几种电容降压式电源电路及原理
电容降压式电路的设计原理

关键词:电容降压 ;R C电路 ;直流电源
De s i g n p r i n c i p l e o f c a p a c i t o r - d e pr e s s i n g — v o l t a g e c i r c u i t
YANG Ha i . mi n g, YANG Gu o — z h i ,L I Yu e, S HU De - q u a n
摘 要 :与电源变压器降压相 比,电容 降压具有 电源体 积小、经济、可靠、效率高等优点 ,所 以常被 使 用 。通过 分析 电容 降压 式直 流 电源 电路 在 正 弦交 流 电 下 的 电路 原 理 ,给 出三 种 电容 降 压式 直流 电 源电路 的原理 图,并 总 结 出设 计 电容 降 压 式直 流 电 源的使 用条 件 、元 器件 要 求、设
2 0 1 3 年第7 期
文章编号 : 1 0 0 9—2 5 5 2 ( 2 0 1 3 ) 0 7—0 1 8 5— 0 2 中图分类号 : T M 9 1 文献标识码 : A
电容 降 压 式 电 路 的 设 计 原 理
杨 海明 , 杨 国志 , 李 悦 , 舒德泉
( 总参通信训练基地 , 河北 宣化 0 7 5 1 0 0 )
( Ge n e r a l S t a f C o mmu n i c a t i o n T r a i n i n g B a s e , Xu a n h u a 0 7 5 1 0 0, He b e i P r o v i n c e , C h i n a )
o f us e, c o mp o n e n t r e q u i r e me n t s ,d e s i g n p a r a me t e r s a n d n o t e s a b o u t c a p a c i t o r — d e p r e s s i n g — v o l t a g e DC p o we r s u p p l y c i r c u i t .
降压式变换电路(Buck电路)原理详解

降压式变换电路(Buck电路)原理详解⼀、BUCK电路基本结构开关导通时等效电路开关关断时等效电路⼆、等效的电路模型及基本规律(1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使 us(t)的直流分量可以通过,⽽抑制 us(t) 的谐波分量通过;电容上输出电压 uo(t)就是 us(t) 的直流分量再附加微⼩纹波uripple(t) 。
(2)电路⼯作频率很⾼,⼀个开关周期内电容充放电引起的纹波uripple(t) 很⼩,相对于电容上输出的直流电压Uo有:电容上电压宏观上可以看作恒定。
电路稳态⼯作时,输出电容上电压由微⼩的纹波和较⼤的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的⼩纹波近似原理。
(3)⼀个周期内电容充电电荷⾼于放电电荷时,电容电压升⾼,导致后⾯周期内充电电荷减⼩、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直⾄达到充放电平衡,此时电压维持不变;反之,如果⼀个周期内放电电荷⾼于充电电荷,将导致后⾯周期内充电电荷增加、放电电荷减⼩,使电容电压下降速度减慢,这种过程的延续直⾄达到充放电平衡,最终维持电压不变。
这种过程是电容上电压调整的过渡过程,在电路稳态⼯作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态⼯作时的⼀个普遍规律。
(4)开关S置于1位时,电感电流增加,电感储能;⽽当开关S置于2位时,电感电流减⼩,电感释能。
假定电流增加量⼤于电流减⼩量,则⼀个开关周期内电感上磁链增量为:此增量将产⽣⼀个平均感应电势:此电势将减⼩电感电流的上升速度并同时降低电感电流的下降速度,最终将导致⼀个周期内电感电流平均增量为零;⼀个开关周期内电感上磁链增量⼩于零的状况也⼀样。
这种在稳态状况下⼀个周期内电感电流平均增量(磁链平均增量)为零的现象称为:电感伏秒平衡。
这也是电⼒电⼦电路稳态运⾏时的⼜⼀个普遍规律。
三、电感电流连续⼯作模式(CCM)下稳态⼯作过程分析。
电容降压的工作原理

电容降压的工作原理电容降压是一种常见的电源降压技术,通过使用电容器来降低输入电压的方法。
本文将详细介绍电容降压的工作原理及其应用。
一、电容降压的原理电容降压的原理基于电容器的充放电过程。
当电容器接在电源电压下时,电容器开始充电,直到电压达到电源电压。
此时,电容器储存了一定的电荷。
当电容器与负载电阻串联连接时,电容器开始放电,将储存的电荷释放给负载。
放电过程中,电容器的电压逐渐降低,直到电压降到负载所需的电压为止。
二、电容降压的工作步骤1. 充电阶段:当电容器接通电源时,电容器开始充电。
在充电过程中,电容器两端的电压逐渐上升,直到达到电源电压为止。
充电过程中,电容器的电流逐渐减小,直到最终为零。
2. 放电阶段:当电容器与负载电阻串联连接时,电容器开始放电。
在放电过程中,电容器释放储存的电荷给负载,电容器的电压逐渐降低。
放电过程中,电容器的电流逐渐增加,直到最终达到负载所需的电流。
3. 循环工作:电容降压电路会不断重复充电和放电的过程,以维持负载所需的稳定输出电压。
通过控制充电和放电的时间比例,可以调整输出电压的大小。
三、电容降压的应用1. 电子设备:电容降压广泛应用于各种电子设备中,如手机、电脑、摄像机等。
通过电容降压可以将高压电源转换为低压电源,以满足电子设备对不同电压的需求。
2. LED照明:LED照明中常使用电容降压技术来提供稳定的电压和电流,以保证LED的正常工作。
通过电容降压可以将高压交流电转换为适合LED工作的低压直流电。
3. 电动汽车充电桩:电容降压技术也被应用于电动汽车充电桩中。
充电桩需要将市电的高压交流电转换为适合电动汽车充电的低压直流电。
电容降压可以实现这一转换过程。
4. 可再生能源系统:在太阳能发电和风力发电等可再生能源系统中,电容降压技术可以用来将不稳定的输出电压转换为稳定的输出电压,以满足负载设备的需求。
四、电容降压的优缺点1. 优点:- 简单可靠:电容降压电路结构简单,可靠性高,适用于各种应用场景。
电容降压式电源原理及电路

电容降压式电源原理及电路
电容降压也称为电容滤波,是一种常见的用于降低电压的电源电路。
其基本原理是通过将交流电压经过整流后,使用电容器来滤除杂散的高频噪声和波动,从而输出稳定的直流电压。
1.变压器:
变压器是电容降压式电源的重要组成部分,用于将市电的高压变换为所需的较低的交流电压。
变压器是由主线圈和次级线圈构成的,主线圈连接交流电源,次级线圈连接整流电路,通过变压器的电磁感应作用,可以实现电压的降低。
2.整流电路:
整流电路主要用于将交流电转换为直流电。
常见的整流电路有半波整流和全波整流两种。
半波整流只利用了输入交流电的一个半径波,输出直流电压的波形带有明显的脉动,不够稳定;而全波整流则可以利用输入交流电的全部波形,输出的直流电压更加稳定。
3.滤波电路:
滤波电路主要通过电容器来平滑输出的直流电压。
电容器具有存储电荷的能力,当输入的交流电压超过其储存能力时,电容器充电,当交流电压低于其储存能力时,电容器放电。
通过这种方式,电容器可以平均输出波动较小的直流电压。
```
交流电源
+-------------
输入变压器
+--=>---=====--+整流桥
+-----,------+
滤波电
+-----,------+
负载
```
1.输入变压器将输入交流电压变压为所需的较低的交流电压。
2.整流桥将输入的交流电压转化为直流电压,输出为脉动的直流电压。
3.滤波电容通过存储和释放电荷来平滑直流电压,输出稳定的直流电压。
4.负载是从电容滤波电路中提取所需的电流的设备,可以是电子器件、电路板等等。
电容降压式电源原理及电路

电容降压式电源原理及电路电容降压式电源将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。
一、电路原理电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。
在实际应用时常常采用的是图2的所示的电路。
当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。
整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。
二、器件选择1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。
因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。
C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。
当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。
2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。
3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。
三、设计举例图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。
C1在电路中的容抗Xc为:Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K流过电容器C1的充电电流(Ic)为:Ic = U / Xc = 220 / 9.65 = 22mA。
通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5I,其中C的容量单位是μF,Io的单位是A。
电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。
请看:电容降压式电源电路的计算与元件选择电容降压式电源电路又称恒流电源电路,由于省去了笨重的交流电源变压器,体积小巧,电路简洁,元件易购,成本低廉,在便携式小家电中应用十分广泛。
电感电容降压电路工作原理

电感电容降压电路工作原理电感电容降压电路是一种常见的电路拓扑结构,它能够将高电压的直流电源降压到需要的电压水平。
这种电路通常被广泛应用在各种电子设备和系统中,包括通信设备、电源模块、调节器和逆变器等。
了解其工作原理对于理解电子电路的基本原理和提高工程技能至关重要。
下面将详细介绍电感电容降压电路的工作原理。
一、电感电容降压电路的基本结构电感电容降压电路通常由输入电容、滤波电感、开关管、输出整流电容和输出负载组成。
在工作中,输入电源的电压通过滤波电感和开关管的控制被转换成所需的输出电压,输出负载会接收到这一水平的电压。
整个电路可以看作一个能够转换高电压到低电压的控制系统。
二、电路的工作原理1. 输入滤波在电路的工作开始时,输入电源的直流电压首先通过输入电容进行滤波。
输入电容能够去除输入电源中的高频噪音并降低电压的纹波。
2. 开关管的控制控制开关管的导通及关断状态能够实现对输入电压的调节。
当开关管导通时,输入电源的电压会通过电感传导到输出端,此时开关管处于导通状态。
而当开关管关断时,则输入电源的电压不会传导到输出端。
根据开关管的开关频率和占空比大小,输出的电压也会相应地被调节。
3. 输出整流在输出端,通常还会加上一个输出整流电容。
输出整流电容能够平滑输出电压,使其更加稳定。
三、电感电容降压电路的工作特点电感电容降压电路的工作原理在工程中有一些显著的特点:1. 有效降压:由于电感的特性,电感电容降压电路能够很好地实现高压到低压的转换,保证输出电压的稳定性。
2. 高效率:通过控制开关管的开关频率和占空比,电感电容降压电路能够实现高效率的电压转换。
3. 可靠性:电感电容降压电路通常具有较高的工作可靠性,能够适应多种工作环境和负载变化。
四、电感电容降压电路在实际工程中的应用电感电容降压电路在电子电路和电源系统中具有广泛的应用,例如在直流-直流变换器、开关电源、逆变器、电源管理单元以及各种嵌入式系统中都能看到电感电容降压电路的身影。
电容降压电路原理详解

电容降压电路原理详解1.电压分压原理:在电容降压电路中,电容器起到了一个分压器的作用。
当电容器充电时,通过电容器的两端产生一个电压差,这个电压差可以用来分担输入电源的电压,降低输出电压。
2.电荷传输原理:在电容充电过程中,电荷在电容器和电源之间传输。
当电容器充电时,电荷从电源向电容器流动,电容器的电压逐渐增加;当电容器放电时,电荷从电容器向负载流动,电容器的电压逐渐降低。
通过调节充电时间和放电时间可以控制输出电压的大小。
3.时间常数原理:电容降压电路的输出电压与电容器的电荷和负载电流有关,也与充电时间和放电时间有关。
在电容降压电路中,通过调节电容器充电时间和放电时间的比例,可以控制输出电压的稳定性和精度。
根据以上原理,实际的电容降压电路可以分为两种基本结构:RC电容降压电路和LC电容降压电路。
1.RC电容降压电路:RC电容降压电路由一个电阻和一个电容组成。
当电源接通时,电容器开始充电,电容器的电压逐渐增加,直到达到与电源电压相等的值。
然后,当电源断开时,电容器开始放电,输出电压逐渐降低。
通过调节电阻和电容的数值可以控制输出电压的大小。
2.LC电容降压电路:LC电容降压电路由一个电感和一个电容组成。
当电源接通时,电容器开始充电,同时电感储存了电流。
在电源断开时,电感开始释放储存的电流,使电容器继续供电。
通过调节电感和电容的数值可以控制输出电压的大小。
以上是电容降压电路的基本原理和结构。
电容降压电路广泛应用于各种电子设备中,例如电源适配器、稳压电源等。
通过合理设计和选择电阻、电容和电感的数值,可以实现稳定、高效的电源降压功能。
电容降压的工作原理

电容降压的工作原理电容降压是利用电容的储能和释能特性实现电源输出电压降低的一种电路设计。
在电容降压电路中,电容被连接在输入电源和负载之间,通过电容器的充电和放电过程来实现电压降低。
电容的充电过程是指在接通电源之初,电容器开始从电源获取电荷储存起来,电容器两极的电压逐渐增加。
根据电容器的特性,充电过程中电容器两极电压和充电电流之间的关系满足以下公式:i(t) = C * dV(t)/dt其中,i(t)表示时间t时刻的充电电流,C为电容值,V(t)为时间t 时刻的电容器两极电压。
电容的放电过程是指在电容器两极电压高于输出电压要求时,电容器开始释放电荷给负载,使电容器两极电压逐渐降低。
根据电容器的特性,放电过程中电容器两极电压和放电电流之间的关系满足以下公式:i(t) = -C * dV(t)/dt由此可见,电容充电和放电过程中的电流都和电容器两极电压的变化率有关。
在电容降压电路中,可以通过调整充电和放电过程的时间来控制输出电压的大小。
对于电容降压电路,常见的电路拓扑有三种:电容器在负载电流路径前、电容器在负载电流路径中、电容器在负载电流路径后。
在电容器在负载电流路径前的电路拓扑中,电容器直接连接在电源输出和负载之间。
电容器首先被电源充电,当电容器充满电荷后,开始向负载放电。
通过控制充电和放电时间,可以控制输出电压的大小。
在电容器在负载电流路径中的电路拓扑中,电容器被连接在电源输出和负载之间,形成一个串联电路。
电容器在充电和放电过程中,负载电流通过电容进行传输,从而实现电压降低。
在电容器在负载电流路径后的电路拓扑中,电容器被连接在负载之前。
当电容器从电源充满电荷后,电容器两极的电压开始降低,同时负载从电容器获取电荷进行工作。
通过控制电容器充电和放电的时间,可以控制输出电压的大小。
除了以上三种常见的电路拓扑,还有一些其他特殊的电容降压电路设计,例如双极性电容降压电路、多级电容降压电路等。
总的来说,电容降压电路通过合理调节电容的充放电过程,利用电容的特性实现电源输出电压降低。