初中数学:七年级(上册)第一章有理数《数轴》教学设计
初中数学人教版七年级上册第一单元第2-2课《数轴》省级名师优质课教案比赛获奖教案示范课教案公开课教案

初中数学人教版七年级上册第一单元第2-2课《数轴》省级名师优质课教案比赛获奖教案示范课教案公开课教案
【省级名师教案】
1教学目标
1.目标
(1)了解数轴的概念,会用数轴上的点表示有理数;
(2)体会数轴三要素和有理数集(实数集)中0、1和数的符号之间的对应关系,从而体会数形结合思想.
2.目标解析
达成目标(1)的标志是:学生知道数轴是一条规定了原点、方向和单位长度的直线;给定一个有理数,学生能在数轴上找到表示它的点;能画出数轴,并用数轴上的点表示有理数.
目标(2)是“内容所蕴含的思想方法”,学生需要体会的是在“用点表示数”时,数轴“三要素”保证了点与数的“一一对应”——给一个数,就有唯一确定的点与之对应;反之,给一个点,就有唯一的数与之对应.但本节课只要能体会有理数与数轴上点的对应性,不要刻意强调“给一个点,不一定有一个有理数与之对应”.
2学情分析
学生第一次遇到用形表示数的问题,困难在于其中蕴含的思想.可以借鉴引入负数时的经验,也要借鉴学生的生活经验.但在基本思想上,还是要借助于具体情境,教师先讲解,学生获得体验后进行模仿式举例.
本节课中,“三要素”及其对于确定“数轴上的点”的意义(根据“三要素”,可以在数轴上找到唯一确定的点,否则“存在性”“唯一性”就做不到),有理数集(实数集)中0,1以及数的符号等与数轴上的相关要素的对应性,都需要教师引导.
3重点难点
教学重点是:体会数轴的三要素;体会用数轴上的点表示数的合理性,感受其中的数形结合思想.
教学难点是:数轴“三要素”与有理数集(实数集)中0,1以及数的符号的对应性.。
数学人教版七年级上册《数轴》教学设计

1.2.2 数轴教学设计一、教学目标1、知识目标:使学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数;2、能力目标:能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;3、情感目标:向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.二、教学重点与难点教学重点:数轴的三要素和有理数在数轴上的表示方法教学.教学难点:有理数与数轴上点的对应关系.重、难点的突破:让学生画数轴进行比较来突破重点,让学生理解数轴上的点组成来突破难点.三、教法和学法:教法主要采用启发式教学学法引导学生自主探索去观察、比较、交流四、教学工具:《数学》人教版七年级上册,自制课件五、教学过程(一)提出问题1、课件展示温度计,让学生读出度数. (媒体展示:直观展示温度计的图片,让学生联系生活)2、在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵扬树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情景.(二)试一试(媒体展示:这一情景.简明表示这些树、电线杆、汽车站的相对位置重要是方向和距离)(三)探索把正数、0和负数用一条直线上的点表示.板书课题在刚才引入的基础上,老师拿出温度计模型水平放置给学生看,这样可以形成有方向,有单位刻度的一条线段,从温度计标有读数来表示温度大小这个事实出发,引导学生建立猜想,能否与温度计类似,可以在一条直线上画上刻度,标上读数,用直线上的点表示正数、负数和0呢?结论是肯定的,接下来让学生阅读新课第8页,同时出示阅读训练题,让学生思考并进行讨论:① 数轴要具备哪三个要素?②怎样把已知的有理数用数轴上的点来表示?③有理数与数轴上的点有什么关系?然后让学生跟着我一起动手操作画一遍数轴,在黑板上保留三个图的用意在于:突出画数轴的三步骤,同时也使数轴的三要素在同学们的头脑中留下更深刻的印象.之后让两个学生上黑板来画数轴.其他同学都观察他们的画法是否正确,让同学们来纠正.至此,学生已会画数轴,师生共同进行归纳总结:板书①数轴的定义;②数轴三要素缺一不可.下面我将通过一道题让同学们得到认识:判断下列图形否是是数轴 (媒体展示:学生常见画数轴中出现的问题) ③“三要素”是规定的,即可按需要来定点、取向、选长,一经选定,不能随意改变.板书例1:在所给数轴上画出表示下列各数的点:+3,-4,1,-1.50 1 2 3 -1 -2 -3 -4 4例2:指出数轴上A ,B ,C ,D 各点分别表示什么数。
2023-2024人教部编版初中数学七年级上册第一章有理数教案数轴的画法

课题名称Байду номын сангаас
数学
单位名称 年级/册
第一章有理数 数轴的画法
七年级上册
填写时间 教材版本
人教版
难点名称
数轴的画法
难点分析
从知识角度分析为 数轴的画法是学生第一次接触数形结合,比较抽象,要想画对数轴三要素缺一不
什么难
可。
从学生角度分析为 数轴是用长度度量各类量的抽象,数轴的三要素在画的过程中容易缺漏。
五标数:在原点左右两边依次标上。
-2
课堂练习
(难点巩固)
-1
练习:下列各图
形中所画数轴正
B
确吗?为
什么?
D
0 12
-1
0
小结
通过正确画数轴,培养学生概括的逻辑思维能力和动手能力,让学生了解数形结合的思想。数轴是非 常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之 间的内在联系,为我们 研究问题提供了新的方法。
什么难
在理解数轴概念的基础上,归纳画数轴的步骤并动手操作。 难点教学方法
教学环节
教学过程
导入
复习:什么是数轴? 在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。 数轴的三要素是什么?
讲授:怎样画数轴?
一画:画一条直线(一般是水平直线);
知识讲解 (难点突破)
二取:选取原点,并用这点表示数字 0; 三统一:单位长度统一; 四定:确定正方向,用箭头表示(一般规定向右为正);
人教版初中七年级上册数学数轴教案三篇

【导语】规定了原点,正⽅向和单位长度的直线叫数轴。
其中,原点、正⽅向和单位长度称为数轴的三要素。
⽆忧考准备了以下内容,供⼤家参考!篇⼀ ⼀、教学⽬标 【知识与技能】 了解数轴的概念,能⽤数轴上的点准确地表⽰有理数。
【过程与⽅法】 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】 在数与形结合的过程中,体会数学学习的乐趣。
⼆、教学重难点 【教学重点】 数轴的三要素,⽤数轴上的点表⽰有理数。
【教学难点】 数形结合的思想⽅法。
三、教学过程 (⼀)引⼊新课 提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计⼀样可以⽤来表⽰数的轴,它就是我们今天学习的数轴。
(⼆)探索新知 学⽣活动:⼩组讨论,⽤画图的形式表⽰东西向马路上杨树,柳树,汽车站牌三者之间的关系: 提问1:上⾯的问题中,“东”与“西”、“左”与“右”都具有相反意义。
我们知道,正数和负数可以表⽰具有相反意义的量,那么,如何⽤数表⽰这些树、电线杆与汽车站牌的相对位置呢? 学⽣活动:画图表⽰后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进⾏解答。
教师给出定义:在数学中,可以⽤⼀条直线上的点表⽰数,这条直线叫做数轴,它满⾜:任取⼀个点表⽰数0,代表原点;通常规定直线上向右(或上)为正⽅向,从原点向左(或下)为负⽅向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的? 师⽣共同总结:“原点”是数轴的“基准”,表⽰0,是表⽰正数和负数的分界点,正⽅向是⼈为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习 如图,写出数轴上点A,B,C,D,E表⽰的数。
(四)⼩结作业 提问:今天有什么收获? 引导学⽣回顾:数轴的三要素,⽤数轴表⽰数。
课后作业: 课后练习题第⼆题;思考:到原点距离相等的两个点有什么特点?篇⼆ ⼀、教学内容分析1.2有理数1.2.2数轴。
人教版七年级数学上册:第一章有理数1.2.2数轴(教案)

-理解数轴上的对称性,尤其是关于原点的对称。
-掌握数轴上两点间距离的计算方法。
-理解数轴上的相反数和绝对值概念。
-解决与数轴相关的复杂问题。
举例:难点在于让学生理解数轴上对称性的概念,如-3和3在数轴上是关于原点对称的。同时,解释数轴上两点间距离的计算,如点A表示数-2,点B表示数5,点A和点B之间的距离是7个单位长度。此外,帮助学生理解一个数的相反数在数轴上的位置关系,以及绝对值表示的几何意义。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解数轴的基本概念。数轴是一个直线,用来表示有理数,它有三个要素:原点、正方向和单位长度。数轴是数学中非常重要的工具,它帮助我们直观地理解数的大小和相对位置。
2.案例分析:接下来,我们来看一个具体的案例。比如,气温的变化可以用数轴来表示,零上温度在原点右侧,零下温度在原点左侧,这样我们可以清楚地看到温度的升降。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用尺子在教室内创建一个数轴,并标出不同的有理数位置。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
学生小组讨论的环节,让我看到了学生们思维的火花。他们能够从不同的角度看待问题,提出各种有趣的见解。但我也意识到,我需要更好地引导他们,将讨论聚焦于数轴的核心概念和应用上,避免讨论偏离主题。
总的来说,今天的课堂让我认识到,教学过程中需要关注每一个学生的个体差异,因材施教,充分调动他们的学习积极性。在今后的教学中,我将不断总结经验,努力提高教学效果,让数学课堂变得更加生动有趣。
《数轴》教学设计

《数轴》教学设计第一章有理数1.2有理数《数轴》教学设计本课时是义务教育课程标准实验教科书数学(人教版)七年级上册第一章第二节第二课时内容.数轴是初中数学中非常重要的内容,从知识上讲,数轴直观体现了绝对值的概念,有利于推导有理数运算法则,也是学习平面直角坐标系的基础,是今后数学学习和研究的重要工具.从思想方法上讲,数轴体现了数形结合的数学思想,这是学生进入初中数学学习后最先接触的数学思想方法.数形结合思想是学生理解数学、学好数学的重要思想方法.数学大师华罗庚曾这样描述数学结合思想:数与形,本是相倚依,焉能分作两边飞.数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘几何代数统一体,永远联系,切莫分离.数轴又能将数的分类直观的表现出来,体现了分类的思想.本节课学生应该掌握数轴的概念、数轴的画法以及用数轴上的点表示有理数.用日常生活中常见的温度计、刻度尺引入数轴的概念.用类比温度计表示温度、刻度尺度量长度的方法学习在数轴上表示有理数.1.巩固理解有理数的概念;2.掌握数轴的意义及构成特点,明确其在实际中的应用;3.会用数轴上的点表示有理数;4.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;5.通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.【教学重点】数轴的意义及作用.【教学难点】◆教材分析◆教学目标◆教学重难点数轴上的点与有理数的直观对应关系.《数学》人教版七年级上册,课件.一、创设情境,引入新课活动观察温度计,归纳温度计刻度的特征.问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情景.提问:(1)马路可以用什么几何图形代表?(2)你认为站牌起什么作用?(3)你是怎么确定问题中各物体的位置的?问题:如何用数数表示这些树、电线杆与汽车站牌的相对位置呢?师生活动:学生尝试画出直线,在直线上根据条件安排各物体的相对位置.类比温度计的刻度,建立数轴的概念.共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观.学生结合上述问题分组讨论,明确以下问题:(1)画数轴的步骤是什么?(2)根据上述实例的经验,原点起什么作用?(3)你是怎么理解选取适当的长度为单位长度的?◆课前准备◆教学过程(4)数轴上,在原点的右边,离原点越远的点所表示的数;在原点的左边,离原点越远的点所表示的数.三、归纳概括通过归纳,解决上述问题.问题解决:课件投影,同时说明其产生的过程及合理、简明的特点.设计意图:建立数轴的概念,数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是数形结合的重要工具.四、应用新知1.下列图形中哪些是数轴,哪些不是,为什么?2.如图,写出数轴上点A,B,C,D,E表示的数.3.在数轴上画出表示下列各数的点:4.在数轴上,表示数的点中,在原点左边的点有个.5.在数轴上点A 表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是()五、归纳小结(1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴.(2)数轴的三要素:原点、正方向、单位长度.(3)数学思想:数形结合的思想.。
初中七年级数学上册《第一章 有理数》大单元整体教学设计

初中七年级数学上册《第一章有理数》大单元整体教学设计一、内容分析与整合(一)教学内容分析有理数章节,作为初中数学课程体系的基石,其重要性不言而喻。
这一章节不仅是代数知识体系的开端,更是学生后续学习方程、不等式、函数等高等数学内容的先决条件。
深入理解和掌握有理数的相关知识,对于学生构建完整的数学知识框架,提升数学素养具有至关重要的作用。
本章节的教学内容设计精妙,循序渐进地引导学生从熟悉的正数世界跨入包含负数在内的有理数领域。
通过负数的引入,打破学生对数的传统认知,拓宽数的范围,使学生理解数轴上点的位置与数的大小之间的对应关系,为后续的数学学习奠定直观基础。
数轴的使用,不仅帮助学生直观感受数的顺序关系,还促进了学生对相反数概念的深刻理解,即任何数在数轴上都有其对应的相反数,它们关于原点对称,这一概念的掌握对于简化运算、理解数学规律至关重要。
绝对值概念的引入,让学生学会了如何度量一个数“距离”0的远近,无论该数是正是负,其绝对值总是非负的。
这一概念的学习,不仅丰富了学生的数学语言,更为解决一系列实际问题提供了有力工具。
在有理数的运算部分,加减乘除的基本法则和运算顺序是教学的核心。
通过大量的练习,学生需熟练掌握这些基本运算,同时理解并掌握有理数运算中的特殊规则,如负数相乘得正数、除以一个数等于乘以它的倒数等。
有理数的乘方运算,特别是负整数指数幂的学习,进一步拓宽了学生的数学视野,使他们能够更加灵活地处理数学问题。
有理数的混合运算,则是检验学生综合运用所学知识解决实际问题能力的关键环节。
通过解决包含多种运算的有理数问题,学生不仅能够巩固基本运算技能,还能在实践中锻炼逻辑思维能力,学会如何根据问题的具体条件,合理选择运算顺序,高效准确地得出答案。
有理数章节的教学,不仅仅是知识的传授,更是学生思维方式和解决问题能力的培养。
通过这一章节的学习,学生不仅能够建立起扎实的数学基础,还能在探索数学奥秘的过程中,体验到数学的魅力,激发对数学学习的兴趣,为未来的数学学习之路铺就坚实的基石。
七年级-人教版(2024新版)-数学-上册-[教学设计]初中数学-七年级上册-第一章--1
![七年级-人教版(2024新版)-数学-上册-[教学设计]初中数学-七年级上册-第一章--1](https://img.taocdn.com/s3/m/3fe8a9c2b1717fd5360cba1aa8114431b90d8e2b.png)
1.2有理数及其大小比较(第2课时)1.使学生了解数轴的概念,会用数轴上的点表示有理数.2.引导学生体会数轴的三要素与有理数集中0,1以及数的符号之间的对应关系,从而体会数形结合思想.数轴的三要素;用数轴上的点表示数的合理性,感受其中的数形结合思想.数轴的三要素与有理数集中0,1以及数的符号的对应性.准备直尺和一个带有刻度的普通温度计.知识回顾1.一个物体向右移动3 m,记作+3 m,那么这个物体向左移动2 m,记作-2 m ,原地不动,记作0 m .2.有理数概念中,“0”很特殊,用“是”或“不是”填空:(1)0 不是正数,不是负数.(2)0 是非正数,是非负数.3.有理数的分类:教学目标教学重点教学难点教学准备教学过程新知探究一、探究学习【问题】一条东西向的马路旁,有一个汽车站牌,汽车站牌东侧3 m和7.5 m处分别有一棵柳树和一根交通标志杆,汽车站牌西侧3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.【师生活动】学生先自己画图,然后师生一起用PPT画出情境图.让学生对比自己所画图象,寻找差距.【设计意图】根据情境画图可锻炼学生的总结概括和抽象表达能力.【思考】怎样用数简明地表示柳树、交通标志杆、槐树、电线杆与汽车站牌的相对位置关系(方向、距离)?【师生活动】如图,在直线上取汽车站牌所在点O为基准点,用0表示,规定1个单位长度代表1 m长,再用负数表示点O左边的点,用正数表示点O右边的点.这样,我们就用负数、0、正数表示出了树、电线杆、交通标志杆与汽车站牌的相对位置关系.【设计意图】把情境往数轴上转化,为引出数轴的概念做铺垫.【问题】图中的温度计可以看作表示正数、0和负数的直线.它和前面我们画出的用数简明表示位置关系的图形有什么共同点,有什么不同点?【师生活动】讨论得出两者都有基准点,都有“方向性”,都用一定长度表示一定意义等结论.结论不限,合理即可.【设计意图】通过概括两者的共同点引出用一条直线上的点表示数.二、新知精讲【新知】在数学中,可以用一条直线上的点表示数.【师生活动】横放温度计后类比得到直线上的点表示数的图象,为下面讲解三要素做准备.【设计意图】在熟悉的场景和数学新知之间建立联系,减轻学生学习新概念的压力,能够更好地理解和掌握数轴相关知识.【新知】用一条直线上的点表示数,需要满足以下要求:1.在直线上任取一个点表示数0,这个点叫做原点;2.通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,….【思考】仔细观察下面的动图,想一想它有什么特点?【新知】像这样,规定了原点、正方向和单位长度的直线叫作数轴.其中原点、正方向和单位长度被称为数轴三要素.0是正数和负数的分界;原点是数轴的“基准点”.原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫做数轴的正半轴;另一侧的部分叫做数轴的负半轴.有理数可以用数轴上的点表示.【师生活动】给出数轴的定义,提出数轴的三要素,让学生意识到这也是画数轴的步骤.明确0在此处的意义,提出正、负半轴的概念.【设计意图】借助图象,形象地展示数轴及其三要素,让学生对数轴的理解更深一层,同时掌握画数轴的方法.明确原点将半轴分为了正半轴和负半轴.【问题】观察数轴上点的特点,回答问题:表示+3的点在原点的右边,与原点的距离是 3 个单位长度;表示-4的点在原点的左边,与原点的距离是 4 个单位长度.【师生活动】一起观察数轴得出答案.【设计意图】引入有理数中正数、0和负数与数轴上点的位置的对应关系.【新知】一般地,设a是一个正数,则数轴上表示数a的点在数轴的正半轴上,与原点的距离是a个单位长度;表示数-a的点在数轴的负半轴上,与原点的距离是a个单位长度.数轴上与原点的距离是a个单位长度的点,简称为数轴上与原点的距离是a的点.三、典例精讲【例1】画出数轴,并在数轴上表示下列各数:3,-4,4,0.5,0,52,-1.【答案】【师生活动】先画出一条数轴,再根据每个数的符号判断该数位于数轴上的哪个半轴,再由距离找到点并标上数值.【设计意图】锻炼学生画数轴并在数轴上找点的能力.【例2】下面画出的直线中,哪条是数轴?为什么?【答案】解:(1)没有单位长度,不是数轴;(2)没有正方向,不是数轴;(3)是数轴;(4)没有原点,不是数轴;(5)单位长度不统一,不是数轴;(6)数字顺序错误,不是数轴.【师生活动】抓住三点判断数轴是否正确.(1)是否有原点;(2)正方向是否标出;(3)单位长度是否统一.指出正方向也同时表示数字是有顺序的,单位长度得统一才有其意义.【设计意图】巩固学生对数轴概念的理解和掌握.【例3】如图,数轴上的点A,B,C,D分别表示哪个有理数?【答案】解:点A表示32,点B表示-12,点C表示-52,点D表示0.【师生活动】由点读数——先由位置(哪一侧)确定符号,再由距离读出数.【设计意图】锻炼学生从数轴上读数的能力.【例4】画出数轴,并在数轴上画出表示下列各数的点.4,-2,-4.5,43,0.【答案】解:如图所示.【师生活动】由数描点——先由符号确定位置(哪一侧),再由距离找到点.【设计意图】锻炼学生画数轴并在数轴上找点的能力.课堂小结板书设计一、数轴的定义二、数轴的三要素三、有理数在数轴上的位置课后任务完成教材P11练习1~4题._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________教学反思_______________________________________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 初中数学 / 七年级数学教案
编订:XX文讯教育机构
七年级(上册)第一章有理数《数轴》教学设计
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中七年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
一、教学内容分析1.2有理数1.2.2数轴。
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。
同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。
日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。
通过问题情境类比得到数轴的概念,是这节课的主要学习方法。
同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
二、学生学习情况分析
(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;
(2)学生学习本节课的知识障碍。
学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
三、设计思想从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。
教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。
直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。
例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
四、教学目标
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
五、教学重点及难点
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
六、教学建议
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。
数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。
另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:
定义规定了原点、正方向、单位长度的直线叫数轴
三要素原点正方向单位长度
应用数形结合七、学法引导
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。
2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。
八、课时安排
1课时
九、教具学具准备
电脑、投影仪、三角板
十、师生互动活动设计讲授新课(出示投影1)问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳
树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)师:我们能否用类似的图形表示有理数呢?
师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).
师:与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
师问:我们能不能用这条直线表示任何有理数?(可列举几个数)让学生观察画好的直线,思考以下问题:
(出示投影2)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的a点表示什么数?原点向左1.5个单位长度的b点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
师:在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点p表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习尝试反馈,巩固练习
(出示投影3).画出数轴并表示下列有理数:1、1.5,-2.2,-2.5, , ,0.2.写出数轴上点
a,b,c,d,e所表示的数:请大家回答下列问题:
(出示投影4)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?【教法说明】此组练习的目的是巩固数轴的概念.
十一、小结
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.十二、课后练习习题1.2第2题十三、教学反思1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
XX文讯教育机构
WenXun Educational Institution。