数值计算方法 5插值法
数值计算中的插值方法-教案

数值计算中的插值方法-教案一、引言1.1数值计算与插值方法的背景1.1.1数值计算在现代科学和工程中的重要性1.1.2插值方法在数值计算中的应用1.1.3插值方法的基本概念和分类1.1.4教学目标和意义1.2插值方法的历史发展1.2.1古典插值方法的发展历程1.2.2现代插值方法的发展趋势1.2.3插值方法在不同领域的应用案例1.2.4学生对插值方法历史了解的重要性1.3教学方法和组织形式1.3.1采用的教材和参考资料1.3.2教学方法和策略1.3.3教学活动的组织形式1.3.4学生参与和互动的重要性二、知识点讲解2.1插值函数的构造2.1.1拉格朗日插值多项式2.1.2牛顿插值多项式2.1.3埃尔米特插值多项式2.1.4各种插值方法的优缺点比较2.2插值误差分析2.2.1插值多项式的余项2.2.2插值误差的估计2.2.3插值误差与数据点分布的关系2.2.4提高插值精度的方法2.3插值方法的应用2.3.1数据拟合与逼近2.3.2数值微积分2.3.3工程问题中的插值应用2.3.4学生实际操作和案例分析的必要性三、教学内容3.1拉格朗日插值多项式3.1.1拉格朗日插值多项式的定义3.1.2拉格朗日插值多项式的构造方法3.1.3拉格朗日插值多项式的性质3.1.4拉格朗日插值多项式的应用实例3.2牛顿插值多项式3.2.1牛顿插值多项式的定义3.2.2牛顿插值多项式的构造方法3.2.3牛顿插值多项式的性质3.2.4牛顿插值多项式的应用实例3.3埃尔米特插值多项式3.3.1埃尔米特插值多项式的定义3.3.2埃尔米特插值多项式的构造方法3.3.3埃尔米特插值多项式的性质3.3.4埃尔米特插值多项式的应用实例四、教学目标4.1知识与技能目标4.1.1理解插值方法的基本概念和分类4.1.2掌握拉格朗日、牛顿和埃尔米特插值多项式的构造方法4.1.3学会分析插值误差,并了解提高插值精度的方法4.1.4能够运用插值方法解决实际问题4.2过程与方法目标4.2.1培养学生的数学建模能力4.2.2培养学生的数据分析能力4.2.3培养学生的逻辑思维能力和问题解决能力4.2.4培养学生的合作与交流能力4.3情感态度与价值观目标4.3.1培养学生对数学学习的兴趣和热情4.3.2培养学生的科学精神和创新意识4.3.3培养学生的团队协作意识和责任感4.3.4培养学生的国际视野和跨文化交流能力五、教学难点与重点5.1教学难点5.1.1插值多项式的构造方法5.1.2插值误差的分析与估计5.1.3插值方法在实际问题中的应用5.1.4学生对插值方法的理解和应用能力5.2教学重点5.2.1插值方法的基本概念和分类5.2.2拉格朗日、牛顿和埃尔米特插值多项式的性质5.2.3插值方法在数值计算中的应用5.2.4学生对插值方法的应用和实践能力六、教具与学具准备6.1教具准备6.1.1多媒体设备6.1.2白板和笔6.1.3教学软件和应用程序6.1.4教学视频和演示文稿6.2学具准备6.2.1笔记本和文具6.2.2计算器和数学软件6.2.3相关教材和参考资料6.2.4学生自主学习的资源七、教学过程7.1导入新课7.1.1引入数值计算和插值方法的背景7.1.2提出问题,激发学生的兴趣7.1.3引导学生回顾相关知识点7.1.4提出教学目标和要求7.2知识讲解与演示7.2.1讲解插值方法的基本概念和分类7.2.2演示拉格朗日、牛顿和埃尔米特插值多项式的构造方法7.2.3分析插值误差,并介绍提高插值精度的方法7.2.4通过实例讲解插值方法在实际问题中的应用7.3学生练习与讨论7.3.1布置练习题,让学生独立完成7.3.2组织学生进行小组讨论和合作7.3.3引导学生提出问题和解决问题的方法7.3.4检查学生的练习情况,并进行点评和指导7.4.2引导学生思考插值方法在其他领域的应用7.4.3提供相关资料和资源,鼓励学生进行深入学习7.4.4布置作业,巩固学生的学习成果八、板书设计8.1板书设计概述8.1.1板书设计的重要性8.1.2板书设计的原则和策略8.1.3板书设计的内容和方法8.1.4学生对板书的理解和记忆能力8.2板书设计的内容8.2.1插值方法的基本概念和分类8.2.2拉格朗日、牛顿和埃尔米特插值多项式的构造方法8.2.3插值误差的分析与估计8.2.4插值方法在实际问题中的应用8.3板书设计的策略8.3.1采用图表和示意图进行辅助说明8.3.2使用颜色和标记进行突出和区分8.3.3运用逻辑结构和层次进行组织8.3.4结合多媒体和教具进行补充和拓展九、作业设计9.1作业设计概述9.1.1作业设计的重要性9.1.2作业设计的原则和策略9.1.3作业设计的内容和方法9.1.4学生对作业的理解和完成能力9.2作业设计的内容9.2.1基本概念和分类的回顾题9.2.2插值多项式的构造和应用题9.2.3插值误差的分析和计算题9.2.4实际问题的建模和解决题9.3作业设计的策略9.3.1设计不同难度层次的作业题9.3.2提供相关资料和资源进行辅助9.3.3鼓励学生进行合作和讨论9.3.4安排作业的批改和反馈机制十、课后反思及拓展延伸10.1课后反思10.1.1教学目标的达成情况10.1.2教学难点和重点的处理情况10.1.3教学方法和策略的有效性10.1.4学生的学习情况和反馈意见10.2拓展延伸10.2.1插值方法在其他领域的应用10.2.2相关的数学建模和数据分析方法10.2.3国际视野下的数值计算方法10.2.4学生自主学习和研究的机会重点关注环节及其补充说明:1.教学难点与重点:在讲解插值多项式的构造方法和插值误差分析时,应结合实例和图表进行详细解释,并引导学生进行实际操作和练习,以提高他们的理解和应用能力。
函数的插值法

函数的插值法
函数插值法是一种数值分析中的有效算法,它可以用来近似一个函数的值,既可以在给定的若干个点上,也可以在连续的一段区间上。
在插值法中,首先我们需要找到一个合适的插值函数,它可以比较好的拟合给定的点。
有许多常见的插值函数,比如拉格朗日插值函数、牛顿插值函数、指数插值函数以及Hermit插值函数等等。
当确定插值函数之后,就可以使用插值算法,将这些函数应用于给定的点,然后得到函数的极值、极点以及拐点等特征。
例如,如果给定的是三个点,则可以使用牛顿插值算法,将这三个点拟合起来,然后计算该函数的极值、极点和拐点,以此得到函数的一般性表达式。
如果要对函数在连续的一段区间上进行插值,可以使用多项式拟合法来求解,首先在这一段区间内构造一个有限多项式,然后使用这个多项式来拟合给定的点,充分利用多项式的特性,从而得到函数的一般性表达式。
总之,函数插值法是一种有效的数值计算方法,它能够帮助我们求解函数的理论表达式,而不必为此去解方程,大大提高了计算的效率,也使得函数的理论研究变得更加容易。
计算方法

计算方法第一章绪论1.1计算方法的任务与特点计算方法(又称数值计算方法,数值方法)定义:研究数学问题数值解法及其理论的一门学科1.2误差知识误差来源:模型误差、观测误差、截断误差、舍入误差绝对误差:|e(x*)|=|x-x*|相对误差:e r=e(x*)/x*x*=±10m(a1×10-1+a2×10-2+…+an×10-n)n为有效数字|x-x*|≤(1/2)×10m-n1.3选用算法时应遵循的原则要尽量简化计算步骤以减少运算次数、要防止大数“吃掉”小数、尽量避免相近的数相减、除法运算中应尽量避免除数的绝对值远远小于被除数的绝对值选用数值稳定性好的公式,以控制舍入误差的传播第二章方程的近似解法方程f(x)=a0+a1x+…+a m-1x m-1+a m的根的模小于u+1大于1/|1+v| (u=max{|a m-1|,…,|a1|,|a0|}v=1/|a0|max{1,||a m-1|,…,|a1|})2.1二分法解法步骤:第一步利用(b-a)/2n+1≤1/2×10-m解得n+1≥~得最小对分次数2.2迭代法解法步骤:第一步画图求的隔根区间第二步建立迭代公示并判别收敛性第三步令初始值计算2.3牛顿迭代法迭代公式:x n+1= x n -f(x n)/f’(x n)解法步骤:第一步列出迭代公式第二步判断收敛性3.1解线性方程组的直接法高斯消去法、列主元素消去法、总体选主元素消去法暂不介绍矩阵三角分解法Ly=b Ux=y以三行三列为例介绍u11=a11u12=a12u13=a13l21=a21/u11l31=a31/u11u22=a22-l21×u12u23=a23-l21×u13l32=(a32-l31u12)/u22u33=a33-l31×u13-l32×u233.2解线性方程组的迭代法简单迭代法(雅可比迭代法)x=Bx+g收敛性判断|E入-B T B|=0 max入<1赛德尔迭代法x(k+1)=B1x(k+1)+B2x(k)+g收敛性判断|E入-C T C|=0 max入<1 C=(E-B1)-1B2第五章插值法余项R n(x)=f(n+1)(~)∏(x-x i)5.1拉格朗日插值法l k(x)=[(x-x0)…(x-x k-1)(x-x k+1)…(x-x n)]/[(x k-x0)…(x k-x k-1)(x k-x k+1)…(x k-x n)] L n(x)=∑l k(x)y k第六章最小二乘法与曲线拟合A T Ax=A T b第七章数值积分与数值微分梯形公式∫f(x)dx=(b-a)/2[f(a)+f(b)]Rn=-(b-a)3/12f’’(m) (m∈(a,b))复化梯形公式Rn=-(b-a)h2/12f’’(m) (m∈(a,b))辛浦生公式∫f(x)dx=(b-a)/6[f(a)+f((a+b)/2)+f(b)]Rn=- (b-a)5/2880f’(4)(m) (m∈(a,b))Rn=- (b-a)h4/2880f’(4)(m) (m∈(a,b))柯特斯公式∫f(x)dx=(b-a)/90[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]Rn=-8(b-a)/945((b-a)/4)7f(6)(m) (m∈(a,b))Rn=-2(b-a)(h/4)6/945((b-a)/4)7f(6)(m) (m∈(a,b))龙贝格求积公式S N=(4T2N-T N)/(4-1)C N=(42S2N-S N)/(42-1)R N=(43C2N-C N)/(43-1)T梯形S辛浦生C柯特斯第八章常微分方程初值问题的数值解法欧拉法y n+1=y n+hf(x n,y n)梯形法y n+1=y n+h/2[f(x n,y n)+f(x n+1,y n+1)]欧拉预估-校正公式y n(0)=y n+hf(x n,y n) y n+1=h/2[f(x n,y n)+f(x n+1,y n+1(0))]。
数值计算方法第2版 第4章 插值法

则
l ( x ) 1 ( k i ) , k i l ( x ) 0 ( k i ) , i 、 k 0 , 1 , , n k i
lk (x)称为关于节点xi( i=0,1,…,n)的n次插值基函数。
基函数的特点
1. 基函数的个数等于节点数。 2. n+1个节点的基函数是n次代数多项式。 3. 基函数和每一个节点都有关。节点确定,基函数就唯 一的确定。 4. 基函数和被插值函数无关。 5. 基函数之和为1。
公式的结构:它是两个一次函数的线性组合 线性插值基函数
x x 1 l ( x ) , 0 x x 0 1 x x 0 l ( x ) 1 x x 1 0
3 线性插值的几何意义 用直线 P ( x ) 近似代替被插值函数 f ( x ) 。
例
造数学用表。平方根表
给定函数在100、121两点的平方根如下表,试用线性 插值求115的平方根。 x 100 121
其系数行列式
a0 a1 x0 a2 x02 an x0n y0 2 n a0 a1 x1 a2 x1 an x1 y1 2 n a a x a x a x n n yn 0 1 n 2 n
1 x 0 x 02
x 0n
2 n 1 x x x 1 1 ( x x 0 V ( x , x , , x ) 1 i j) 0 1 n 0 j i n
1 xn
x n2 x nn
,a , ,a 0 1 n ,因此P(x)存在且唯一。 方程组有唯一解 a
唯一性说明不论用那种方法构造的插值多 项式只要满足相同的插值条件,其结果都是互 相恒等的。 推论 当f(x)是次数不超过n的多项式时, 其n次插值多项式就是f(x)本身。
插值的基本定义及应用

插值的基本定义及应用插值是数学中的一种数值计算方法,用于根据给定的有限数据点,构造出一个函数,该函数在这些数据点上与原函数具有相同的性质。
基本上,插值问题可以总结为如何利用已知数据点来估计未知数据点的数值。
插值问题的基本定义是:给定一些已知的数据点,我们需要找到一个函数或曲线,使得这个函数或曲线通过这些已知的数据点,并且在这些点附近具有某种特定的性质。
具体而言,插值函数要满足以下两个条件:1. 插值函数通过已知的数据点,即对于给定的数据点(x_i, y_i),插值函数f(x)满足f(x_i) = y_i。
2. 插值函数在已知的数据点之间具有某种连续性或平滑性。
这意味着在已知的数据点之间,插值函数f(x)的一阶导数、二阶导数或其他导数连续或平滑。
插值方法可以用于解决各种实际应用问题,例如:1. 数据重构:在一些实际应用中,我们只能获得有限的数据点,但是我们需要整个函数的完整数据。
通过插值方法,我们可以从这些有限的数据点中恢复出整个函数的形状,以满足我们的需求。
2. 函数逼近:有时候,我们需要找到一个与已知数据点非常接近的函数或曲线,以便在未知点处进行预测。
通过插值方法,我们可以构造出一个逼近函数,在已知数据点附近进行预测。
3. 数据平滑:在一些实际问题中,我们的数据可能受到噪声或误差的影响,从而产生不规则或不平滑的曲线。
通过插值方法,我们可以使用平滑的插值曲线来去除噪声或误差,从而得到更加平滑的数据。
4. 图像处理:在图像处理中,插值方法被广泛应用于图像的放大、缩小、旋转、变形等操作中。
通过插值方法,可以在图像上生成新的像素值,以获得更高的图像质量。
常见的插值方法包括:1. 线性插值:线性插值是最简单的插值方法之一,它假设函数在已知数据点之间是线性的。
线性插值的插值函数是一条直线,通过已知数据点的两个端点。
2. 拉格朗日插值:拉格朗日插值是一种基于多项式的插值方法。
它通过一个n 次的多项式来插值n+1个已知数据点,保证插值函数通过这些已知数据点。
(完整word版)数值计算方法期末复习答案终结版

一、 名词解释1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差,简称误差。
2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能表示其精确程度。
如果近似值*x 的误差限是1102n -⨯,则称*x 准确到小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。
3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。
4。
向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。
5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数()x ϕ作为()f x 的近似的方法。
6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值*x 的相对误差,记为*()r e x ,即**()()r e x e x x=7。
矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A .若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ;(3)对任意两个n 阶方阵A ,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B称||||A 为矩阵A 的范数.8. 算子范数:设A 为n 阶方阵,||||•是n R 中的向量范数,则0||||||||||||maxx Ax A x ≠=是一种矩阵范数,称其为由向量范数||||•诱导出的矩阵范数,也称算子范数.9。
插值法的最简单计算公式

插值法的最简单计算公式全文共四篇示例,供读者参考第一篇示例:插值法是一种常用的数值计算方法,用于通过已知数据点推断出未知数据点的值。
在实际问题中,往往会遇到数据点不连续或者缺失的情况,这时就需要通过插值法来填补这些数据点,以便更准确地进行计算和分析。
插值法的最简单计算公式是线性插值法。
线性插值法假设数据点之间的变化是线性的,通过已知的两个数据点来推断出中间的未知数据点的值。
其计算公式为:设已知数据点为(x0, y0)和(x1, y1),需要插值的点为x,其在(x0, x1)之间,且x0 < x < x1,插值公式为:y = y0 + (y1 - y0) * (x - x0) / (x1 - x0)y为插值点x对应的值,y0和y1分别为已知数据点x0和x1对应的值。
通过这个线性插值公式,可以方便地计算出中间未知点的值。
举一个简单的例子来说明线性插值法的应用。
假设有一组数据点为(1, 2)和(3, 6),现在需要插值得到x=2时的值。
根据线性插值公式,我们可以计算出:y = 2 + (6 - 2) * (2 - 1) / (3 - 1) = 2 + 4 * 1 / 2 = 2 + 2 = 4当x=2时,线性插值法得到的值为4。
通过这个简单的例子,可以看出线性插值法的计算公式的简单易懂,适用于很多实际问题中的插值计算。
除了线性插值法,还有其他更复杂的插值方法,如多项式插值、样条插值等,它们能够更精确地拟合数据并减小误差。
在一些简单的情况下,线性插值法已经足够满足需求,并且计算起来更加直观和方便。
在实际应用中,插值法经常用于图像处理、信号处理、数据分析等领域。
通过插值法,可以将不连续的数据点连接起来,填补缺失的数据,使得数据更加完整和连续,方便后续的处理和分析。
插值法是一种简单而有效的数值计算方法,其中线性插值法是最简单的计算公式之一。
通过这个简单的公式,可以方便地推断出未知数据点的值,并在实际应用中发挥重要作用。
数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n (x xj ) j0 (xi x j )
ji
且满足 li (x j ) ij i, j 0,1, , n
➢拉格朗日插值公式
Ln (x)
y0l0 (x) y1l1 (x)
ynln (x)
n i0
yili (x)
n i0
yi
n j 0
(x xj ) (xi x j )
(x (x2
x0 )(x x1 ) x0 )(x2 x1 )
其几何意义是明显的。
5.2.2 拉格朗日二次(抛物)插值L2(x)
➢拉格朗日抛物插值公式
由抛物插值基函数的性质和插值函数的唯一性,得
2
L2 (x) yili (x) y0l0 (x) y1l1(x) y2l2 (x) i0
拉格朗日插值函数均可表示为一组基函数与函数值的线性组 合,这些基函数与被插函数无关,只需用插值基点有来构造。
5.2.1 拉格朗日线性插值L1(x) ➢线性插值及几何意义
n=1时的n次多项式L1(x) 称为线性插值。此时,有两个互异的 插值基点:x0,x1,插值条件为: L1(x0)=y0, L1(x1)=y1 。
要求基函数 l0(x),l1(X),l2(x)均为2次多项式,
且满足:
li (x j ) ij i, j 0,1,2
不难得到:
l0 (x)
(x ( x0
x1 )(x x2 ) x1 )(x0 x2 )
l1 ( x)
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
l2 (x)
定义5-3
设H
是
n
不超过n次的多项式的全体的集合,
0
(
x)
,1
(
x),
,n (x)
是H n中n
1个线性无关的多项式,则0 (x),1 (x),
,
n
(
x)是H
的
n
一组基函数。
注意:基函数是不唯一的;
n
H n中的任一多项式pn (x)均可由基函数唯一表示,即pn (x) kii (x) i0
➢定理5-1 (插值函数的存在唯一性定理)
5 插值法 ( Interpolation method )
➢本章主要内容
5.1 函数插值的基本问题 5.2 拉格朗日插值法 5.3 牛顿插值法 5.4 埃尔米特插值法
插值法更多的
是作为其它数 值方法的基础
5.5 分段低次插值
5.6 三次样条插值
5.7 二元函数插值方法
➢重点:各种插值算法的思路及插值公式的构造
分段低次插值法
5.1.2 插值函数的存在唯一性问题
➢基函数
定义5-2
设0 (x),1(x), ,n (x)在[a,b]上连续,如果x [a,b] k00 (x) k11(x) knn (x) 0
当且仅当 k0 k1 kn 0 时成立,则称 0 (x),1(x), ,n (x)在[a,b]上是线性无关的。 如,0 (x) 1,1(x) x, ,n (x) xn在[,]上是线性无关的, 0 (x) 1,1(x) 1 x,2 (x) 2x2 x在[,]上也是线性无关的。
在n+1个互异基点处满足插值条件且次数不超过n次的多项式
pn(x)是存在唯一的。
证明:待定系数法,系数矩阵是n+1阶范德蒙行列式, 由于插值基点互异,行列式不为零,系数存在且唯一。
注意:次数不超过n次必不可少,否则,唯一性不保证;
定理表明:插值函数与插值方法无关
例5-1 p88
5.2 拉格朗日(Lagrang)插值----Ln(x)
➢难点:各种插值算法误差估计,样条插值
5.1 函数插值的基本问题
5.1.1 函数插值问题 ➢函数插值的必要性
使复杂函数简单化 使无解析式的函数(离散型、图形图像)获得解析式 为其他数值方法提供支持手段(如数值积分、微分)
➢插值问题
定义5-1
5.1 函数插值的基本问题
5.1.1 函数插值问题 ➢代数多项式插值问题
1 8
(
x1
x0 )2
Max
x0 xx1
f (x)
例5-2 已知sin30o=0.5,sin45o=0.707107,求sin50o的近似值。
5.2.2 拉格朗日二次(抛物)插值L2(x)
➢抛物插值及几何意义
插值基点:x0,x1,x2(互异) 插值函数:二次多项式(抛物线)
插值条件:L2(xi)=yi, i=0,1,2. ➢抛物插值基函数及几何意义
➢拉格朗日抛物插值公式的截断误差
R2 (x)
f (x) L2 (x)
f
( 3!
)
(
x
x0
)(x
x1
)(x
x2
)
例5-3 已知sin30o=0.5,sin45o=0.707107, sin60o=866025, 用抛物插值法求sin50o的近似值。
例 利用9,16,25的平方根求17和5的平方根的近似值。 注意:外插与内插的误差比较。
5.2.3 n次拉格朗日插值
➢问题描述
插值基点:x0,x1,…,xn(n+1个点互异) 插值函数:不超过n次的多项式
插值条件:Ln(xi)=yi, i=0,1,2,…,n
➢基函数
li (x)
(x x0 ) (x xi1 )(x xi1 ) (x xn ) (xi x0 ) (xi xi1 )(xi xi1 ) (xi xn )
由于多项式有其优良的特性,所以通常都是用多项式作为 插值函数。还有其它类型的插值函数,如有理函数插值、 三角函数插值等
➢函数插值涉及的基本问题
插值函数的存在唯一性问题
插值函数的构造问题
截断误差估计与收敛性问题
➢ 代数多项式插值函数的构造方法
拉格朗日插值法 埃尔米特插值法
牛顿插值法
样条函数插值法
其几何意义就是用过点(x0,y0)和(x1,y1)的直线y=L1(x)代替y=f(x)。
➢拉格朗日线性插值函数L1(x)
由两点式直线公式,整理可得
L1 (x)
y0
x x1 x0 x1
y1
x x0 x1 x0
5.2.1 拉格朗日线性插值L1(x)
➢线性插值基函数及几何意义
称l0 (x)
x x1 x0 x1
, l1 (x)
x x0 x1 x0
线性拉格朗日插值基函数。
它们都是线性函数,且具有性质: li (x j ) ij i, j 0,1
其几何意义见图示。
➢插值余项 f ()
R1(x) f (x) L1(x) 2 (x x0 )(x x1)
留给读者自己证明:
R1(x)
f
(x)
L1 ( x)