功率放大器的基本知识
功率放大器工作原理

功率放大器工作原理功率放大器是一种用于放大电信号的电子设备,可以将低功率输入信号转换为高功率输出信号。
它在各种电子设备中被广泛应用,包括音频放大器、无线通信系统和雷达系统等。
本文将介绍功率放大器的工作原理和其基本分类。
一、功率放大器的基本原理功率放大器的工作原理基于晶体管的放大特性。
晶体管是一种半导体器件,可以通过控制输入信号的电流或电压来放大电流或电压。
功率放大器通常由多个晶体管级联组成,每个晶体管负责放大输入信号的一部分。
下面将详细介绍功率放大器的几个关键组成部分。
1. 输入级功率放大器的输入级通常是一个小信号放大器,用于放大输入信号的幅度。
输入级由一个或多个晶体管组成,输入信号通过这些晶体管进行放大,并传递给下一个级联的放大器。
2. 驱动级驱动级是功率放大器中的中间级,用于信号的进一步放大和处理。
驱动级通常由多个晶体管级联组成,其输入信号来自输入级,并将信号放大到足够的幅度,以供给功率放大级使用。
3. 功率放大级功率放大级是功率放大器的核心部分,用于放大信号的功率。
功率放大级由多个功率晶体管并联或并联放大组成,每个晶体管负责放大输入信号的一部分功率。
通过合理设计功率放大级,可以实现较大的输出功率。
4. 输出级输出级负责将信号的功率放大到所需的水平,并驱动负载。
通常情况下,输出级具有较低的输出阻抗,并能够输出相应的高功率信号。
输出级通常由一个或多个功率晶体管组成,其输出信号可用来驱动扬声器、天线或其他负载。
二、功率放大器的基本分类根据不同的工作原理和应用,功率放大器可以分为各种不同的类型。
下面介绍几种常见的功率放大器分类。
1. A类功率放大器A类功率放大器是最常见的一种功率放大器,适用于音频放大器等应用。
它通过将输入信号与直流电压进行叠加,实现对信号的放大。
A类功率放大器的优势在于放大器的线性度高,但效率相对较低。
2. B类功率放大器B类功率放大器是一种高效率的功率放大器,在音频放大器和激光器等应用中广泛使用。
基本放大电路知识点总结

基本放大电路知识点总结放大电路是一种电子电路,其主要功能是增大输入信号的幅度。
它在各种电子设备中起到重要作用,如音频放大器、功率放大器等。
以下是基本放大电路的一些知识点总结:1. 放大器的功能:放大器的主要功能是将输入信号的幅度增大到所需的输出水平。
输入信号可以是声音、图像或其他形式的电信号。
放大器通过提供电流、电压或功率增益来实现信号的放大。
2. 放大器分类:根据放大器的工作方式和电路配置,放大器可以分为两类:线性放大器和非线性放大器。
线性放大器输出信号与输入信号呈线性关系,常用于音频放大器等需要保持信号准确度的应用。
非线性放大器输出信号与输入信号的关系不是线性的,常用于功率放大器等需要处理高功率信号的应用。
3. 放大器的增益:放大器的增益表示信号在通过放大器时的幅度增加倍数。
增益可以用电流增益、电压增益或功率增益来衡量。
电流增益是输出电流与输入电流之间的比值,电压增益是输出电压与输入电压之间的比值,功率增益是输出功率与输入功率之间的比值。
4. 放大器的频率响应:放大器的频率响应指的是其对不同频率信号的放大程度。
不同放大器对不同频率的信号具有不同的放大能力。
频率响应可以通过幅频特性曲线来表示,该曲线显示了放大器在不同频率下的增益。
5. 放大器的失真:放大器的失真是指输出信号与输入信号之间的差异。
失真可能导致信号畸变,使得输出信号与输入信号不完全一致。
常见的失真类型包括线性失真、非线性失真、相位失真等。
减小失真是设计放大电路时的一个重要考虑因素。
以上是对基本放大电路的知识点的简要总结。
放大电路是电子学中的重要概念,深入学习和理解这些知识点将有助于更好地应用和设计电子设备中的放大器。
功放与扬声器基础知识介绍资料

1、 如何选择功率放大器 A、根据厅堂的性质,环境和用途来选择不同类型的功 放 · 舞厅、DISCO厅选择大功率功放 · 专业使用选择频率响应范围宽,失真度小,信噪比大, 音色优美的功放。 · KTV选用小功率,多功能的功放。 B、根据音频信号传输距离来选择 · 多功能厅的会议系统采用远距离分散式扬声器系 统,需要选用定压式功放。 · 歌舞厅、剧院主音箱系统选择定阻式功放。 C、根据音箱功率选择功放,功放功率大于音箱功率 2/3。
二、功放的性能指标
1、输出功率:是功放送给扬声器的电功率,它包括: A、额定功率:指在不失真的前提下,功放的最大输 出功率。 B、最大输出功率:不考虑失真的大小,将功放音量开 到最大,此时它所提供的电功率。 C、音乐输出功率:在输出不失真的情况下,功放对音 乐信号的瞬间最大输出功率。 D、峰值音乐输出功率:不考虑失真的大小,功放所能 提供的最大音乐功率。
4、倒相式:在扬声器面板上开一个口或插 入一根倒相管,使箱内的弹性空气和管 内空气发生共振,使墀产生180度倒相, 当纸盆振动时,前后声波相叠加,增加 低频辐射。
5 、倒相式:在扬声器面板上开一个口或插入一根倒 相管,使箱内的弹性空气和管内空气发生共振,使墀 产生180度倒相,当纸盆振动时,前后声波相叠加,增 加低频辐射。 6、声柱:是一种特殊音箱,常用于大型剧场,用金属 板材或木料制成一个长方形的柱状体,在柱体内以直 线排列一定数量的扬声器,形成同轴辐射声的扬声器 系统(如图)。
五、扬声器(音箱)的选用
1、 专业扩声用扬声器 多用于各种类型的室内外演出,主要是向广大观众或 听众播放音乐,歌曲等节目。要选用功率大、频带宽、 失真小、灵敏度高的扬声器,高频单元一般选用号角 式扬声器。中、低频单元多选用纸盆扬声器,大型剧 场使用声柱。供调控人员及演奏人员监听用:监控室监听由调控 人员来监听节目信号,及时发现节目声音出现的问题 并加以调整和处理,所以要求这类扬声器保真度要高, 瞬态特性要好,能真实反映原声信号的质量。多选用 扩散型组合音箱。 B、供演奏人员监听用的扬声器:一般称为返送扬声器, 多使用小型扬声器,指向性要强,中高音特性要好, 以保证返回的声音信号有较高的清晰度,并防止演奏 现场声反馈
功率放大器(功放)知识讲解

功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。
一套良好的音响系统功放的作用功不可没。
功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。
由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。
分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类.功放(又称D类)。
甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。
甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。
单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。
乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。
乙类放大器的优点是效率高,缺点是会产生交越失真。
甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。
甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。
许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。
这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。
按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。
单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。
功率放大器(功放)知识

功放基本知识:功放俗称“扩音机”他的作用就是把来自音源或前级放大器的弱信号放大,推动音箱放声。
一套良好的音响系统功放的作用功不可没。
功放是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。
功率放大器简称功放,可以说是各类音响器材中最大的一个家族了,其作用主要是将音源器材输入的较微弱信号进行放大后,产生足够大的电流去推动扬声器进行声音的重放。
由于考虑功率、阻抗、失真、动态以及不同的使用范围和控制调节功能,不同的功放在内部的信号处理、线路设计和生产工艺上也各不相同。
分类:按功放中功放管的导电方式不同,可以分为甲类功放(又称A类)、乙类功放(又称B类)、甲乙类功放(又称AB类)和丁类.功放(又称D类)。
甲类功放是指在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)的一类放大器。
甲类放大器工作时会产生高热,效率很低,但固有的优点是不存在交越失真。
单端放大器都是甲类工作方式,推挽放大器可以是甲类,也可以是乙类或甲乙类。
乙类功放是指正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。
乙类放大器的优点是效率高,缺点是会产生交越失真。
甲乙类功放界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。
甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
丁类功放也称数字式放大器,利用极高频率的转换开关电路来放大音频信号,具有效率高,体积小的优点。
许多功率高达1000W的丁类放大器,体积只不过像VHS录像带那么大。
这类放大器不适宜于用作宽频带的放大器,但在有源超低音音箱中有较多的应用。
按功放输出级放大元件的数量,可以分为单端放大器和推挽放大器。
单端放大器的输出级由一只放大元件(或多只元件但并联成一组)完成对信号正负两个半周的放大。
关于音响中的功率放大器知识汇总

关于音响中的功率放大器知识汇总一台扩大机的音质优劣表现,受到许多因素的影响,有时是预热不够,有时是搭配错误,甚至是因不同空间环境造成。
若单纯就器材而言,电路设计、组件选用、机箱材质…等,也会造成各厂牌扩大机有不同的表现。
机器愈重愈好声?君子不重则不威,虽然此重非彼重,但用在音响上似乎有些道理。
有人购买器材前会先捻捻份量,Kg数低的就不考虑。
如何让机器重?机箱和变压器是两大要件。
Hi-End机常用铝质机箱,一是阳极处理(高污染)比较漂亮,二是不导磁;或是面板用铝材,其它部份用铁材。
真要比重量,一定的体积,铁比铝重得多,而且铁箱的处理(通常是烤漆,少部份是镀铬),较不污染,费用比铝箱便宜。
但就是因为有「不导磁」这个特点,铝质机箱还是到处可见。
前级扩大机比较轻,因为没有大散热片,而且电源变压器功率容量也不大,所以很少有超重量前级扩大机。
后级扩大机就不同,因输出功率高,所以电源变压器大,再加上滤波电容及两侧宽宽厚厚的散热片,就真的很雄壮威武了。
输出功率相同,但品牌不同的两台后级重量必然不等。
有些设计师很注重电源变压器的功率容量,常安排在输出功率的六倍以上。
例如100W输出的单声道后级,欧美机器至少会采用600W,甚至800W大火牛。
日制扩大机就绝对不会如此费工增本,同样的机器,最多只用400W变压器。
一来一往差了200~400W,重量当然不同。
滤波电容也是要素之一,大体积电容俗称大水塘,其份量自然比小水塘足。
纯A类后级更是免不了巨型散热片,再加上大变压器、大水塘,自然就是威武真君子。
千万不要忽略小功率真空管机,单端输出立体声300B虽然只有7W×2,但它多出两只输出奥斗,若再算上choke 及铁箱,几乎一定比60W×2晶体机还重。
铜箱也不导磁,遮蔽特性也优于铝箱,重量更是让人尊敬三分。
但铜板的不氧化处理很困难,若是电镀,就会失去铜的特性。
故你看日制高级机,铜板或镀铜板常隐藏在机箱内部,绝对不能电镀,甚至涂上防焊油墨都不可以,一定要维持铜的「真面目」。
高频丙类功率放大器基础知识详解

高频丙类功率放大器基础知识详解高频功率放大器是各种无线电发射机的主要组成部分,它与低频功率放大器一样要求输出功率大、效率高。
但不同的是,高频功放的工作频率高(几万千赫兹到几万兆赫兹数量级),但相对频带很窄。
高频功放一般工作在丙类状态,其放大电路一般采用选频网络作为负载回路。
由于高频功放通常工作于丙类,属于非线性电路,因此不能用线性等效电路来分析。
对它们的分析方法有图解法和解析近似分析法,这里我们采用最常的解析近似分析法中的一种折线法来简要叙述高频功放的基本工作原理和工作状态。
高频丙类谐振功放的电路主要由放大部分和频带选通部分组成,其结构框图简单示意如图6.17所示。
输出信号其中,频带选通部分由选频滤波电路实现,其主要任务是滤除输入到放大电路的无用频率分量,滤除放大器件产生的无用谐波分量,以减小非线性失真。
高频丙类谐振功放的具体原理电路,如图6.18所示。
这是一个以晶体管为核心的非线性放大器,其转移特性曲线,如图6.19(a)所示。
尽管集电极电流是周期性非正弦波、是不连续的,但输出电压却是连续的。
如果从能量交换的角度来解释当ic=0时为什么还会有输出电压。
这是由于选频网络是由LC并联电路构成,当ic=0时,L与C支路电流并不为零,只是大小相等而方向相反而已。
说明此时回路正在进行着电场能量与磁场能量的交换,所以输出是不断的,连续的。
当然如果输出回路是一电阻网络,自然不会出现这种现象。
需要说明的是工作于功率放大器中的选频网络,为了适应输出较大功率的要求,通常回路的品质因数都较低,一般在10左右。
由于输出回路调谐在基波频率上,输出电路中的高次谐波处于失谐状态,相应的输出电压很小,因此,在放大电路的输出功率Po等于集电极电流基波分量在负载R上的平均功率,即谐振功放中只需研究直流及基波功率2.电源供给功率(PE)电源电压UCC与流过UCC的集电极电流ic的直流分量IC0的乘积,用PE表示,即Pe=Ucc*Ico(6.25)3.集电极管耗(PC)电源供给功率PE与输出基波交流功率Po之差,用PC表示,即Pc=Pe-Po (6.26)丙类放大器的工作状态人们根据是否进入器件的截止区,以及进入截止区的深入程度,把放大电路分为甲类、乙类、甲乙类和丙类四种工作状态。
高功率放大器(HPA)基础知识

高功率放大器(HPA)基础知识1、用途及特点在无线通信系统,高功放(HPA)是发信电路重要组成部份。
通常,它由多级放大器构成,其输出端是发射链路最高电平点,它经双工器与发射天线连接。
HPA在发信电路部位如图1所示。
高功放主要作用,是在发射频率上,将低电平信号放大到远距离传输所要求的高功率电平。
因频段、传输距离、天线增益、信号调制方式等因素,不同发射机HPA输出功率差异甚大。
在常用微波频段(800MHz~28GHz)可从几十瓦到几十毫瓦不等。
高功放电路特点:(1)在大容量(或多载波)数字通信系统,设计HPA电路尤其是末级电路,常发生大功率输出与线性要求之间矛盾。
经常采用三种解决办法* 采用平衡放大电路,其合成输出功率较单管增加一倍且保持单管线性。
在常用微波频段经常用下图所示正交混合电路(或3dB桥)实现功率合成。
* 采用预失真补偿电路,设计一个预失真网络使它产生的三阶互调与HPA三阶互调在输出合路器中相互抵消。
构成方式如下图所示,予失真补偿电路设计复杂、带宽窄,使用不普遍。
*在HPA前级设置自动电平控制(ALC)电路,通过末级输出耦合检波直流,控制PIN衰耗,保持输出功率恒定。
防止因前级输入电平过高因饱和失真。
该方法只能予防失真而不能改善失真,(注:ALC与大容量长距离数字微波采用的ATPC不同,前者是以保持发射机输出功率恒定,防止失真为目的,采用的是开环控制方式。
而自动发射功率控制(ATPC)是发射机功率受控于对端接收电平,当电波传播发生深度平衰落时,提高发射功率,最大可达到额定功率。
在正常传输时间里使发射功率小于额定功率10dB。
采用的是闭环控制方式。
是以减轻干扰、抗平衰落为目的。
)(2)HPA采用的大功率器件都呈现极低的输入、输出阻抗,其阻抗实部绝对值很小,都在1~3欧姆左右,而容抗和引线电感很大。
对这样的大功率器件进行输入、输出和级间匹配非常困难。
因单片微波集成电路(MMIC)技术的发展,许多厂家已制造出输入输出内匹配的大功率器件,大大地缓解设计难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率放大器的基本知识一般视听电路中的功率放大(简称功放)电路是在电压放大器之后,把低频信号再进一步放大,以得到较大的输出功率,最终用来推动扬声器放音或在电视机中提供偏转电流。
一、功率放大电流的特点对功放电路的了解或评价,主要从输出功率、效率和失真这三方面考虑。
1、为得到需要的输出功率,电路须选集电极功耗足够大的三极管,功放管的工作电流和集电极电压也较高。
电路设计使用中首先要考虑怎样充分地发挥三极管功能而又不损坏三极管。
由于电路中功放管工作状态常接近极限值,所以功放电流调整和使用时要小心,不宜超限使用。
2、从能耗方面考虑,功放输出的功率最终是由电源提供的,例如收音机中功放耗电要占整机的2/3,因此要十分注意提高电路效率,即输出功率与耗电功率的比值。
3、功放电路的输入信号已经几级放大,有足够强度,这会使功放管工作点大幅度移动,所以要求功放电路有较大的动态范围。
功放管的工作点选择不当,输出会有严重失真。
二、常用功率放大电路的原理单只三极管输出的功放电路输出小、效率低,日用电器中已很少见。
目前常采用的是推挽电路形式。
图1是用耦合变压器的推挽电路原理图。
它的特点是三极管静态工作电流接近于零,放大器耗电及少。
有信输入时,电路工作电流虽大,但大部分功率都输出到负载上,本身损耗却不大,所以电源利用率较高。
这个电路中每只三极管只在信号的半个周期内导通工作,为避免失真,所以采用两只三极管协调工作的方式。
图中输入变压器B1的次级有一个接地的中心抽头。
在音频信号输入时,B1次级两个大小相等、极性相反的信号分别送到BG1和BG2的发射结。
在输入信号的正半周时间里,BG1管因加的是反向偏压而截止,只有BG2能将信号放大,从集电极输出;而在信号负半周,BG1得到正高偏压,能将这半个周期的信号放大输出,而BG2却截止。
电路中的两只三极管虽然各自放大了信号的半个同期,但它们的输出电流是分先后通过输出变压器B2的,所以在B2的次级得到的感应电流又能全成一个完整的输出信号。
这个功放电路中,为了解决阻抗匝配和信号相位等问题,输入与输出变压器是不可少的。
但是,优质变压器的制作在材料和工艺上都比较困难,它本身总还要消耗一部分能量,降低电路的效率,而且变压器的频率特性不好,使电路对不同频率信号输出很不均匀,会造成失真,所以为了提高功放质量,人们更多地使用无变压器(OTL)功率放大电路。
图2是互补对称推挽功放电路原理图。
这里用了两只放大性能相同,而导电极性相反的三极管(称为互补管)。
图中BG1是NPN管。
放大器输入交流信号的正半周时,对BG1管来说,基极电压为正极性,发射极为负极性,发射结有正向偏压,三极管能够工作。
但BG2却因发射结加了反向偏压而截止。
因此,信号的正半周由BG1管放大。
在信号负半周时,情形正相反,BG2管能够工作,将信号的负半周放大。
放大后的信号由两只三极管轮流送出,在扬声器上重新合成完整的信号。
三实际电路分析推挽电路中的两只三极管各放大信号的半个周期,这就要求两管放大性能相近(β值相差10%以内),否则放大后的信号两半周期幅度不同,将出现明显失真。
交越失真也是推挽电路的特有问题。
象上面原理图中的三极管都没有加静态偏流,在输入信号很弱时,三极管放大能力很小,甚至会因发射结不能导通而失去放大作用。
这样每当输入信号幅度接近零时,也就是在两只推挽管轮换工作开始和终了的时候,输出信号就不能很好衔接,出现严重失真。
为了解决这些问题,在许多实际应用电路中,都要为三极管加上很小的正偏压,使电路既高效又能减小失真。
图3是收音机中常用的功放电路。
它的静态工作电流由偏置电阻R8调整,一般两管总静态集电极电流为4~8mA。
R10为负反馈电阻,用以减小失真并降低对三极管“配对”要求。
为了减小输入信号在R9、R10这两电阻上的损失,它们的阻值都比较小。
电容人C7用来改善音质。
图4是红岩牌电视机伴音功放电路。
与原理图3相比,它有下面几处不同:原理图中用两组电源供电,实际使用上很不方便,这里在负载扬声器上串入一只大容量电容C64。
对音频电流来说,C64可以看成是通路。
输入信号正半周时,BG13管的输出电流通过扬声器对是C64充电,在它上面产生极性“左正右负”的电压。
在信号负半周时,BG13截止,电容C64即通过BG14和扬声器放电,充当了BG14的电源。
这样只用一组电源,就能使电路正常工作。
为了减小失真,电路也要为三极管提供静态电流。
电阻R73既是前级电压放大管BG12(图中未画出)负载的一部分,又是互补功放管的基极偏流电阻。
当BG12的输出电流通过R73,及二极管BG39时,在它们上面产生的电压降即为BG13、BG14两管发射结偏压之和(两管发射极电阻很小,可忽略)。
这个电压的大小,决定了互补功放管的工作电流。
R73阻值变化或是通过它的前级工作电流变化时,都会影响功放管的工作点,这是在调整时要注意的。
与R73串联的二极管BG39是用来稳定互补管静态工作点的。
它是一只硅二极管,电流通过它时在上面产生0.7V左右的电压降。
环境温度升高时,二极管的正向电阻降低,两端的电压降也会减小,便使互补管的基极偏压跟着降低,抵消了工作电流因温升而增大的趋势。
电阻R74与二极管并联,可防止二极管断路损坏时,功放管因电流过大而烧毁。
电路中,电容C63有着很重要的作用。
因为对音频信号来说,电源可以看成是一个通路,所以BG13的集电极和BG14一样是“交流接触地”的。
如果没有C63,信号将从基极和集电极之间送入。
这种以集电极为输入和输出信号公共端的“共集电极接法”增益较低,不宜用在功放电路中。
接进C63以后,它对音频信号也可看为通路,所以输入信号对BG13是通过R72加在基极和发射极上;对BG14则是通过R73、R72加到基极和发射极上。
这样,电路就变成了增益高得多的“共发射极接法”,大大提高了输出功率。
电阻R71的作用是起隔离作用,不使DG13的集电极与发射极交流短路。
简单易制的TDA2822M功放一般的集成功放电路外围元件较多且需要较大的散热器。
本文介绍的功放电路简单,自制方便。
电路如图5-107所示。
用一块TDA2822M功放集成电路接成BTL方式,外围元件只有一只电阻和两只电容,不用装散热器,放音效果也令人满意的。
集成电路TDA2822M为8脚双列直插式封装,如果买不到可用TDA2822代替,TDA2822的封装与TDA2822M相同,它们区别在于: TDA2822M从3V到15V均可工作,而TDA2822的最高工作电压只有8V。
使用TDA2822必须把电压降到8V以下。
R1的数值要求不拘,一般选用10k的碳膜电阻。
C1可选用0.1uF的涤纶电容,C2为100uF/160V的电解电容。
图5-108是其印制电路板图。
由于电路简单,印制板可用铲刻法制作用水磨砂纸或牛皮纸沾少量水擦亮,用水洗净擦干,涂上一层松香酒精溶液,干后把元件直接焊在铜箔面即可。
焊好后检查无误,然后先不接扬声器,接上电源,则正负输出端之间电压应小于0.1V。
接上扬声器,用手触摸输入端,扬声器应发出较大的“嗡”声。
这时即可输入信号试音。
电路板不用钻孔,使用时应注意:由于本功放为直接耦合,所以输入信号不能带直流成分。
如果输入信号有直流成分则必须在输入端串接一只10uF左右的电容隔开,否则将有很大的直流电流流过扬声器,使之发热烧毁。
在实践中,若对图5-107再进行适当的改制则效果更为理想。
改进后的电路如图5-109所示。
在使用中发现,音量开得最大时TDA2822M发热烫手,于是给TDA2822M制作了散热器,如图5-110所示。
散热器用厚lmm,长38mm,宽25mm的铝片制成。
并在散热片上开5~6个长10mm,宽lmm的槽,再把做热片沿虚线折成“口”形。
装散热器时先在TDA2822M上放点硅脂(硅脂可剖开3AX31或 3AX81管壳中取)。
按图5-111(a)用细线绑扎紧即可。
应注意的是把TDA2822M的引脚数写在散热片的侧面,以免焊接时出错。
加散热器后,音量开至最大散热器只暖一点,散热效果不错。
此法也可用于其它小集成电路的散热。
我们用两个功放电路做成随身听立体声功率接续器,来推动两个小音箱,效果很好。
其实哪里有你们复杂啊,我直接将管角连上,接上扬声器,音源,加上6~12V直流电一切OK了。
不过换成不同的音源和扬声器,我发现2822还行。
做起来简单,成本也低,比市场上买的那种便宜的有源音箱强多了。
音响知识栅顶是舞台上部不可缺少的重要设施之一,是舞台上部悬吊设备安装、调试、维修的工作层面,因此栅顶设计的水平直接影响剧场的使用功能。
面积同样大小的舞台,栅顶设计得好,就能多安吊杆,设计得不好就要少装吊杆。
当然栅顶设计的好坏与舞台上部的构造有着密切的关系,它与屋架选用的形式、滑轮梁的数量和布置、天桥的宽度、悬吊设备的品种、数量、位置、荷载都有直接关系。
因此在做舞台上部结构设计之前,必须先由业主和使用单位提出比较详尽的设备型号、数量和工艺设计,再以此为依据展开结构设计,这才是合理的设计步骤。
过去许多剧场都把栅顶和滑轮梁做在舞台屋架的下弦,这样做设计和施工都比较省事,而且能降低一些造价,然而由于建筑人员不了解舞台设备的技术参数,所以给舞台悬吊设备的安装、调试和使用中的检修都造成极大的困难,甚至影响舞台艺术水平的提高,实在得不偿失。
如何避免损坏和烧毁扬声器一般人会认为是音量开得太大声了扬声器会受不了,因而把扬声器弄坏,其实不然,有许多种情况都可能,而且,有错误的概念。
现在就分别列举几个情况及理由,让你避免扬声器损坏和烧坏的危险。
首先我们要更正一个错误观点,许多人认为功放的功率大于扬声器的功率,就会使扬声器烧毁,这是错误的。
而是由于功放的功率小于扬声器,才会烧毁扬声器。
这是功率不够时波形失真产生切顶,这样产生了直流成分,如果发现扬声器在开机时,有响声并且音盆有起伏,说明有直流成分。
有直流成分音圈就会发热,也就是烧毁的原因。
有人会问:那功放功率大时扬声器会怎样?这也是要告诉大家的一点,音量增益一定要控制好,在调试时音量开足也不要超过扬声器的最大值,否则轻时使扬声器冲程过大,损坏扬声器,重时使音盆打坏。
高音的分频点一定要准确,如果分频点过低,有低频成分,高音就会发热烧毁。
再有用功放推动的高音,一定要有高音保护电路,吸收多余功率,否则音量过大时,瞬态电流过大,会烧毁高音。
千万记得音量由小至大慢慢加,别一口气开大。
音量开得太大声固然会失真容易损坏扬声器,另一种情况就是这种情况也会把扬声器损坏。
建议喜好大音量的使用者要选购大功率的功放,让扬声器功率吃饱,在不失真情况下工作。
功放如果有直流输出,那一定会烧掉低音扬声器,甚至极少数的高音扬声器也会烧掉。
原因是低音(或其他音路)扬声器分音路径上没有电容器隔离直流,直流一输出就像把直流电通入扬声器中,连分音器线圈一起烧得焦黑。