发电机中性点接地变压器容量计算

合集下载

接地变压器及其容量计算方法

接地变压器及其容量计算方法

接地变压器及其容量计算方法摘要:分析了接地变压器的基本原理,介绍了一种比较合理的接地变压器容量计算方法,并给出了计算实例。

关键词:接地变压器;容量;计算方法1 前言我国电力系统中的35kV、10kV 电网一般都采用中性点不接地的运行方式。

改革开放以来,城市建设迅速发展,相应的城市电网改造任务也随之加大,其变化的最大特点是城网电缆线路剧增,电网的对地电容电流也迅速上升。

当系统发生单相接地时,接地相的接地电流是非故障相对地电容电流之和。

当接地电流超过10A时,每次电流过零点都会产生的一个暂时性熄弧过程和伴随其后的再度击穿绝缘都会引起电网中的电磁能量的剧烈震荡,使非故障相,系统中性点乃至故障相产生电弧接地过电压,这种过电压可高达4 倍或更高。

它将严重威胁电网设备的绝缘,危及电网的安全运行。

2 接线方式、分析与比较为了抑制弧光接地过电压,就必须改电网中性点不接地系统为中性点经电阻接地或经消弧线圈接地。

由于一般电网变电所的主变压器都使用Yd的接法或YNynd的联结法,特别是10kV配网系统都无中性点引出。

接地变压器的功能是为中性点不接地系统,引出一个中性点。

接地变压器的特性是在电网正常运行时有很高的励磁阻抗,绕组中只流过较小的励磁电流或因中性点电压偏移引起的持续电流(此值一般较小)。

当系统发生单相接地故障时,接地变压器绕组对正序、负序都呈现高阻抗,而对零序电流则呈低阻抗,这一零序电流经过接地变压器中性点电阻或消弧线圈起到减小电网的接地电流和抑制过电压的发生。

为此,该接地变压器的结构就必须采用曲折形的绕组联结法,并在中性线处引出中性点套管,以加装消弧线圈或接地电阻。

其联结图如图1 所示。

从图1可见,接地变压器由6个绕组组成,每一铁心柱上有 2个绕 组,然后反极性串联成曲折形的星形绕组。

即 A 绕组的末端与B 2绕组的 末端相连,同样,B 绕组末端与C 2绕组末端,C 绕组末端与A 绕组末端 相连,然后 A B 、C 2的首端相连则形成曲折变压器的中性点 Q图2表示了各绕组间的相量关系。

电厂300MW发电机中性点的接地方式选型与计算

电厂300MW发电机中性点的接地方式选型与计算

电厂300MW发电机中性点的接地方式选型与计算发表时间:2013-09-09T10:03:56.983Z 来源:《科学教育前沿》2013年第6期供稿作者:顾进良[导读] 但是合理选择这个电阻的大小与机组安全运行密切相关。

顾进良(河北大唐国际张家口热电有限责任公司设备工程部河北张家口 075000)【摘要】发电机中性点接地方式与定子接地保护的构成密切相关,正确选择发电机中性点的接地方式和接地设备,对发电机甚至电网的安全运行有着举足轻重的作用。

【关键词】汽轮发电机;中性点设备;单相接地故障;接地变压器;电阻中图分类号:G62 文献标识码:A文章编号:ISSN1004-1621(2013)06-013-01电厂300MW汽轮发电机中性点接地方式的选择与发电机100%范围定子接地保护装置相关联,中性点设备参数的选择与保护要相配合,在保证发电机定子绕组电气绝缘安全的前提下使得发生单相接地短路时健全相电压不超过2.6倍额定电压,避免烧伤定子铁芯,并且可使流过故障点的是一固定的电阻性电流,保证接地保护可靠动作。

一、发电机定子单相接地电流电压值发电机内部单相接地时,流经接地点的电流为发电机所在电压网络(一般为发电机本身、封闭母线、主变等元件网络)对地的电容电流之和,而不同之处在于故障点零序电压随发电机内部接地点的位置而改变。

假设发电机A相发生单相接地,位置在距离绕组中心处,表示故障点绕组占全部绕组的百分数(0~100%),如图1所示,则--故障点零序电压;--故障点零序电流;--发电机电动势;--发电机每相对地电容;--发电机以外设备每相对地电容。

上述式中为发电机相电动势,一般在计算时常用发电机额定相电压代替。

综上可见,故障点的零序电压和零序电流值均与成正比,在发电机出线端子附近 ≈1,此时零序电压和零序电流值最大,分别为和。

二、发电机定子单相接地电流允许值大中型发电机中性点多为不接地或者经高阻抗接地方式,定子单相接地故障时并不产生太大的故障电流,所以定子绕组单相接地保护可以只发信号而不直接跳闸,故障机组经负荷转移后才平稳停机。

35kV系统中性点接地电阻及接地变压器设计选型

35kV系统中性点接地电阻及接地变压器设计选型

中性点接地电阻及接地变压器选型方案深圳市华力特电气股份有限公司一、系统设计现状及电容电流计算变电站总共上3台的主变压器,联接组别Y/Δ,额定电压110kV/35kV。

35kV配电系统全部采用电缆线路,根据变电站35kV电缆线路型号及长度计算系统电容电流如下:据乔工介绍:I、II、III段母线对应的电容电流各为Ic=50A,35kV侧共有三段母线,三段母线都采用中性点经电阻接地方式,因此三段母线应考虑并列运行情况则系统总的对地电容电流为IcI+IcII+IcIII =50A+50A+50A=150A考虑以后用电负荷增加和远期发展及变电站其他设备的对地电容电流。

系统总的电容电流取150A*1.2=180A。

二、中性点经电阻接地方式优点变电站35KV系统采用中性点经电阻接地方式的主要目的是限制系统过电压水平和单相接地故障情况下实现快速准确选线。

中性点经电阻接地方式的两个最主要优点即是:(1)有效限制系统各种过电压,特别是对间歇性弧光接地过电压水平的限制;(2)利用大的接地故障电流,解决选线难,达到准确快速选线切除故障线路的目的。

中性点经电阻接地方式特别适用于电缆线路为主的配电网,大型工矿企业、机场、港口、地铁、钢铁等重要电力用户,以及发电厂发电机和厂用电系统。

其主要优点体现在:1)降低工频过电压,非故障相电压升高小于√3倍;2)有效限制间歇性弧光接地过电压;3)消除谐振过电压;降低各种操作过电压;4)可准确判断并及时切除故障线路;5)系统承受过电压水平低,时间短;可适当降低设备的绝缘水平,提高系统设备的使用寿命,具有很好的经济效益。

6)有利于具有优良伏秒特性的氧化锌避雷器MOA的应用,降低雷电过电压水平;适用于系统以后扩容及对地电容电流大范围变化情况,电阻不需要调节;设备简单、可靠,投资少、寿命长。

三、中性点接地电阻选型中性点接地电阻的选型主要依据系统总的电容电流选取。

采用中性点经电阻接地时,电阻值的选取必须根据电网的具体情况,应综合考虑限制过电压倍数,继电保护的灵敏度,对通信的影响,人身安全等因素。

发电机中心点接地变压器的作用

发电机中心点接地变压器的作用

为什么要装设发电机中性点接地变压器1.高电阻接地,可以限制接地电流,还可以适当减少接地过电压,但是没有必要弄一个很大的高电阻直接接到发电机中性点与大地之间.而是弄一个小电阻,再弄一台接地变压器,接地变压器的原边接中性点与地之间,副边接上一个小电阻即可,根据公式,一次侧呈现的阻抗等于二次侧电阻乘以变压器变比的平方,所以有接地变压器,可以用一个小电阻来发挥一个高电阻的作用.2.发电机接地的时候,中性点对地有电压,这个电压等于就加在了接地变压器的原边,那么副边自然能感应出一个电压,这个电压可以做为发电机接地保护的判据,即可以用接地变压器抽取零序电压.我本来的意思时,高阻接地方式,比中性点不接地的过电压要小,但相比中性点直接接地的话,短路电流小了,所以是一个折中的方法.这里短路电流小是相对与直接接地方式来说的.楼上师傅批评的是,如果相对与自然电容电流来讲,中性点经高电阻构成了回路,电阻再高也有了回路,所以肯定比中性点不接地时接地电流要大了,但是为了限制过电压,也只能这样.总之,过电压和过电流总是相互矛盾的.但也许限制过电压和限制过电流都是相对与中性点不接地的时候来说的,也就是相对与自然电容电流,小弟受教了,谢谢师傅!~经sutsosth师傅的批评,反省一下自己不大严谨的毛病, 阅读了相关专著,作个总结:对于各种接地方式的接地短路电流和弧光接地过电压的大小,一目了然,和大家分享.,.自己也学习了,..常用中性点接地方式: 不接地直接接地经高电阻接地经消弧线圈接地接地时短路电流: 较小最大较大最小(同脱谐度有关)接地弧光过电压: 最大最小较小较大(但过电压概率不高)关于PT开口三角电压对于中性点接地的110kv和220kv的大电流接地系统,发生单相金属性接地时开口三角的电压是100v,虽然电压都仍为相电压但开口三角的pt变比是110kv/1.732(根3,根号不好打)/100/3;所以发生单相接地是100v;对于10kv和6kv中性点不接地系统他的开口三角pt变比是10kv/1.732/100/1.732,所以发生单相接地时的电压也是100v。

发电机中性点接地方式及作用 综合2

发电机中性点接地方式及作用 综合2

发电机中性点接地方式及作用发电机中性点接地一般有以下几类:1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。

发电机中性点不接地方式,一般适用于小容量的发电机。

(中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。

这种接地方式能实现无死区的定子接地保护)2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。

3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。

这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。

大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。

注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。

发电机中性点经单相变压器高阻接地接地装置设计及选型1.发电机中性点接地电阻的计算原则1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线电压1.5U N=2.6U X)2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求;3)10kv 10MW发电机最大容性电流<4A C<2.1 uF2.电容及电容电流计算:=0.7242uF(发电机厂家提供);1)发电机定子绕组三相对地电容Cof2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排)=0.06829uF0.05×2.6=0.13A即三相对地电容 Col=0.2uF(经验值);3)发电机出口至升压主变低压绕组间单相对地等值电容为C024)主变低压侧三相对地电容20470PF即0.02047 uF5)阻容参数:单相电容0.1 uF,三相为0.3 uF发电机的三相对地总电容:C=0.7242+0.06829+0.6+0.02047+0.3=1.71296uF发电机系统电容电流为:I C=ω CU X×103=2πf CU X×103=314×1.71296×106 ×10.5/3×103=3.26A2. 接地电阻值的选择:接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。

接地变压器及其容量计算方法

接地变压器及其容量计算方法

接地变压器及其容量计算方法摘要:分析了接地变压器的基本原理,介绍了一种比较合理的接地变压器容量计算方法,并给出了计算实例。

关键词:接地变压器;容量;计算方法1 前言我国电力系统中的35kV、10kV 电网一般都采用中性点不接地的运行方式。

改革开放以来,城市建设迅速发展,相应的城市电网改造任务也随之加大,其变化的最大特点是城网电缆线路剧增,电网的对地电容电流也迅速上升。

当系统发生单相接地时,接地相的接地电流是非故障相对地电容电流之和。

当接地电流超过10A时,每次电流过零点都会产生的一个暂时性熄弧过程和伴随其后的再度击穿绝缘都会引起电网中的电磁能量的剧烈震荡,使非故障相,系统中性点乃至故障相产生电弧接地过电压,这种过电压可高达4 倍或更高。

它将严重威胁电网设备的绝缘,危及电网的安全运行。

2 接线方式、分析与比较为了抑制弧光接地过电压,就必须改电网中性点不接地系统为中性点经电阻接地或经消弧线圈接地。

由于一般电网变电所的主变压器都使用Yd的接法或YNynd的联结法,特别是10kV配网系统都无中性点引出。

接地变压器的功能是为中性点不接地系统,引出一个中性点。

接地变压器的特性是在电网正常运行时有很高的励磁阻抗,绕组中只流过较小的励磁电流或因中性点电压偏移引起的持续电流(此值一般较小)。

当系统发生单相接地故障时,接地变压器绕组对正序、负序都呈现高阻抗,而对零序电流则呈低阻抗,这一零序电流经过接地变压器中性点电阻或消弧线圈起到减小电网的接地电流和抑制过电压的发生。

为此,该接地变压器的结构就必须采用曲折形的绕组联结法,并在中性线处引出中性点套管,以加装消弧线圈或接地电阻。

其联结图如图1 所示。

从图1可见,接地变压器由6个绕组组成,每一铁心柱上有 2个绕 组,然后反极性串联成曲折形的星形绕组。

即 A 绕组的末端与B 2绕组的 末端相连,同样,B 绕组末端与C 2绕组末端,C 绕组末端与A 绕组末端 相连,然后 A B 、C 2的首端相连则形成曲折变压器的中性点 Q图2表示了各绕组间的相量关系。

发电机中性点接地方式及作用综合

发电机中性点接地方式及作用综合

发电机中性点接地方式及作用发电机中性点接地一般有以下几类:1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。

发电机中性点不接地方式,一般适用于小容量的发电机。

(中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。

这种接地方式能实现无死区的定子接地保护)2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。

3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。

这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。

大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。

注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。

发电机中性点经单相变压器高阻接地接地装置设计及选型1.发电机中性点接地电阻的计算原则1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线电压1.5U N=2.6U X)2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求;3)10kv 10MW发电机最大容性电流<4A C<2.1 uF2.电容及电容电流计算:1)发电机定子绕组三相对地电容C of=0.7242uF(发电机厂家提供);2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排)0.05×2.6=0.13A即三相对地电容C ol=0.06829uF3)发电机出口至升压主变低压绕组间单相对地等值电容为C02=0.2uF(经验值);4)主变低压侧三相对地电容20470PF即0.02047 uF5)阻容参数:单相电容0.1 uF,三相为0.3 uF发电机的三相对地总电容:C =0.7242+0.06829+0.6+0.02047+0.3=1.71296uF发电机系统电容电流为:I C =ω CU X ×103=2πf CU X ×103=314×1.71296×106-×10.5/3×103=3.26A2. 接地电阻值的选择:接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。

风电场升压站接地变压器选型国内外标准对比

风电场升压站接地变压器选型国内外标准对比

风电场升压站接地变压器选型国内外标准对比发布时间:2022-12-15T06:43:19.029Z 来源:《中国建设信息化》2022年16期作者:由琳[导读] 以乌兹别克斯坦某风力发电项目为例由琳山东电力建设第三工程公司,山东青岛,266100摘要:以乌兹别克斯坦某风力发电项目为例,介绍升压站内接地变压器选择时国内规范(DL/T5222)和IEEE规范在接地变容量计算的不同,以及国内和国外项目接地变压器型式的不同。

关键词:风电项目,接地变压器,DL/T5222,IEEE Std C62.92.3 1引言进入21世纪以来,能源和环境问题日益突出。

随着国际社会对能源安全、生态环境、异常气候等问题的日益重视,减少化石能源燃烧,加快开发和利用可再生能源已成为世界各国的普遍共识和一致行动。

目前,全球能源转型的基本趋势是实现化石能源体系向低碳能源体系的转变,最终目标是进入以可再生能源为主的可持续能源时代。

而风电作为技术成熟、环境友好的可再生能源,已在全球范围内实现大规模的开发应用。

近年来,世界风电装机容量以年均30%以上的速度快速增长,风力发电成为许多发达国家和发展中国家调整能源结构,开发利用。

近年来,越来越多的中国企业“走出去”,中国企业在世界各地不同国家和地区开展风电项目EPC总承包业务。

但是国内项目和国外项目在设计理念以及设计规范等方面的差异,很多国家和地区的业主不认可中国的设计理念和相关规范,这就造成中国企业在项目的设计和施工中遇到各种各样的难题,这就中国的企业和相关的设计、施工人员打破原有的习惯,更多的去了解和熟悉国际规范(比如IEC规范和IEEE规范)甚至项目所在国的规范和规程,本文以乌兹别克斯坦某风力发电项目的升压站内接地变的选型为例,简要说明说明国内项目和国外项目接地变容量计算方法和接地变压器型式方面的异同。

2计算过程乌兹别克斯坦风力发电项目的风电机组-箱变接线方式采用一机一变单元接线方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。

接地变压器的作用是为中性点不接地的系统提供一个人为的中性点,便于采用新思达电气消弧线圈或新思达电气小电阻的接地方式,以减小配电网发生接地短路故障时的对地电容电流大小,提高配电系统的供电可靠性。

三相接地变压器
此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。

按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。

Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替站用变,从而节省投资费用。

单相接地变压器
单相接地变主要用于有新思达电气中性点的发电机、新思达电气变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。

例:某300MW发电机出口额定电压为20kV,发电机中性点经接地变压器二次侧电阻接地运行,二次侧电压为220V,接地电阻为0.65Ω,接地变压器的过负荷系数为1.3,则接地变压器容量应不小于下列哪项数值?()
A.74.5kVA
B.33.1kVA
C.65.3kVA
D.57.3kVA
解答:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。

可以判断,该接地变压器是单相接地变压器,根据《导体和电器选择设计技术规定》DL/T5222-2005,18.3.4-3条文和公式(18.3.4-2):18.3.4-2公式
注:UN是线电压,计算变比UN2是相电压,所以要乘以根号3。

根据计算:正确选项是D。

相关文档
最新文档