北师大版数学七年级下第一章 整式的乘除(复习)

合集下载

北师七年级下册第一章《整式的乘除》单元复习

北师七年级下册第一章《整式的乘除》单元复习

北师七年级下册第一章《整式的乘除》单元复习一、幂的乘方与积的乘方:法则:幂的乘方,底数 ,指数 ;公式:法则:积的乘方等于积中各因式分别 ,并把所得的幂 ;公式: 【练】1、幂的乘方: =5)(m a ;=-22)(a ;=-34)(y ; =-4664)()(x x ;2、若==m m x x 93,2则 ;25,3,m n m n a a a +===若则 ;3、积的乘方:42()xy = ;33()a b -= ;24()xy -= ; 2(3)xy -= ;4、10010014()4⨯= ; 2010200950.2⨯= ; 9810031()(1)43⨯= ; 二、同底数幂的乘法:法则:同底数幂相乘,底数 ,指数 ;公式: 【练】1、=-⋅-23)2()2( ;=⋅-52)(x x ;=-⋅⋅32)(x x x ;2、若===+y x y x a a a 则,3,2 ;若==+23,23x x 则 。

3、如果,16123a a a n n =⋅+-则n= .三、同底数幂的除法:法则:同底数幂相除,底数 ,指数 ;公式: 【练】1、63()a a a ÷÷= ;63()()()a a a -÷-÷-= ;11m m x x x +-÷⋅= ;11m m x x x +-⋅÷=2、若5ma =,6na =,则m na+= ,m n a -= ;若2x -5y -3=0,则y x 324÷= 。

特殊公式:0a = (其中 ), pa -= ( )【练】1、21()2-= ; 11()3-- ; 2(3)--= ; =÷33a a ;2、若()0x-31=有意义,则x 的取值范围是 。

科学记数法:1、用科学记数法表示下列各数:0.000 001= ;0.000 501= ;-12 200 000=2、还原下列各数:7-1014.3-⨯= ;3-10141.2⨯= ;51001.2⨯= 。

北师大版七年级数学下册第一章整式的乘除复习课件

北师大版七年级数学下册第一章整式的乘除复习课件

a3 • a3 2a3,b4 b4 b8, m2 m2 2m2 (x)3 • (x)2 • (x) (x)6 x6
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (a m ) n a mn
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
a, 2x3 y 4 , 23 mn ,
2 3
Π

4、多项式:几个单项式的和叫多项式。
a 2b 3
5、多项式的项及次数:组成多项式中的单项式叫多 项式的项,多项式中次数最高项的次数叫多项式的次 数。特别注意,多项式的次数不是组成多项式的所有 字母指数和!!!
练习:指出下列多项式的次数及项。
2x3 y2 5m5n 2 , 2x3 y2z 3 ab4 72
第一章 整式的乘除
(复习课)
北师大版数学七年级下 第一章 整式的运算
本章知识结构:
一、整式的有关概念
1、单项式 2、单项式的系数及次数 3、多项式 4、多项式的项、次数 5、整式
二、整式的运算
(一)整式的加减法
1、去括号 2、合并同类项
(二)整式的乘法
1、同底数的幂相乘 2、幂的乘方 3、积的乘方 4、同底数的幂相除 5、单项式乘以单项式 6、单项式乘以多项式 7、多项式乘以多项式 8、平方差公式 9、完全平方公式
(二)整式的除法
就你 这回 些忆 知起 识了
吗 ?
1、单项式除以单项式 2、多项式除以单项式
一、整式的有关概念
1、单项式:数 单与独字一母个乘数积或,字这母样也的是代单数项式式叫。单项式。 2、单项式的系数: 单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

(完整版)最新北师大版数学七年级下册第一章_整式的乘除知识点总结及练习题

☆☆☆ 北师大版数学七年级【下册】第一章 整式的乘除一、 同底数幂的乘法同底数幂的乘法法则: n m n ma a a +=⋅(m,n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是 一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为p n m p n ma a a a ++=⋅⋅(其中m 、n 、p 均为正数);⑤公式还可以逆用:n m nm a a a⋅=+(m 、n 均为正整数)二.幂的乘方与积的乘方1。

幂的乘方法则:mnnm a a =)((m ,n 都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2. ),()()(都为正数n m a a a mn mn nm ==.3。

底数有负号时,运算时要注意,底数是a 与(-a )时不是同底,但可以利用乘方法则化成同底,如将(-a )3化成—a 3⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a n n n4.底数有时形式不同,但可以化成相同。

5.要注意区别(ab )n与(a+b)n意义是不同的,不要误以为(a+b )n=a n+b n(a 、b 均不为零).6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即nnnb a ab =)((n 为正整数)。

7.幂的乘方与积乘方法则均可逆向运用。

三. 同底数幂的除法1。

同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n ma a a -=÷ (a ≠0,m 、n 都是正数,且m 〉n ).2。

在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除"而且0不能做除数,所以法则中a ≠0。

北师大版七年级下册 第一章 整式的乘除 复习巩固 讲义(全)

北师大版七年级下册 第一章 整式的乘除 复习巩固 讲义(全)

.

6、已知 a+b=3, a2+b2=5,求 ab 的值
7、若 m n 10 , mn 24 ,则 m2 n2
.
8、若 x y 8, xy 10 ,则 x 2 y 2 =
.
8、已知: x y 3, x 2 y 2 3xy 4 , 求: x3 y xy 3 的值

考点 5:不含项
【例 7】
1、要使 6x a2x 1 的结果中不含 x 的一次项,则 a 等于( )
A.0
B.1
C.2
D.3
2、使 x2 px 8 x2 3x q 的积中不含 x2 和 x3 ,求 p,q 的值。
变式训练
1、如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为

2、若
x
m
考点 4:乘法公式的灵活运用与拓展
【例 6】
1、已知 x y 6, xy 8 ;则 x2 y2 =
.
2、已知 m2 9m 1 0 ,则 m2 m2 =
.
3、若 x2 8x 18 2k 是一个完全平方式,则 k
.

变式训练
1、已知 x 2 5x 1 0 ,则 x 2 x 2 =
x
1 3
的乘积中不含
x
的一次项,则
m
等于______.
3、当 k =
时,多项式 x 2 3kxy 3y 2 1 xy 8 中不含 xy 项. 3
4、已知 ax2 bx 1 与 2x2 3x 1 的积不含 x3 的项,也不含 x 的项,试求 a 与 b 的值。
4、如(x+m)与(x+3)的乘积中不含 x 的一次项,则 m 的值。

新版北师大七年级数学下册第一章《整式的乘除运算》知识点总结及习题

新版北师大七年级数学下册第一章《整式的乘除运算》知识点总结及习题

第一章整式的乘除知识点总结一、单项式:数字与字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

一个单项式中,数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。

注意:π是数字,而不是字母,它的系数是π,次数是0. 二、多项式几个单项式的代数和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式:单项式和多项式统称为整式。

四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。

五、幂的运算性质:1、同底数幂的乘法:),(都是正整数n m aa a nm nm+=∙2、幂的乘方:),(都是正整数)(n m a a mnn m =3、积的乘方:)()(都是正整数n b a ab nnn= 4、同底数幂的除法:)0,,(≠=÷-a n m a a a nm nm都是正整数六、零指数幂和负整数指数幂: 1、零指数幂:);0(10≠=a a 2、负整数指数幂:),0(1是正整数p a aa p p≠=- 七、整式的乘除法:1、单项式乘以单项式:法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

5、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

八、整式乘法公式:1、平方差公式: 22))((b a b a b a -=-+2、完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-七年级数学(下)第一章《整式的运算》一、 知识点:1、都是数与字母的乘积的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。

北师大版七下第一章整式的乘除复习课件

北师大版七下第一章整式的乘除复习课件

灵活应用:
1、若am=3,an=5,则am-n=_____ 2、计算(0.2)2012 x 52013=_____ 3、已知a2-b2=30,a-b=6,则 a+b=_____ 4、计算(x+y)2(x-y)2
学以致用
有一位狡猾的地主,把一块边 长为a米的正方形土地租给赵老汉 耕种。隔了一年,他对赵老汉说: “我把你这块地的一边减少6米, 另一边增加6米,继续租给你,你 也没有吃亏,你看如何?”赵老 汉一听,觉得好像没有吃亏,就 答应了。同学们,你们觉得赵老 汉有没有吃亏?为什么?
(am)n=amn
am÷an=am-n (a+b)(a-b)=a2-b2
用相同项的平方减去相反项的平方。
(a+b)2=a2+2ab+b2 (a-b)2 =a2-2ab+b2
首平方,尾平方,积的两倍放中央。
第一章复习
考点攻略
►考点一 幂的运算
3 例 1 2a9-a9=________ =(________) =a7· ________ = a3 a2 a9 a12 ________÷ a3.
易错警示 平方差公式和完全平方公式容易混淆,需要牢记每个 公式的特征.
合作探究:
x y 已知a =18,a =3,
x+2y 求a 的值

点拨提升(注意公式的逆运用)
am.an m n (a ) n (ab) am an (a+b)(a-b) (a+b)2 (a-b)2

am+n mn a n n a b am-n a2-b2 a2+2ab+b2 a2-2ab+b2
用科学计数法表示:0.0000032= 3.2x10-6

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习

(新北师大七下)第一单元整式的乘除基础知识+练习 姓名一.〈知识点〉回顾1、幂的运算法则:(1)同底数幂相乘:n m a a ∙= (m 、n 为正整数)=⋅⋅32a a a __ ; 108a a ∙= ;421010⋅=____ ;25()()()x x x ---=(2)幂的乘方:()n m a = (m 、n 为正整数) 22(10)= 22()a = ___)(32=a 25()x ⎡⎤-⎣⎦= (3)积的乘方:()nab = (n 为正整数) _____)(3=xy ; 32)2(mn -=_______ ; 23)102(⨯=_________ (4)同底数幂相除:m n a a ÷= (m 、n 为正整数,a ≠0) 87 a a ÷= ; 22b b ÷= ;(5)零指数0a = (a ≠ ) (-2)0= 负指数=-p a (a ≠ )(-1)-2= 2)21(-= 5-2= (6)科学记数法:0.00000058=2.整式的乘除① 单项式×单项式: _____5=⋅x x ; 2a ·2a= ; ______=⋅ab ab ; -4xy • 3x 2y=_______5343=⋅x x ; _______)2)((=--x x ;_________)2(32=-∙a b a② 单项式×多项式: ()m a b c ++=a (2a 2-4a +3)= ; -2a 2(3a 2+4a -2)= 。

③多项式×多项式相乘:=++))((b a n m __________________(x -2)(x -6)= =(2x -1)(3x +2)= = ________________)75)(4(=-+y x y x =④单项式÷单项式:27x 3x ÷= 12mn 4mn ÷=-⑤多项式÷单项式:(4x 3y +6x 2y 2-xy 3)÷2xy=(6a 4-4a 3-2a 2)÷(-2a 2)=3.乘法公式: 平方差公式:___________________))((=-+b a b a完全平方和公式:______________________)(2=+b a 完全平方差公式:______________________)(2=-b a (1)(x +2)(x -2) (2)(x -8y )(x +8y ) (3)(2x -3)(-2x -3)解:原式= 解:原式= 解:原式=(4)2(3)a b -= (5)21(4)2x + (6)2(2)a b -+=解:原式= 解:原式= 解:原式=综合练习:1.x m =3,x n =5,则x m+n = ,x 3m+2n = , x m-n = , x 3m-2n = 。

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
七年级数学下册——第一章 整式的乘除(复习) 单项式 整 式 多项式 同底数幂的乘法 幂的乘方 积的乘方 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法
多项式除以单项式 第1章 整式的乘除 单元测试卷
一、选择题(共10小题,每小题3分,共30分)
温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!
1.下列运算正确的是( )
A. 954a a a =+
B. 33333a a a a =⋅⋅
C. 954632a a a =⨯
D. ()743a a =-
=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )
A. 1-
B. 1
C. 0
D. 1997
3.设()()A b a b a +-=+2
23535,则A=( ) A. 30ab B. 60ab C. 15ab D. 12ab
4.已知,3,5=-=+xy y x 则=+2
2y x ( ) A. 25. B 25- C 19 D 、19-
5.已知,5,3==b
a x x 则=-
b a x 23( ) A 、2527 B 、10
9 C 、53 D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:
①(2a +b )(m +n ); ②2a (m +n )+b (m +n );
③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,
你认为其中正确的有
A 、①②
B 、③④
C 、①②③
D 、①②③④ ( )
7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )
A 、 –3
B 、3
C 、0
D 、1 8.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )
A 、84
B 、78
C 、12
D 、6
9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )
A .a 8+2a 4b 4+b 8
B .a 8-2a 4b 4+b 8
C .a 8+b 8
D .a 8-b 8
10.已知m m Q m P 15
8,11572-=-=(m 为任意实数),则P 、Q 的大小关系为
n
m a
b a
( )
A 、Q P >
B 、Q P =
C 、Q P <
D 、不能确定
二、填空题(共6小题,每小题4分,共24分)
温馨提示:填空题必须是将最简洁最正确的答案填在空格处!
11.设12142
++mx x 是一个完全平方式,则m =_______。

12.已知51=+x x ,那么221x
x +=_______。

13.方程()()()()41812523=-+--+x x x x 的解是_______。

14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。

15.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.
16.若622=-n m ,且3=-n m ,则=+n m .
三、解答题(共8题,共66分)
温馨提示:解答题必须将解答过程清楚地表述出来!
17计算:(本题9分)
(1)()
()02201214.3211π--⎪⎭⎫ ⎝⎛-+--
(2)(2)()()()()2
33232222x y x xy y
x ÷-+-⋅
(3)()()2
22223366m m
n m n m -÷--
18、(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,其中2
1=a ,2-=b 。

(2)已知31=
-x ,求代数式4)1(4)1(2++-+x x 的值.
(3)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .。

相关文档
最新文档