键角 极性大小比较
如何比较物质中的键角大小

如何比较物质中的键角大小?含有共价键的物质中相邻两键之间的夹角称为键角。
键角是决定物质分子空间构型的主要因素之一。
根据价层电子对互斥理论的分析,在高中阶段学习中,影响键角大小的因素主要有三:一是中心原子的杂化类型;二是中心原子的孤电子对数;三是中心原子的电负性大小等。
现通过例说如何比较物质中的键角大小。
一、比较不同物质间的键角大小1.利用常见物质分子的空间构型,直接判断键角大小。
案例1:CO2为直线形(sp杂化)、180°BF3为平面三角形(sp2杂化)、120°CH4为正四面体形(sp3杂化)、109.5°NH3为三角锥形(sp3杂化)、07.3°H2O为V形(sp3杂化)、104.5°P4为正四面体形(sp3杂化) 60°说明:CH4与P4都是sp3杂化,但CH4的正四面体中心有C原子,P4的正四面体的体内空心,故二者键角有别。
CH4、NH3、H2O均为sp3杂化,但中心原子的孤电子对依次0、1、2对,根据价层电子对互斥理论,斥力为孤电子对-孤电子对>孤电子对-成键电子对>成键电子对-成键电子对,孤电子对数增多,对成键电子的斥力增大,故三者键角依次减小。
案例2:乙炔C2H2为直线形(sp杂化)、180°苯C6H6为正六边形(sp2杂化),120°乙烯C2H4为平面形(sp2杂化),由于分子中存在不同共价键,键角不是120°;根据价层电子对互斥理论,知斥力为叄键-叄键>叄键-双键>双键-双键>双键-单键>单键-单键,C=C双键对C-H键形成较大的斥力,故C=C-H键角(122°)大于H-C-H键角(116°)。
2.利用周期表位置类比推测分子的空间构型,直接判断键角大小。
案例3:①CS2、CSO等类比CO2,直线形,键角均为:180°。
②BCl3、BBr3等与BF3类比,平面三角形,键角均为:120°。
物质结构与性质高考热点归纳 分子空间构型、分子极性和键角的确定

物质结构与性质高考热点归纳分子空间构型、分子极性和键角的确定键角大小比较一、中心原子杂化类型对键角大小有决定性的影响中心原子杂化类式是决定键角大小的最根本的原因。
上表由前(左)到后(右)的顺序就基本是一个键角逐渐减小的顺序。
例1,对CH4、BF3、CO2这一分子序列,中心原子分别为sp3、sp2和sp杂化,它们对应的键角为109°28′、120°、180°,键角会依次增大。
二、中心原子孤电子对数目对键角的影响由于中心原子的孤对电子的电子云肥大,对成键电子对有较大的排斥力,所以孤对电子能使成键电子对彼此离得更近,键角被压缩而变小。
且中心原子的孤电子对数越多,键角会变得越小。
例2,对H2O、NH3、CH4分子系列。
这3个分子的中心原子采取的都是sp3杂化,但孤电子对数不同。
其孤电子对数分别为2、1、0.。
在H2O分子中,键角要受2个孤电子对的压缩,键角应该会最小。
这就导致出推断:该序列是一个键角逐渐增大的序列。
可查得它们的键角分别是104.5°、107.1°、109.5°。
三、配原子电负性对键角的影响当同一种原子中心原子种类相同、杂化类型也相同,而配原子种类不同时,由于配原子的电负性不同,会使键角有区别。
因为当相邻的两个成键电子对更靠近中心原子时、相互间的斥力会增大。
反之,当相邻的两个成键电子对远离近中心原子时、相互间的斥力会变小。
例3,将NF3与NH3比较,中心原子都是n(原子)、且都为sp3杂化,但因为F原子的电负性大于H原子,使成键电子离n(原子更远),两个N-F键间的斥力减小、可以靠的更近,所以其键角更小。
实际上:NH3的键角是107°,NF3的键角是102.5°.对常遇到的H2O与OF2分子的键角和极性比较,也可照上例来判断。
四、中心原子电负性对键角的影响当同主族中心原子种类不同,但杂化类型相同、且配原子种类相同时,中心原子的电负性大,成键电子对更靠近中心原子,成键电子对间的斥力要变大,键角要变大。
1-2-4共价键的基本属性

共价键 (covalent bond): 原子间通过共用电子对相互结合而成键(电子共享)
共 有价机分键子中的的基化学本键 —属—性共价键
碳是四价的
碳与碳之间可以成键,形成复杂化合物
CCC C
廊坊师范学院
C CCC C
继续C 教育学院
第一章 绪 论
C CC CC
1、键长
内
2、键能
容
3、键角
目
4、键的极性
录
(1)非极性共价键
(2)极性共价键
电负性
偶极矩
共价键的基本属性
键参数:表征化学键性质的物理量统称为键参数。
主要指键长、键角、键能等。 通过键参数,可以预测分子的构型,解释分子的稳定性和分子极性等
性质。
1、键长(bond length): 成键原子核之间的距离
不同的共价键具有不同的键长。在不同化合物中,同 一类型的共价键的键长基本相同。
Br
某些元素的电负性
2.9
I
2.6
原子电负性与键的极性
电
△χ
负 性
2.1-2.1=0 H H
差 值
2.5-2.1=0.4 H I
越
大, 2.8-2.1=0.7 HBr
键 的
3.0-2.1=0.9 HCl
极 性
4.0-2.1=1.9 HF
越
强 4.0-0.9=3.1 NaF
Na+ F-
一般规律: 弱极性键:电负性差在0~0.6间 极性键:0 .6~1 .7间,
影响键角的因素 ① 孤对电子的影响 ② 重键的影响
4、键的极性
共价键
极性共共价价键键强弱的极极类性性型键键::如如
第14讲:非极性分子和极性分子

高三化学一轮复习精品教辅第14讲:非极性分子和极性分子【考纲要求】1.理解极性键与非极性键的形成原因,并能进行化学键的极性强弱比较。
2.理解化学键的极性与分子的极性的区别与联系,掌握极性分子与非极性分子的判断依据和判断方法。
3.理解分子间作用力和氢键的概念以及对物质性质的影响。
教与学方案一、概念辨析1.非极性键:(1)概念:同种元素原子形成的共价键,共用电子对没有发生偏移。
(2)形成条件:由同种非金属元素组成。
2.极性键:(1)概念:不同种元素原子形成的共价键,共用电子对发生偏移。
(2)形成条件:由不同种非金属元素组成。
(3)共价键极性强弱比较依据:形成共价键的共用电子对偏向与偏离程度越大,键的极性就越强。
试比较下列两组共价键的强弱:①H—H、H—F、H—O、H—N、H—C:;②H—F、C—F、N—F、O—F、F—F:。
3.极性分子:(1)含义:分子内各原子及共价键的空间排布不对称,分子内正、负电荷中心不重合的分子。
(2)举例:HCl、H2O、NH3、CH3Cl SO2。
4.非极性分子:(1)含义:分子内各原子及共价键的空间排布对称,分子内正、负电荷中心重合的分子。
(2)判断方法:①根据键角判断分子中的正负电荷重心是否重叠②根据AB n的中心原子A周围是否为完全等价的电子对③根据AB n的中心原子A的最外层价电子是否全部参与形成了同样的共价键。
(或A是否达最高价)(3)常见分子中,属非极性分子的不多,具体有:①非金属单质分子。
如:稀有气体、H2、Cl2、N2等。
②结构对称的直线型分子。
如:CO2 CS2③结构对称的正三角形分子。
如:BF3、BCl3 、SO3④结构对称的正四面体型分子。
如:CH4、CCl4、P4、SiF4、SiCl4而其它大多数分子则为极性分子。
如:HCl、H2O、NH3、CH3Cl等等。
(4).分子的极性与键的极性没有必然的联系。
由极性键形成的分子不一定是极性分子,如:CO2;由非极性键形成的分子也不一定是非极性分子,如:H2O25.几种常见共价分子的空间构型①直线型:O=C=O、H-Cl、N≡N、CH≡CH②V 型:H2O键角(H-O-H)为104°30´③平面型:CH2=CH2、及苯C6H6④三角锥型:NH3 键角(H-N-H)为107°18´⑤正四面体:CH4 和CCl4 及NH4+ 键角为109°28´;P4 键角为60°6.分子间作用力:(1)概念:使分子聚焦在一起的相互作用力,又称范德华力。
键的极性和分子的极性

键的极性和分子的极性在H2(或I2)分子中,两个成键的H原子(或I原子)对共用电子对的吸引能力是相等的,整个分子的正电荷中心和负电荷中心是重合的,这种分子为非极性分子,H-H(或I-I)键为非极性共价键。
但HI分子则是极性分子,H-I键是极性共价键。
因为I的电负性(2.5)大于H(2.1),所以H-I键的共用电子对偏向于I的一端。
或者说HI分子中,I端显负性,而H端为正性。
凡由电负性不同的两个原子形成的共价键为极性共价键,它们的共用电子对偏向电负性大的一方,使电负性大的原子带部分负电荷,电成键原子的电负性差值(△χ)越大,键的极性就越大。
当0<△χ<1.7时,为极性共价键;当△χ>1.7时,电子对将完全偏于电负性大的原子一边,这就和离子键一样了。
例如Cl的电负性为3.0,Na为0.9,Mg为1.2,Na和Cl,Mg和Cl之间△χ值都大于1.7,因而都形成离子键。
由此可见离子键和共价键虽然是两种不同的化学键,但它们之间有联系,从离子键到共价键有递变关系。
例如BeCl2中的Be(χ=1.5)和Cl之间△χ为1.5,Be和Cl 原子形成极性很强的共价键,BeCl2在室温虽是固体,但熔点(405℃)比离子化合物如MgCl2(714℃),CaCl2(782℃)低得多,BeCl2的性质可以说是介于离子化合物和共价化合物之间的过渡状态。
键的极性是一种“矢量”,不但有大小,还有方向,它的方向用从正极到负极的方向表示。
分子的极性与键的极性有关,在双原子分子中,键有极性,分子就有极性,如HI,HCl等。
但以极性键结合的多原子分子,是否有极性,还要看分子的空间构型,因为它决定键的方向。
若分子结构的对称性使键的极性互相抵消,则分子没有极性。
如CO2分中的C=O键是极性键,但由于CO2分子呈直线型对称结构,两个C=O键的极性大小相等,方向相反,互相抵消,整个分子就成了没有极性的非极性分子:下图列举了CH4,NH3和H2O分子的构型和键角。
比较物质键角大小,你以这样做

研究高考题多了,你就会发现高考的题目虽年年换着新装但是其内在的姑娘却依然是以前的那个你熟悉的伊人。
从而要想在高考中获得高分,不在于研究高考题目的变化而在于掌握哪些永恒不变的知识点的本身,掌握好了知识点不管其外衣如何花枝招展最后我们都能准确的得到准确的答案。
今天我们就来解析高考中有关物质键角大小比较的题目,抓住其核心要点总结规律以准确拿全这一知识点的分。
如果时间紧急可直接拉到第三点答题规律部分。
一、考点考察方式物质键角大小比较的考察在高考化学中常常出现于在化学选做题的物质组成与结构即选三的选做题,分值在两分左右。
物质键角大小的比较考察方式大多是直接给你一个物质并告诉谁的键角比较大,让学生写出相关的原因;比较少的但是曾经考察过的是在选择题中判断物质键角的大小。
我们先来看看高考中物质键角大小比较的常见考题。
1、CH4的键角大于 NH3的原因为:【答】CH4中都是 C-H 单键,键与键之间的排斥力一样,所以是正四面体 109.5 。
,而 NH3有未成键的孤对电子,孤对电子间的排斥力>孤对电子对化学键的排斥力>化学键间的排斥力,所以NH3的键角要小于没有孤对电子排斥的 CH4的键角.而孤对电子越多,排斥力越大。
2、NF3的键角小于 NH3键角的原因为:【答】F的电负性比 H的大,NF3中N上的孤对电子更靠近原子核,从而使孤对电子对成键电子对的排斥力更大。
3、高温陶瓷材料 Si3N4晶体中键角N—Si—N >Si—N—Si(填“>”“<”“=”),原因是:【答】N原子上有孤电子对,由于孤电子对与成键电子对的排斥力更大,使得 Si—N—Si 键角较小。
4、两种三角锥形气态氢化物膦(PH3)和氨(NH3)的键角分别为 93.6o和 107o,试分析 PH3的键角小于 NH3的原因:【答】电负性N 强于P,中心原子的电负性越大,成键电子对离中心原子越近,成键电子对之间的距离越小,成键电子对之间的斥力增大,键角变大。
如何比较物质中的键角大小

如何比较物质中的键角大小?含有共价键的物质中相邻两键之间的夹角称为键角。
键角是决定物质分子空间构型的主要因素之一。
根据价层电子对互斥理论的分析,在高中阶段学习中,影响键角大小的因素主要有三:一是中心原子的杂化类型;二是中心原子的孤电子对数;三是中心原子的电负性大小等。
现通过例说如何比较物质中的键角大小。
一、比较不同物质间的键角大小1.利用常见物质分子的空间构型,直接判断键角大小。
案例1:CO2为直线形(sp杂化)、180°BF3为平面三角形(sp2杂化)、120°CH4为正四面体形(sp3杂化)、109.5°NH3为三角锥形(sp3杂化)、07.3°H2O为V形(sp3杂化)、104.5°P4为正四面体形(sp3杂化) 60°说明:CH4与P4都是sp3杂化,但CH4的正四面体中心有C原子,P4的正四面体的体内空心,故二者键角有别。
CH4、NH3、H2O均为sp3杂化,但中心原子的孤电子对依次0、1、2对,根据价层电子对互斥理论,斥力为孤电子对-孤电子对>孤电子对-成键电子对>成键电子对-成键电子对,孤电子对数增多,对成键电子的斥力增大,故三者键角依次减小。
案例2:乙炔C2H2为直线形(sp杂化)、180°苯C6H6为正六边形(sp2杂化),120°乙烯C2H4为平面形(sp2杂化),由于分子中存在不同共价键,键角不是120°;根据价层电子对互斥理论,知斥力为叄键-叄键>叄键-双键>双键-双键>双键-单键>单键-单键,C=C双键对C-H键形成较大的斥力,故C=C-H键角(122°)大于H-C-H键角(116°)。
2.利用周期表位置类比推测分子的空间构型,直接判断键角大小。
案例3:①CS2、CSO等类比CO2,直线形,键角均为:180°。
②BCl3、BBr3等与BF3类比,平面三角形,键角均为:120°。
键角大小怎么比较?

学生疑问:1、为什么NH3的键角是107°, NF3的键角是102.5°?答题思考方向-------配原子电负性对键角的影响,相邻的两个成键电子对远离中心原子时、相互间的斥力会变小。
2、为什么NH3的键角是107°, PH3的键角是93.6°?答题思考方向------中心原子电负性对键角的影响,成键电子对更靠近中心原子,成键电子对间的斥力要变大,老师归纳:影响分子中键角大小的因素键角为某原子与另两个原子所成共价键间的夹角。
一、中心原子杂化类型对键角大小有决定性的影响中心原子杂化类式是决定键角大小的最根本的原因。
上表由前(左)到后(右)的顺序就基本是一个键角逐渐减小的顺序。
例1,对CH4、BF3、CO2这一分子序列,中心原子分别为sp3、sp2和sp杂化,它们对应的键角为109°28′、120°、180°,键角会依次增大。
二、中心原子孤电子对数目对键角的影响由于中心原子的孤对电子的电子云肥大,对成键电子对有较大的排斥力,所以孤对电子能使成键电子对彼此离得更近,键角被压缩而变小。
且中心原子的孤电子对数越多,键角会变得越小[2]。
例2,对H2O、NH3、CH4分子系列。
这3个分子的中心原子采取的都是sp3角要受2个孤电子对的压缩,键角应该会最小。
这就导致出推断:该序列是一个键角逐渐增大的序列。
可查得它们的键角分别是104.5°、107.1°、109.5°。
三、配原子电负性对键角的影响当同一种原子中心原子种类相同、杂化类型也相同,而配原子种类不同时,由于配原子的电负性不同,会使键角有区别。
因为当相邻的两个成键电子对更靠近中心原子时、相互间的斥力会增大。
反之,当相邻的两个成键电子对远离近中心原子时、相互间的斥力会变小。
例3,将NF3与NH3比较,中心原子都是N原子、且都为sp3杂化,但因为F原子的电负性大于H原子,使成键电子离N原子更远,两个N-F键间的斥力减小、可以靠的更近,所以其键角更小。