C 1
A
B
C
D
A 1
B 1
M
E。