半导体的导电特性

合集下载

半导体的特性

半导体的特性

一、本征半导体的导电特性1.导体、绝缘体和半导体自然界中的物质从其电结构和导电性能上区分,可分为导体、绝缘体和半导体。

如金、银、铜、铝、铁等金属材料很容易导电,我们称它们为导休。

导体的电阻率小于10-6cm。

如陶瓷、云母、塑料、橡胶等物质很难导电,我们称它们为绝缘体。

绝缘体的电阻率大于108cm。

有一类物质,如硅、锗、硒、硼及其一部分化合物等,它们的导电能力介于导体和绝缘体之间,故称之为半导体。

半导体的电阻率在10-6~108之间。

众所周知,导体具有良好的导电性,绝缘体具有良好的绝缘性,它们都是很好的电工材料。

我们用导体制成电线,用绝缘体来防止电的浪费和保障安全。

而半导体却在很长时间被人们所不齿,因为它的导电性能不好,绝缘性能又差。

然而它的不公正待遇随着人们对它所产生的愈来愈浓厚的兴趣消失了,它终于登上了大雅之堂!这是为什么呢?这是因为它具有一些可以被人们所利用的奇妙特性。

半导体在不同情况下,导电能力会有很大差别,有时犹如导体。

在什么情况下呢?①掺杂:在纯净的半导体中适当地掺入极微量(百万分之一)的杂质,就可以引起其导电能力成百万倍的增加。

②温度:当温度稍有变化,半导体的导电能力就会有显著变化。

如温度稍有增高,半导体的电阻率就会显著减小。

同理光照也会影响半导体的导电能力。

2.本征半导体的原子结构本征半导体——非常纯净且原子排列整齐的半导体。

(纯度约为99.999999999%。

即杂质含量为10的9次方分之一。

)硅原子一14个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在三层电子轨道上。

锗原子一32个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在四层电子轨道上。

由于原子核带正电与电子电量相等,正常情况下原子呈中性。

由于内层电子受核的束缚较大,很少有离开运动轨道的可能。

所以它们和原子核一起组成惯性核。

外层电子受原子核的束缚较小。

叫做价电子。

硅、锗都有四个价电子,故都是四价元素,其简化图见电子课件。

第1章 半导体二极管和晶体管

第1章 半导体二极管和晶体管

型求出 IO 和 UO 的值。
+ UD -
解:
1、理想模型
UO = V = 6 V
E
IO = E / R = 6 / 6 = 1 (mA)
+
2 V ID
R UR
6KΩ
-
2、恒压降模型
UO = E – UD = 6 0.7 = 5.3 (V) IO = UO / R = 5.3 / 6 = 0.88 (mA)
反向击穿电压 I/mA 反向饱和电流
硅几 A
锗几十~几百 A UBR
硅管的温度稳
IS
O
U/V
定性比锗管好 反向 饱和电流
36
(二)极间电容
第三节、半导体二极管
C
1、PN结存在等效结电容
PN结中可存放电荷,相 当一个电容。
PN
+ ui –
R
– 2、对电路的影响:外加交流电源
+
时,当频率高时,容抗小,对PN
14
第一节、半导体的导电特性
N型半导体
多一个 价电子
4
+5
4
掺杂
4
4
4
15
本征激发
第一节、半导体的导电特性
N型半导体
4
+5
4
掺杂
正离子
电子
4
4
4
多子-------电子 少子-------空穴
N型半导体示意1图6
第一节、半导体的导电特性
P型半导体
多一个 空穴
4
+3
4
掺杂
4
4
4
17
本征激发
第一节、半导体的导电特性

半导体

半导体

半导体半导体简介:顾名思义:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor)。

我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。

而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。

可以简单的把介于导体和绝缘体之间的材料称为半导体。

半导体定义:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。

半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小。

半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

有元素半导体,化合物半导体,还有非晶态的玻璃半导体、有机半导体等。

半导体材料:半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。

半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。

正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。

半导体材料按化学成分和内部结构,大致可分为以下几类。

1.元素半导体有锗、硅、硒、硼、碲、锑等。

2.化合物半导体由两种或两种以上的元素化合而成的半导体材料,包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。

3.无定形半导体材料,用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。

4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。

制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。

半导体材料的不同形态要求对应不同的加工工艺。

常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

p型半导体和n型半导体导电能力

p型半导体和n型半导体导电能力

P型半导体和n型半导体导电能力半导体材料是一类在电子学领域中具有重要应用的材料,它具有介于导体和绝缘体之间的导电特性。

而p型半导体和n型半导体是半导体材料中的两种重要类型,它们的导电能力是半导体器件工作的关键。

本文将从p型半导体和n型半导体的导电能力特性入手,探讨它们在电子器件中的应用。

一、p型半导体的导电能力1. 杂质掺杂p型半导体是指在纯净的半导体材料中,由外加杂质掺入使其导电类型转变为正电荷载流子的半导体。

常用的杂质有铝(Al)、硼(B)等。

p型半导体的导电能力主要来源于由掺杂杂质形成的空穴(正电荷载流子)。

2. 导电特性由于p型半导体中的空穴为主导电载流子,因此其导电特性取决于空穴的迁移率和扩散率。

相比n型半导体而言,p型半导体的导电能力较弱,但在一些特定的电子器件中,p型半导体也具有重要的应用价值。

二、n型半导体的导电能力1. 杂质掺杂n型半导体是指在纯净的半导体材料中,由外加杂质掺入使其导电类型转变为负电荷载流子的半导体。

常用的杂质有磷(P)、砷(As)等。

n型半导体的导电能力主要来源于由掺杂杂质形成的自由电子(负电荷载流子)。

2. 导电特性由于n型半导体中的自由电子为主导电载流子,因此其导电特性取决于自由电子的迁移率和扩散率。

相比p型半导体而言,n型半导体的导电能力较强,因此在电子器件中得到广泛的应用。

三、p型半导体和n型半导体的应用1. 集成电路在集成电路中,p型半导体和n型半导体往往交替排列,形成复杂的电路结构。

通过p-n结的形成,可以实现整流、放大、开关等各种功能,为现代电子设备的发展提供了重要的支持。

2. 光电器件在光电器件中,p型半导体和n型半导体可以形成光电二极管、太阳能电池等器件,将光能转化为电能,具有广泛的应用前景。

3. 光电子器件光电子器件利用p型半导体和n型半导体的光电转换特性,实现光信号的检测、放大和处理,被广泛应用于通信、显示、医疗等领域。

p型半导体和n型半导体作为重要的半导体材料类型,其导电能力及应用具有重要的理论和实际意义。

半导体与PN结半导体材料与PN结的特性

半导体与PN结半导体材料与PN结的特性

半导体与PN结半导体材料与PN结的特性半导体与PN结:半导体材料与PN结的特性半导体是一种介于导体和绝缘体之间的材料,具有在特定条件下能够导电的特性。

与导体相比,半导体的电导率较低,但比绝缘体高,这使得半导体在现代电子器件中发挥着重要的作用。

而PN结是半导体器件中最基本的组成部分之一,它由P型半导体和N型半导体的结合所形成。

本文将详细介绍半导体材料和PN结的特性。

一、半导体材料的特性半导体材料是由一些三价或五价元素构成的晶体结构。

根据元素的导电性质,半导体可分为N型和P型两种类型。

1. N型半导体N型半导体中,杂质原子被掺入半导体晶体中,这些杂质原子具有多余的电子,又称为施主原子。

施主原子释放出的自由电子增加了半导体中的载流子浓度,使其成为导电性质较好的材料。

2. P型半导体P型半导体中,杂质原子具有较少的电子,又称为受主原子。

受主原子缺少的电子形成了空穴,这些空穴能够传导电流,使P型半导体具有导电性能。

半导体的导电特性主要由两个载流子类型决定:自由电子和空穴。

通过对半导体材料进行掺杂可以调控载流子的浓度,从而控制半导体器件的电性能。

此外,半导体材料还具有热电效应、光电效应等特性,在电子学和光电子学领域有着广泛的应用。

二、PN结的特性PN结是由P型半导体和N型半导体通过扩散和结合形成的。

在PN结中,P区和N区形成了一个电势垒,这个电势垒对电子和空穴的运动具有一定的限制。

1. 电势垒PN结的P区和N区的杂质浓度不同,形成了一个P-N结的交界面。

在该交界面附近,由于杂质原子的离子化作用,P区中形成了正离子,N区中形成了负离子,从而在交界面上形成了电势差。

这个电势差形成了电势垒,限制着载流子的运动。

2. 正向偏置当外加电压的正极连接到P区,负极连接到N区时,电势垒的宽度会减小,使得载流子能够穿越过电势垒自由移动,形成电流。

这种情况下,PN结处于正向偏置状态。

正向偏置下的PN结具有导电性质。

3. 反向偏置当外加电压的正极连接到N区,负极连接到P区时,电势垒的宽度会增加,限制了载流子的运动。

半导体的导电特性

半导体的导电特性

半导体
本征半导体 杂质半导体
P型半导体(空穴型) N型半导体(电子型)
常用半导体材料硅和锗的原子结构
价电子:最外层的电子受原子核的束缚最 小,最为活跃,故称之为价电子。 最外层有几个价电子就叫几价元素, 半导体材料硅和锗都是四价元素。
Si+14 2 8 4
Ge+32 2 8 18 4
2. 半导体的内部结构及导电方式:
一是势垒电容CB 二是扩散电容CD
(1) 势垒电容CB
势垒电容是由空间电荷区的离子薄层形成的。 当外加电压使PN结上压降发生变化时,离子薄层 的厚度也相应地随之改变,这相当PN结中存储的 电荷量也随之变化,犹如电容的充放电。
图 01.09 势垒电容示意图
(2) 扩散电容CD
扩散电容是由多子扩散后,在PN结的另一侧 面积累而形成的。因PN结正偏时,由N区扩散 到P区的电子,与外电源提供的空穴相复合,形 成正向电流。刚扩散 过来的电子就堆积在P 区内紧靠PN结的附近, 形成一定的多子浓度 梯度。
vi
RL vo
vo
t
例3:设二极管的导通电压忽略,已知
vi=10sinwt(V),E=5V,画vo的波形。
vi 10v
5v
R
t
D
vo
vi
E
vo
5v
t
例4:电路如下图,已知v=10sin(t)(V),
E=5V,试画出vo的波形
vi
解:
t
vD
t
例5:VA=3V, VB=0V,求VF (二极管的导 通电压忽略)
根据理论推导,二极管的伏安特性曲线可用下式表示
V
I IS (e VT 1)
式中IS 为反向饱和电流,V 为二极管两端的电压降 ,VT =kT/q 称为温度的电压当量,k为玻耳兹曼常数 ,q 为电子电荷量,T 为热力学温度。对于室温(相 当T=300 K),则有VT=26 mV。

6-1 半导体的导电特性

6-1 半导体的导电特性

6-1 半导体二极管半导体元器件是现代电子技术的重要组成部分,是构成各种电子电路的核心,常用的半导体元器件有二极管、晶体管、场效应管等。

半导体元器件由半导体材料制成,因此,学习电子技术应首先了解半导体材料的特性,这将有助于对半导体元器件的学习、掌握和应用。

6-1-1 半导体的导电特性1. 半导体的导电机理导电能力介于导体与绝缘体之间的物质称为半导体,这类材料大都是三、四、五价元素,主要有:硅、锗、磷、硼、砷、铟等,他们的电阻率在10-3~107欧.厘米。

绝对纯净的硅、锗、磷、砷、硼、铟叫做本征半导体。

(1)本征半导体及特点半导体材料的广泛应用,并不是因为它们的导电能力介于导体与绝缘体之间,而是它们具有一些重要特性:1)当半导体受到外界光和热的激发(本征激发)时,其导电能力发生显著的变化;2)若在本征半导体中加入微量的杂质(不同的本征半导体)后,其导电能力显著的增加;半导体的这些特点取决于这类物质的化学特性。

(2)半导体的共价键结构1)半导体的化合价物质的化学和物理性质都与物质的价电子数有密切的关系,半导体材料大都是三、四、五价元素。

硅、锗(四价)、磷、砷(五价)、硼、铟(三价)。

2)化学键物质化学键分离子键、共价键和金属键三种,半导体物质的化学键都属于共价键的晶体结构,同时它们的键长一般很长,故原子核对价电子的束缚力不象绝缘物质那样紧,当价电子获得一定的能量后,就容易挣脱原子核的束缚成为自由电子。

+4+4+4+4+4+4+4+4+4+4可见半导体中的载流子有两种,即自由电子(●)和空穴(○)。

本征半导体的载流子是由本征激发而产生的,其自由电子与空穴是成对出现,即有一个自由电子,就一定有一个空穴,故称电子空穴对。

由于空穴带正电,容易吸引邻近的价电子来填补,从而形成了共有价电子的运动,这种运动无论从效果上,还是从现象上,都好象一个带正电的空穴在移动,它不同于自由电子的运动,故称之为空穴运动。

物质的导电是靠物体内带电粒子的移动而实现的,这种粒子称作载流子。

能带间距与半导体材料的导电特性

能带间距与半导体材料的导电特性

能带间距与半导体材料的导电特性在当代科技领域中,半导体材料的导电特性是一个非常重要的课题。

这些特性直接影响到半导体材料的应用范围和性能。

而在研究半导体材料导电特性过程中,一个关键因素就是材料的能带间距。

能带间距是指能量带之间的间隔,对于半导体材料来说,它决定了材料的导电性质。

在半导体中,常见的能带有价带和导带。

价带是指电子的能量状态,当电子在价带中时,它们处于稳定状态,不会参与导电。

而导带则是指电子可以在其中自由移动的状态,当电子跃迁到导带时,它们就可以参与导电。

能带间距的大小直接影响到半导体材料的导电性能。

一般来说,能带间距越小,半导体材料的导电性就越好。

这是因为当能带间距较小时,电子跃迁到导带的能量相对较低,电子更容易参与导电。

在这种情况下,半导体材料可以显示出较高的导电性能。

然而,对于一些特殊的半导体材料,如绝缘体,能带间距较大,导电性很差。

这是因为能带间距较大时,电子要跃迁到导带需要较高的能量,电子的能量通常无法达到这个能级,因此导电性极低。

绝缘体在电子学器件中广泛应用,如绝缘体的绝缘特性可以用于制备高性能的绝缘体晶体管。

除能带间距外,半导体材料的导电性还受其他因素的影响。

在纯净的半导体材料中,电子和空穴的浓度会对导电性产生影响。

电子浓度越高,半导体的导电性就越好。

同样地,空穴浓度较高也会导致较好的导电性能。

这是因为电子和空穴是参与电导的主要载流子,浓度越高,导电性越强。

此外,温度也会对半导体材料的导电性产生影响。

在常温下,半导体材料的导电性较差,但是随着温度的升高,导电性逐渐增强。

这是因为温度升高会激发更多的载流子,增加了导电性。

然而,当温度达到一定程度后,材料内的载流子又会遭遇散射,导致导电性下降。

总之,半导体材料的导电性质与能带间距密切相关。

能带间距越小,半导体材料的导电性越好。

然而,除了能带间距之外,电子浓度、空穴浓度和温度等因素也会影响到半导体材料的导电性。

这些因素的相互作用使得半导体材料的导电特性非常复杂,对于科学家们来说,研究和理解这些特性是非常具有挑战性的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成发射极电流IE。
3. 三极管内部载流子的运动规律
IC = ICE+ICBO ICE
C IC
IB = IBE- ICBO IBE
ICE 与 IBE 之比称为共
发射极电流放大倍数
IB ICBO ICE
N
P EC
B
ICE IC ICBO IC
IBE IB ICBO IB
--- - -- + + + + + +
P
内电场 外电场
N
–+
2. PN 结加反向电压(反向偏置)P接负、N接正
PN 结变宽
--- - -- --- - -- ---- - -
+++ +++ +++
+++ +++ +++
P
IR
内电场 外电场
–+
N
动画
内电场被加 强,少子的漂 移加强,由于 少子数量很少, 形成很小的反 向电流。
5.1.2 N型半导体和 P 型半导体
在本征半导体中掺入微量的杂质(某种元素), 形成杂质半导体。 在常温下即可
变为自由电子 掺入五价元素
Si
Si
pS+i
Si

掺杂后自由电子数目
余 大量增加,自由电子导电
电 成为这种半导体的主要导
子 电方式,称为电子半导体
动画 或N型半导体。
失去一个 电子变为 正离子
5.1.1 本征半导体
完全纯净的、具有晶体结构的半导体,称为本征 半导体。
价电子
Si
Si
共价健
Si
Si
晶体中原子的排列方式
硅单晶中的共价健结构
共价键中的两个电子,称为价电子。
自由电子 本征半导体的导电机理
价电子在获得一定能量
(温度升高或受光照)后,
Si
Si
即可挣脱原子核的束缚, 成为自由电子(带负电),
现两部分电流
(1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流 自由电子和空穴都称为载流子。
自由电子和空穴成对地产生的同时,又不断复 合。在一定温度下,载流子的产生和复合达到动态 平衡,半导体中载流子便维持一定的数目。 注意:
(1) 本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性 能也就愈好。所以,温度对半导体器件性能影响很大。
3. 反向峰值电流IRM
指二极管加最高反向工作电压时的反向电流。反 向电流大,说明管子的单向导电性差,IRM受温度的 影响,温度越高反向电流越大。硅管的反向电流较小, 锗管的反向电流较大,为硅管的几十到几百倍。
二极管的单向导电性
1. 二极管加正向电压(正向偏置,阳极接正、阴 极接负 )时, 二极管处于正向导通状态,二极管正 向电阻较小,正向电流较大。
结论:
1)三电极电流关系 IE = IB + IC
2) IC IB , IC IE
3) IC IB
把基极电流的微小变化能够引起集电极电流较大变
化的特性称为晶体管的电流放大作用。
实质:用一个微小电流的变化去控制一个较大电流的
变化,是CCCS器件。
3.三极管内部载流子的运动规律
(a. 电子电流、b.空穴电流)
5.1.3 PN结的形成
内电场越强,漂移运
空间电荷区也称 PN 结
少子的漂移运动
动越强,而漂移使空间 电荷区变薄。
P 型半导体
内电场 N 型半导体
------ + + + + + + ------ + + + + + + ------ + + + + + + 动画 - - - - - - + + + + + +
参考点
整流、检波、
限幅、钳位、开
关、元件保护、
t 温度补偿等。
二极管阴极电位为 8 V ui > 8V,二极管导通,可看作短路 uo = 8V ui < 8V,二极管截止,可看作开路 uo = ui 动画
5.3 半导体三极管
5.3.1 基本结构
NPN型
PNP型
集电极
发射极 集电极
发射极
C NP N E
无论N型或P型半导体都是中性的,对外不显电性。
1. 在杂质半导体中多子的数量与 a (a. 掺杂浓度、b.温度)有关。
2. 在杂质半导体中少子的数量与 b (a. 掺杂浓度、b.温度)有关。
3. 当温度升高时,少子的数量 c (a. 减少、b. 不变、c. 增多)。
4. 在外加电压的作用下,P 型半导体中的电流 主要是 b ,N 型半导体中的电流主要是 a 。
U
死区电压
硅管0.5V, 锗管0.1V。
外加电压大于死区 电压二极管才能导通。
5.2.3 主要参数
1.二最极大管整长流期电使流用I时OM,允许流过二极管的最大正向 平均电流。
2. 反向工作峰值电压URWM 是保证二极管不被击穿而给出的反向峰值电压,
一般是二极管反向击穿电压UBR的一半或三分之二。 二极管击穿后单向导电性被破坏,甚至过热而烧坏。
例1: D
A +
3k
6V
UAB
12V

B
电路如图,求:UAB
取 B 点作参考点, 断开二极管,分析二 极管阳极和阴极的电 位。
V阳 =-6 V V阴 =-12 V V阳>V阴 二极管导通 若忽略管压降,二极管可看作短路,UAB =- 6V 否则, UAB低于-6V一个管压降,为-6.3V或-6.7V
若忽略管压降,二极管可看作短路,UAB = 0 V
流过
D2
的电流为
ID2

12 3
D1承受反向电压为-6 V

4mA
在这里, D2 起 钳位作用, D1起 隔离作用。
例3:
+ ui –
R
D 8V
ui
18V 8V
+ uo

已知:ui 18sin t V
二极管是理想的,试画 出 uo 波形。
二极管的用途:
PN 结加反向电压时,PN结变宽,反向电流较小, 反向电阻较大,PN结处于截止状态。
温度越高少子的数目越多,反向电流将随温度增加。
5.2 半导体二极管
5.2.1 基本结构
(a) 点接触型 结面积小、
结电容小、正 向电流小。用 于检波和变频 等高频电路。
(b)面接触型 结面积大、
正向电流大、 结电容大,用 于工频大电流 整流电路。
若二极管是理想的,正向导通时正向管压降为零,
反向截止时二极管相当于断开。
否则,正向管压降
硅0.6~0.7V 锗0.2~0.3V
分析方法:将二极管断开,分析二极管两端电位 的高低或所加电压UD的正负。
若 V阳 >V阴或 UD为正( 正向偏置 ),二极管导通
若 V阳பைடு நூலகம்<V阴或 UD为负( 反向偏置 ),二极管截止
从电位的角度看:
C
发射结正偏 集电结反偏
发射结正偏 集电结反偏
NPN VB>VE VC>VB
PNP VB<VE VC<VB
N
B
P
RC
N RB
E EB
EC
2. 各电极电流关系及电流放大作用
IB(mA) 0 0.02 0.04 0.06 0.08 0.10
IC(mA) <0.001 0.70 1.50 2.30 3.10 3.95 IE(mA) <0.001 0.72 1.54 2.36 3.18 4.05
同时共价键中留下一个空
Si
空穴
Si
价电子
位,称为空穴(带正电)。 这一现象称为本征激发。
温度愈高,晶体中产 生的自由电子便愈多。
在外电场的作用下,空穴吸引相邻原子的价电子
来填补,而在该原子中出现一个空穴,其结果相当 于空穴的运动(相当于正电荷的移动)。
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出
2. 二极管加反向电压(反向偏置,阳极接负、阴 极接正 )时, 二极管处于反向截止状态,二极管反 向电阻较大,反向电流很小。
3. 外加电压大于反向击穿电压二极管被击穿,失 去单向导电性。
4. 二极管的反向电流受温度的影响,温度愈高反 向电流愈大。
二极管电路分析举例
定性分析:判断二极管的工作状态
导通 截止
动画
内电场被 削弱,多子 的扩散加强,
P IF
内电场 N
外电场
+–
形成较大的 扩散电流。
PN 结加正向电压时,PN结变窄,正向电流较 大,正向电阻较小,PN结处于导通状态。
2. PN 结加反向电压(反向偏置)P接负、N接正
--- - -- + + + + + +
动画
--- - -- + + + + + +
( b) 面接触型
图 1 – 12 半导体二极管的结构和符号
5.2.2 伏安特性
特点:非线性
I
反向击穿 电压U(BR)
反向电流 在一定电压 范围内保持 常数。
P– + N 反向特性
外加电压大于反向击 穿电压二极管被击穿, 失去单向导电性。
相关文档
最新文档