作轴对称图形1

合集下载

(人教版) 轴对称图形 教学PPT课件1

(人教版) 轴对称图形  教学PPT课件1


10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。

11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。

12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!

17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。

18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅

19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生

20、做一个决定,并不难,难的是付诸行动,并且坚持到底。

21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。

22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。

23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。

2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。

3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。

8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。

9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。

人教版画轴对称图形课件1

人教版画轴对称图形课件1

第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),
第n次变换后的点B的对应点的为:当n为奇数时,为(2n-3,1);
当n为偶数时,为(2n-3,-1),
∴把正方形ABCD经过连续7次这样的变换得到正方形A′B′C′D′,
则点B的对应点B′的坐标是(11,1).
人教版. 画轴对称图形课件1(PPT优秀课件 )
5 4 C3
A ′(3,5),B ′(4,1),C ′(1,3). 依次了连结A ′ B ′、B ′ C ′、 C ′ A ′、就得到△ABC关于y 轴对称的△A ′ B ′ C ′.
2
B
1
-4 -3 -2 -1-O1
-2 -3
-4
A′
C′ B′
12345 x
人教版. 画轴对称图形课件1(PPT优秀课件 )
△A'B'C',并写出A'、B'、C'的坐标.
人教版. 画轴对称图形课件1(PPT优秀课件 )
新课讲解
解:如图所示:
y
A (0,4)
B (2,4)
C' (3,1)
O
C (3,-1) x
A' (0,-4)
B' (2,-4)
人教版. 画轴对称图形课件1(PPT优秀课件 )
人教版. 画轴对称图形课件1(PPT优秀课件 )
称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2) O
C '(3,4)
B '(-4,-2)
x
C (3,-4)
知识归纳
★关于y轴对称的点的坐标的特点是:

12.2.1作轴对称图形(1)

12.2.1作轴对称图形(1)
只要作出三个顶点的对称点就能得到要作的图形.
(作图过程见课本40页)
注:已知图形和对称轴作其对称图形的关键是作对称点;
仅已知图形,作其对称图形应有对称轴而确定,对称轴不确定,则其对称图形也不确定.
归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到图形的轴对称图形,对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形(书P41页)
练习:书P41页1题,2题(不同的三角形会有不同的结果。)
例3.把下列图形补充成以MN为轴的轴对称图形(8分)
例4:如图所示,把一个正
方形三次对折后沿虚线剪下一角,则展开后所得
的图形是().
附加题:
镜子、倒影与轴对称变换
例5.如图1所示的是在一面镜子里看到的一个算式,该算式的实际情况是怎样的?
例6.如图,是一只停泊在平静水面上的小船,它的“倒影”应是图中的().
课题
§12.2作轴对称图形
§12.2.1作轴对称图形(一)
时间
教学目的
知识技能
能够做出简单图形的轴对称图形,能够利用作轴对图形进行简单的图形设计。
过程方法
通过动手实践和观察去体会作轴对称后两图形的关系,培养抽象思维能力.
情感态度价值观
感受生活中的数学问题,体验实际生活中的物体与图形的关系,体验学习数学的乐趣.
2.轴对称变换的定义:象上面这样,由一个平面图形得到它的轴对称图形叫做轴对称变换.
注:成轴对称的两个图形中的任何一个可以看作是由另一个图形经过轴对称变换后得到的。一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.

1221作轴对称图形(1)

1221作轴对称图形(1)

12.2.1作轴对称图形【学习目标】通过实际操作,了解什么叫做轴对称变换.如何作出一个图形关于一条直线的轴对称图形【学习重点】轴对称变换的定义.能够按要求作出简单平面图形经过轴对称后的图形.【学习难点】利用轴对称进行一些图案设计.【教学过程】活动1观察图片(教材中的图12.2-1~12.2-4).操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的(2)新图形上一个点,都是原图形上的某一点关于直线l的;(3)连接任意一对对应点的线段被对称轴.活动2例1 已知点A和直线l,作出与点A关于直线l的对称点Al例2 已知线段AB和直线l,作出与线段AB关于直线l的对称图形ABl例3,已知△ABC和直线l,你能作出△ABC关于直线l对称的图形吗?lA BC最 短 线 路 问 题 例4如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.活动31巩固练习:课本41页练习.2.下图是在方格纸上画出的一个风筝的一半,以l 为对称轴画出风筝的另一半.3 如图,一轴对称图形画出了它的一半,请你以点画线为对称轴画出它的另一半.4 已知Rt ABC △中,90C ∠=,AD 平分BAC ∠交BC 于D ,若32BC =,且BD CD ∶=97∶,则Dl到AB边的距离为___________.5 已知,如下图,求作△ABC关于对称轴l的轴对称图形△A′B′C′.B6下图中画出正方形的轴对称图形(图中虚线表示对称轴).7 如图,草原上两个居民点A B,在河流l的同旁,一汽车从A出发到B,途中需要到河边加水.汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.活动4 课堂小结作业:教材P45 习题12.2 --1,5 家作:创新课时训练。

12.2.1作轴对称图形(1)课件

12.2.1作轴对称图形(1)课件

轴对称变换:由一个平面图形得到它的轴对称图形的过程.
利用轴对称变换设计美丽图案
观察思考:你有什么发现?
对称轴的方向和位置发生变化,得 到图形的方向和位置也会发生变化.
轴对称变换的特征:
1.由一个平面图形可以得到它关于一条直线l对称的图形, 完全一样 这个图形与原图形的形状、大小_______;
2.新图形上的每一点,都是原图形上的某一点关于直线l 对称点 的________;
垂直平分 3.连接任意一对对应点的线段被对称轴______。
4.成轴对称的两个图形中的任何一个可以看作由另一 轴对称变换 个图形经过___________后得到。
5. 一个轴对称图形也可以看作以它的一部分为基础, 轴对称变换 经___________扩展而成的。
A’
B C l
A
B’
作已知图形关于已知直线对称的图形的一般步聚: 1、找点 (确定图形中的一些特殊点);
2、画点 (画出特殊点关于已知直线的对称点); (连接对称点)。 3、连线
小强从镜子中看到的电子表的读数如下图 ,则电子 表的实际读数是________。
:
下面的数据是某个时间经过轴对称变换而 得来的,请问它表示的时间是多少?
轴对称变换的特征: 1、由一个平面图形可以得到它关于一条直线l对 称的图形,这个图形与原图形的形状、大小完全 一样;
2、新图形上的每一点,都是原图形上的某一点关 于直线l的对称点;
3、连接任意一对对应点的线段被对称轴垂直平分。
作已知图形关于已知直线对称的图形的一般步聚:
1、找点 (确定图形中的一些特殊点);
例1拓展:如图,已知△ABC和直线l,作出与 △ABC关于直线l对称的图形。
B B A A C’ B’ C C l A B’ A A’ B C C l

人教版八年级上册数学精品教学课件 第13章 轴对称 第1课时 画轴对称图形

人教版八年级上册数学精品教学课件 第13章 轴对称 第1课时 画轴对称图形
类似地,请你再画一个图形做一做,看 看能否得到同样的结论.
(1) 认真观察,左脚印和右脚印
有什么关系?
P
P'
成轴对称.
(2) 对称轴是折痕所在的直线,
即直线 l,它与图中的线段 PP′
是什么关系?
l
直线 l 垂直平分线段 PP′.
知识要点
由一个平面图形可以得到与它关于一条直线 l 对称 的图形,这个图形与原图形的形状、大小完全相同(位 置、朝向可能不同);新图形上的每一点都是原图形上 的某一点关于直线 l 的对称点;连接任意一对对应点的 线段被对称轴垂直平分.
八年级数学上(RJ) 教学课件
第十三章 轴对称
13.2 画轴对称图形
第 1 课时 画轴对称图形
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 能够按要求画简单平面图形经过一次对称后的图形; (难点) 2. 掌握作轴对称图形的方法;(重点) 3. 通过画轴对称图形,增强学习几何的趣味感.
导入新课
情境引入
A.20°
B.30°
C.40°
D.50°
方法归纳:折叠是一种轴对称变换,折叠前后的图形 形状和大小不变,对应边和对应角相等.
二 作轴对称图形
互动探究
问题1:如何画一个点的轴对称图形?
如图,画出点 A 关于直线 l 的对称点 A′.
作法:

(1) 过点 A 作 l 的垂线,垂足为点 O;
O
(2) 在垂线上截取 OA′=OA.
B A′ 就是点 A 关于直线 l 的对称点.
(2) 同理,分别画出点 B,C 关于 A
直线 l 的对称点 B′,C′.
O
A′

作轴对称图形导学案1


课堂展示快乐晋阶 1.如图(1),请画出三角形关于直线 l 对称的图形。
2、已知△ABC,及点 A 的对称点 A′,请作出对称轴直线 l,并画出△ABC 关于直线 l 的对称图形。 A . A′ B
C 3、身高 1.80 米的人站在平面镜前 2 米处,它在镜子中的像高______米,人与 像之间距离为_______米; 如果他向前走 0.2 米, 人与像之间距离为_________ 米. 4.为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空 地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图 形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对 角线(如图中的图 1) ;⑵过一条边的四等分点作这边的垂线段(图 2) (图 2 中两个图形的分割看作同一方法) 请你按照上述三个要求,分别在下面两个 . 正方形中给出另外两种不同的分割方法. ........... (正确画图,不写画法) .
自主学习知识梳理 一、阅读 P39-41 的内容,然后完成下面的活动并回答相关问题: 1.请在下面两图中做出△ABC 关于虚线 l 的对称图形△A′B′C′
问题 1: 线段 A A′与对称轴 l 有什么关系? 问题 2: 在图中另找一对对称点, 连接对称点的线段与对称轴还有上述关系吗?
2.轴对称图形的对称轴与对应点所连线段的垂直平分线有什么关系? 3.请在图 1 中画出点 A 关于 l 的对称点 A’
A
l
图1
归纳:由一个平面图形可以得到它关于一条直线 l 成轴对称的图形,这个图形 与原图形的_______、_______完全相同; 新图形上的每一点,都是原图形上的某一点关于直线 l 的_________; 连接任意一对对应点的线段被对称轴____________.

2.1画轴对称图形(一)

湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
青 春 风 采
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
高考总分:
692分(含20分加分) 语文131分 数学145 分英语141分 文综 255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
湖北鸿鹄志文化传媒有限公司——《名师测控》助您成功
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。

作轴对称图形 知识讲解

作轴对称图形知识讲解【学习目标】1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.3.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.4.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.【要点梳理】要点一、对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.【高清课堂:389300 作轴对称图形,用坐标表示轴对称】要点二、用坐标表示轴对称1.关于x轴对称的两个点的横(纵)坐标的关系已知P点坐标,则它关于x轴的对称点的坐标为,如下图所示:即关于x轴的对称的两点,坐标的关系是:横坐标相同,纵坐标互为相反数.2.关于y轴对称的两个点横(纵)坐标的关系已知P点坐标为,则它关于y轴对称点的坐标为,如上图所示.即关于y轴对称的两点坐标关系是:纵坐标相同,横坐标互为相反数.3.关于与x轴(y轴)平行的直线对称的两个点横(纵)坐标的关系P点坐标关于直线的对称点的坐标为.P点坐标关于直线的对称点的坐标为.【典型例题】类型一、作轴对称图形1、(2016•临夏州)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.。

人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件

画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档