人教新课标版数学高一-人教A必修一习题 .2分段函数与映射
高中数学 1.2.2第2课时 分段函数、映射课时作业 新人

活页作业(九) 分段函数、映射知识点及角度难易度及题号基础中档稍难分段函数4、67、912分段函数的图象38 11映射的概念及应用1、2、5 101.已知集合M={x|0≤x≤6},P={y|0≤y≤3},则下列对应关系中,不能构成M到P 的映射的是( )A.f:x→y=12x B.f:x→y=13xC.f:x→y=x D.f:x→y=16x解析:由映射定义判断,选项C中,x=6时,y=6∉P.答案:C2.在给定映射f:A→B即f:(x,y)→(2x+y,xy)(x,y∈R)的条件下,与B中元素⎝⎛⎭⎪⎫16,-16对应的A中元素是( )A.⎝⎛⎭⎪⎫16,-136B.⎝⎛⎭⎪⎫13,-12或⎝⎛⎭⎪⎫-14,23C.⎝⎛⎭⎪⎫136,-16D..⎝⎛⎭⎪⎫12,-13或⎝⎛⎭⎪⎫-23,14解析:由⎩⎪⎨⎪⎧2x+y=16,xy=-16,得⎩⎪⎨⎪⎧x=13,y=-12或⎩⎪⎨⎪⎧x=-14,y=23.故选B.答案:B3.下列图象是函数y=⎩⎪⎨⎪⎧x2,x<0x-1,x≥0的图象的是( )解析:由于f(0)=0-1=-1,所以函数图象过点(0,-1);当x<0时,y=x2,则函数是开口向上的抛物线在y轴左侧的部分.因此只有图象C符合.答案:C4.已知f (x )=⎩⎪⎨⎪⎧x -5,x ≥6,f x +2,x <6,则f (3)为( )A .2B .3C .4D .5解析:f (3)=f (5)=f (7)=7-5=2. 答案:A5.已知函数f (x )的图象如下图所示,则f (x )的解析式是________.解析:由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧-a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1,∴f (x )=x +1.当0≤x ≤1时,设f (x )=kx ,将(1,-1)代入,则k =-1,∴f (x )=-x .综上f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0-x ,0≤x ≤1答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x , 0≤x ≤1.6.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1x 2+x -2,x >1,则f ⎝⎛⎭⎪⎫1f 2的值为________.解析:f (2)=22+2-2=4,∴1f 2=14, ∴f ⎝ ⎛⎭⎪⎫1f 2=f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.答案:15167.如图是一个电子元件在处理数据时的流程图:(1)试确定y 与x 的函数解析式. (2)求f (-3),f (1)的值. (3)若f (x )=16,求x 的值.解:(1)y =⎩⎪⎨⎪⎧x +22,x ≥1,x 2+2,x <1.(2)f (-3)=(-3)2+2=11;f (1)=(1+2)2=9.(3)若x ≥1,则(x +2)2=16, 解得x =2或x =-6(舍去) 若x <1,则x 2+2=16, 解得x=14(舍去)或x =-14. 综上,可得x =2或x =-14.8.若函数f (x )=⎩⎪⎨⎪⎧2x +2 -1<x <0,-12x 0≤x <2,3 x ≥2.则f (x )的值域是( )A .(-1,2)B .(-1,3]C .(-1,2]D .(-1,2)∪{3}解析:对f (x )来说,当-1<x <0时,f (x )=2x +2∈(0,2);当0≤x <2时,f (x )=-12x ∈(-1,0];当≥2时,f (x )=3.故函数y =f (x )的值域为(-1,2)∪{3}.故选D. 答案:D9.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b ,则函数f (x )=x ⊙(2-x )的值域是________.解析:由题意得f (x )=⎩⎪⎨⎪⎧x ,x <1,2-x ,x ≥1画函数f (x )的图象,得值域是(-∞,1].答案:(-∞,1]10.已知集合A =R ,B ={(x ,y )|x ,y ∈R },f :A →B 是从A 到B 的映射,f :x →(x +1,x2+1),求A中元素2在B中的对应元素和B中元素⎝⎛⎭⎪⎫32,54在A中的对应元素.解:将x=2代入对应关系,可求出其在B中的对应元素(2+1,3).由⎩⎪⎨⎪⎧x+1=32,x2+1=54,得x=12.所以2在B中的对应元素为(2+1,3),⎝⎛⎭⎪⎫32,54在A中的对应元素为12.11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分钟)的关系,试写出y=f(x)的函数解析式.解:当∈[0,30]时,设y=k1x+b1,由已知得⎩⎪⎨⎪⎧b1=0,30k1+b1=2,解得⎩⎪⎨⎪⎧k1=115,b1=0,∴y=115x.当x∈(30,40)时,y=2;当x∈[40,60]时,设y=k2x+b2,由已知得⎩⎪⎨⎪⎧40k2+b2=2,60k2+b2=4,解得⎩⎪⎨⎪⎧k2=110,b2=-2,∴y=110x-2.综上,f(x)=⎩⎪⎨⎪⎧115x,x∈[0,30],2,x∈30,40,110x-2,x∈[40,60].12.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1,(1)画出f (x )的图象.(2)若f (x )≥14,求x 的取值范围.(3)求f (x )的值域. 解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由于f ⎝ ⎛⎭⎪⎫±12=14,结合此函数图象可知,使f (x )≥14的x 的取值范围是⎝⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞. (3)由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1. 所以f (x )的值域为[0,1].1.对分段函数的三点认识(1)分段是针对定义域而言的,将定义域分成几段,各段的对应关系不一样. (2)一般而言,分段函数的定义域部分是各不相交的,这是由函数定义中的唯一性决定的.(3)分段函数的图象应分段来作,它可以是一条平滑的曲线,也可以是一些点、一段曲线、一些线段或曲线段等.作图时,要特别注意各段两端点是用实点还是用空心圈表示.2.对映射概念的三点认识(1)映射包括非空集合A ,B 以及对应关系f ,其中集合A ,B 可以是数集,可以是点集,也可以是其他任何非空的集合.(关键词:非空集合)(2)集合A ,B 是有先后顺序的,即A 到B 的映射与B 到A 的映射是不同的.(关键词:顺序)(3)集合A 中每一个元素在集合B 中必有唯一的元素和它对应(有,且唯一),但允许B中元素在A中无元素与之相对应.(关键词:唯一)。
高一数学(新人教A版必修1)知识点梳理《1.2.2 分段函数与映射(第二课时)》(教师版) Word版含答案

第二课时分段函数与映射
●课标展示
.通过实例,体会分段函数的概念,了解分段函数在解决实际问题中的应用.
.理解映射的概念及表示法,会判断简单的对应是否为映射,理解函数是一种特殊的映射.
●温故知新
旧知再现
.函数图象的作法:、、成图.
.实数的绝对值=(\\((≥()).
.下列各图中,不能是函数()图象的是()
[答案]
.已知(+)=+,则()等于()
..
..
[答案]
.某班连续进行了次数学测试,其中方青同学成绩如表所示,在
这个函数中,定义域是次数,值域是分数.
新知导学
.分段函数
所谓分段函数,是指在定义域的不同部分,有不同的对应法则的函数.
[名师点拨]分段函数是一个函数,不要把它误认为是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
.映射
()定义:一般地,设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的元素,在集合中都有的元素与之对应,那么就称对应:→为从集合到集合的一个映射.
[归纳总结]满足下列条件的对应:→为映射:
(),为非空集合;
()有对应法则;
()集合中的每一个元素在集合中均有唯一元素与之对应.
()映射与函数的关系:函数是特殊的映射,即当两个集合,均为时,从到的映射就是函数,所以函数一定是映射,而映射不一定是函数,映射是函数的推广.
[归纳总结]函数新概念,记准三要素;定义域值域,关系式相连;。
人教新课标版数学高一人教A必修1学案 .2分段函数及映射

第2课时 分段函数及映射[学习目标] 1.掌握简单的分段函数,并能简单应用.2.了解映射概念及它与函数的联系.[知识链接]1.函数的定义:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .2.作函数的图象通常分三步,即列表、描点、连线. [预习导引] 1.分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数. 2.映射的概念映射的定义:设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.要点一 分段函数求值例1 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f [f (-52)]的值;(2)若f (a )=3,求实数a 的值.解 (1)由-5∈(-∞,-2],-3∈(-2,2), -52∈(-∞,-2],知f (-5)=-5+1=-4, f (-3)=(-3)2+2(-3)=3-2 3.∵f ⎝⎛⎭⎫-52=-52+1=-32,而-2<-32<2, ∴f [f (-52)]=f ⎝⎛⎭⎫-32=⎝⎛⎭⎫-322+2×⎝⎛⎭⎫-32=94-3=-34. (2)当a ≤-2时,a +1=3, 即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0. 所以(a -1)(a +3)=0,得a =1,或a =-3. ∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意. 当a ≥2时,2a -1=3,即a =2符合题意. 综上可得,当f (a )=3时,a =1,或a =2.规律方法 1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求值. 2.已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围;也可先判断每一段上的函数值的范围,确定解析式再求解. 跟踪演练1 已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <1,x -1,x >1,则f (2)等于( )A .0 B.13 C .1 D .2答案 C 解析 f (2)=2-1=1.要点二 分段函数的图象及应用例2 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1),1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x≤1时,f(x)=x2的值域为[0,1],当x>1或x<-1时,f(x)=1,所以f(x)的值域为[0,1].规律方法 1.分段函数的解析式因其特点可以分成两个或两个以上的不同解析式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段或射线,而分段函数的定义域与值域的最好求法也是“图象法”.2.对含有绝对值的函数,要作出其图象,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图象.3.画分段函数图象时还要注意端点是“实心点”还是“空心点”.跟踪演练2作出y=错误!的图象,并求y的值域.解y=错误!值域为y∈[-7,7].图象如下图.要点三映射的概念例3以下给出的对应是不是从集合A到集合B的映射?(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.解(1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数对与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f :A →B 不是从集合A 到集合B 的一个映射.规律方法 映射是一种特殊的对应,它具有:(1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的;(2)唯一性:集合A 中的任意一个元素在集合B 中都有唯一元素关系,可以是:一对一,多对一,但不能一对多.跟踪演练3 下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2,x ∈M ,y ∈N ;③M =N =R ,f :x →y =1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N .A .①②B .②③C .①④D .②④ 答案 D解析 对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D.1.下列集合A 到集合B 的对应中,构成映射的是( )答案 D解析 在A 、B 选项中,由于集合A 中的元素2在集合B 中没有对应的元素,故构不成映射,在C 选项中,集合A 中的元素1在集合B 中的对应元素不唯一,故构不成映射,只有选项D 符合映射的定义,故选D.2.函数y =|x |的图象是( )答案 B解析 ∵y =|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,∴B 选项正确.3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 ∵f (3)=23,∴f (f (3))=⎝⎛⎭⎫232+1=139. 4.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0. 若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或2 答案 B解析 当α≤0时,f (α)=-α=4,∴α=-4; 当α>0时,f (α)=α2=4,∴α=2或-2(舍去).5.某客运公司确定车票价格的方法是:如果行程不超过100千米,票价是每千米0.5元;如果超过100千米,超过部分按每千米0.4元定价,则客运票价y (元)与行程x (千米)之间的函数关系式是________.答案 y =⎩⎪⎨⎪⎧0.5x ,0≤x ≤10010+0.4x ,x >100解析 由题意得,当0≤x ≤100时,y =0.5x ;当x >100时y =100×0.5+(x -100)×0.4=10+0.4x .1.对映射的定义,应注意以下几点:(1)集合A 和B 必须是非空集合,它们可以是数集、点集,也可以是其他集合. (2)映射是一种特殊的对应,对应关系可以用图示或文字描述的方法来表达. 2.理解分段函数应注意的问题:(1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、基础达标 1.以下几个论断①从映射角度看,函数是其定义域到值域的映射; ②函数y =x -1,x ∈Z 且x ∈(-3,3]的图象是一条线段;③分段函数的定义域是各段定义域的并集,值域是各段值域的并集; ④若D 1,D 2分别是分段函数的两个不同对应关系的值域,则D 1∩D 2=∅. 其中正确的论断有( )A .0个B .1个C .2个D .3个 答案 C解析 函数是特殊的映射,所以①正确;②中的定义域为{-2,-1,0,1,2,3},它的图象是直线y =x -1上的六个孤立的点;因此②不正确;由分段函数的概念可知③正确,④不正确.2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100 答案 A解析 ∵f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0, ∴f (-7)=10.f [f (-7)]=f (10)=10×10=100. 3.函数f (x )=x +|x |x的图象是( )答案 C解析 f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,画出f (x )的图象可知选C.4.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( ) A .(1,3) B .(1,6) C .(2,4) D .(2,6) 答案 A解析 由题意得⎩⎪⎨⎪⎧ x +y =4,x -y =-2, 解得⎩⎪⎨⎪⎧x =1,y =3.5.设f :x →ax -1为从集合A 到B 的映射,若f (2)=3,则f (3)=________. 答案 5解析 由f (2)=3,可知2a -1=3,∴a =2, ∴f (3)=3a -1=3×2-1=5.6.函数f (x )=⎩⎪⎨⎪⎧x 2+1(x ≥0),2-x (-2≤x <0)的值域是________.答案 [1,+∞)解析 当x ≥0时,f (x )≥1, 当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f [f (2)]的值; (2)若f (x 0)=8,求x 0的值.解 (1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0, f [f (2)]=f (0)=02-4=-4. (2)当0≤x 0≤2时, 由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4. 二、能力提升8.已知f (x )=⎩⎪⎨⎪⎧x -5,x ≥6,f (x +2), x <6,则f (3)为( )A .2B .3C .4D .5 答案 A解析 f (3)=f (3+2)=f (5), f (5)=f (5+2)=f (7), ∴f (7)=7-5=2.故f (3)=2.9.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f [f ⎝⎛⎭⎫13]等于( )A .-13 B.13C .-23 D.23答案 B解析 由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,∴f ⎝⎛⎭⎫13=13-1=-23,∴f [f ⎝⎛⎭⎫13]=f ⎝⎛⎭⎫-23=-23+1=13. 10.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1, 则f ⎝⎛⎭⎫1f (2)的值是________.答案1516解析 f (2)=22+2-2=4,∴1f (2)=14,∴f ⎝⎛⎭⎫1f (2)=f ⎝⎛⎭⎫14=1-⎝⎛⎭⎫142=1516. 11.已知函数y =|x -1|+|x +2|. (1)作出函数的图象; (2)写出函数的定义域和值域.解 (1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x =1,第二个绝对值的分段点x =-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞), 所以已知函数可写为分段函数形式: y =|x -1|+|x +2| =⎩⎪⎨⎪⎧-2x -1 (x ≤-2),3 (-2<x ≤1),2x +1 (x >1).在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象,如图.(2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞). 三、探究与创新12.“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x(x≤7)吨,试计算本季度他应交的水费y(单位:元).解由题意知,当0<x≤5时,y=1.2x,当5<x≤6时,y=1.2×5+(x-5)×1.2×2=2.4x-6.当6<x≤7时,y=1.2×5+(6-5)×1.2×2+(x-6)×1.2×4=4.8x-20.4.所以y=⎩⎪⎨⎪⎧1.2x,0<x≤5,2.4x-6,5<x≤6,4.8x-20.4,6<x≤7.13.如图所示,在边长为4的正方形ABCD边上有一点P,由点B(起点)沿着折线BCDA,向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数解析式.解当0≤x≤4时,S△APB=12×4x=2x;当4<x≤8时,S△APB=12×4×4=8;当8<x≤12时,S△APB=12×4×(12-x)=24-2x.∴y=⎩⎪⎨⎪⎧2x(0≤x≤4),8 (4<x≤8),24-2x(8<x≤12).。
人教新课标版数学高一人教A必修1试题 .2分段函数与映射

第一章 1.2 1.2.2 分段函数与映射第二课时基础巩固一、选择题1.下列从集合A 到集合B 的对应中为映射的是( )A .A =B =N +,对应关系f :x →y =|x -3|B .A =R ,B ={0,1},对应关系f :x →y =⎩⎪⎨⎪⎧0,x ≥0,1,x <0. C .A ={x |x >0},B ={y |y ∈R },对应关系f :x →y =±xD .A =Z ,B =Q ,对应关系f :x →y =1x[答案] B[解析] 对A 选项,当x =3时,y =0∉B ,排除A 选项;对于C 选项,对x 的每一个值y 有两个值与之对应,排除C 选项;对于D 选项,当x =0时,在B 中没有元素与之对应,排除D 选项;只有B 选项符合映射的概念,故选B.2.下列给出的函数是分段函数的是( )①f (x )=⎩⎪⎨⎪⎧x 2+1,1<x ≤5,2x ,x ≤1, ②f (x )=⎩⎪⎨⎪⎧ x +1,x ∈R ,x 2,x ≥2, ③f (x )=⎩⎪⎨⎪⎧ 2x +3,1≤x ≤5,x 2,x ≤1, ④f (x )=⎩⎪⎨⎪⎧x 2+3,x <0,x -1,x ≥5. A .①②B .①④C .②④D .③④[答案] B [解析] 对于②取x =2,f (2)=3或4,对于③取x =1,f (1)=5或1,所以②、③都不合题意.3.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43等于( ) A .-2B .4C .2D .-4[答案] B[解析] f ⎝⎛⎭⎫43=83,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=43. ∴f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.4.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( )A .(1,3)B .(1,6)C .(2,4)D .(2,6)[答案] A [解析] 由题意知⎩⎪⎨⎪⎧ x +y =4,x -y =-2,解得⎩⎪⎨⎪⎧ x =1,y =3,5.已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地前往B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( )A .x =60tB .x =60t +50C .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5,150-50t ,t >3.5 D .x =⎩⎪⎨⎪⎧ 60t ,0≤t ≤2.5,150,2.5<t ≤3.5,150-50(t -3.5),3.5<t ≤6.5[答案] D [解析] 由于在B 地停留1小时期间,距离x 不变,始终为150千米,故选D.6.集合A ={a ,b },B ={-1,0,1},从A 到B 的映射f :A →B 满足f (a )+f (b )=0,那么这样的映射f :A →B 的个数是( )A .2B .3C .5D .8[答案] B[解析] 由f (a )=0,f (b )=0得f (a )+f (b )=0;f (a )=1,f (b )=-1得f (a )+f (b )=0;由f (a )=-1,f (b )=1得f (a )+f (b )=0,共3个,故选B.二、填空题7.已知a,b为实数,集合M={ba,1},N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b的值为________.[答案] 1[解析]由题意知⎩⎪⎨⎪⎧ba=0,a=1,∴⎩⎪⎨⎪⎧b=0,a=1.∴a+b=1.8.已知函数f(x)=⎩⎪⎨⎪⎧2,x∈[-1,1],x,x∉[-1,1],若f(f(x))=2,则x的取值范围是________.[答案]{2}∪[-1,1][解析]设f(x)=t,∴f(t)=2,当t∈[-1,1]时,满足f(t)=2,此时-1≤f(x)≤1,无解,当t=2时,满足f(t)=2,此时f(x)=2即-1≤x≤1或x=2.三、解答题9.如下图,函数f(x)的图象是由两条射线y1=k1x+b1(x≤1),y2=k2x+b2(x≥3)及抛物线y3=a(x -2)2+2(1<x<3)的一部分组成,求函数f(x)的解析式.[解析]由图知⎩⎪⎨⎪⎧k1+b1=1b1=2解得⎩⎪⎨⎪⎧k1=-1b1=2所以左侧射线的解析式为y1=-x+2(x≤1),同理x≥3时,右侧射线的解析式为:y2=x-2(x≥3).再设抛物线对应的二次函数的解析式为:y3=a(x-2)2+2(1<x<3,a<0),所以a+2=1,a=-1,所以抛物线的解析式为y3=-x2+4x-2(1<x<3).综上所述,函数解析式为y=⎩⎪⎨⎪⎧-x+2,x≤1-x2+4x-2,1<x<3x-2,x≥3.10.(2015·湖北黄冈期末)f(x)=⎩⎪⎨⎪⎧4-x2(x>0),2(x=0),1-2x(x<0).(1)求f(f(-2))的值;(2)求f(a2+1)(a∈R)的值;(3)当-4≤x<3时,求f(x)的值域.[解析](1)∵f(-2)=1-2×(-2)=5,∴f(f(-2))=f(5)=4-52=-21.(2)当a∈R时,a2+1≥1>0,∴f(a2+1)=4-(a2+1)2=-a4-2a2+3(a∈R).(3)①当-4≤x<0时,f(x)=1-2x,∴1<f(x)≤9;②当x=0时,f(x)=2;③当0<x<3时,f(x)=4-x2,∴-5<f(x)<4.故当-4≤x<3时,函数f(x)的值域是(-5,9].能力提升一、选择题1.(2015·安庆高一检测)设集合A={x|1≤x≤2},B={y|1≤y≤4},则下述对应关系f中,不能构成A到B的映射的是()A.f:x→y=x2B.f:x→y=3x-2C.f:x→y=-x+4 D.f:x→y=4-x2[答案] D[解析]对于D,当x=2时,由对应关系y=4-x2,得y=0,在集合B中没有元素与之对应,所以D选项不能构成A到B的映射.2.某市出租车起步价为5元(起步价内行驶里程为3 km),以后每1 km价为1.8元(不足1 km按1 km计价),则乘坐出租车的费用y(元)与行驶的里程x(km)之间的函数图象大致为下列图中的()[答案] B[解析] 由已知得y =⎩⎨⎧ 5(0<x ≤3)5+[x -3]×1.8(x >3)=⎩⎪⎨⎪⎧ 5 (0<x ≤3)6.8 (3<x <4)8.6 (4≤x <5).故选B.3.(2015·海兴中学高一第一次考试)已知映射f :A →B ,其中A =B =R ,对应为f :x →y =x 2-2x +2,若对实数k ∈B ,在集合中没有元素对应,则k 的取值范围是( )A .(-∞,1]B .(-∞,1)C .(1,+∞)D .[1,+∞) [答案] B[解析] 设k =x 2-2x +2即x 2-2x +2-k =0,k 没有元素对应即上述方程无解Δ<0,(-2)2-4(2-k )<0,∴k <1故选B.4.若函数f (x )=⎩⎪⎨⎪⎧ x 2,x ≥0,x ,x <0,φ(x )=⎩⎪⎨⎪⎧x ,x ≥0,-x 2,x <0,则当x <0时,f [φ(x )]为( ) A .-xB .-x 2C .xD .x 2[答案] B [解析] x <0时,φ(x )=-x 2<0,∴f (φ(x ))=-x 2.二、填空题5.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是________. [答案] {x |x ≤1}[解析] 当x ≥0时,f (x )=1,由xf (x )+x ≤2,知x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,∴x <0.综上,不等式的解集为{x |x ≤1}.6.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x ≤0,2,x >0,若f (4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数是________.[答案] 3[解析] 由f (4)=f (0)⇒(-4)2+b ×(-4)+c =c ,f (-2)=-2⇒(-2)2+b ×(-2)+c =-2,则f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0. 由f (x )=x ,得x 2+4x +2=x ⇒x 2+3x +2=0⇒x =-2或x =-1,即当x ≤0时,有两个实数解;当x >0时,有一个实数解x =2.综上,f (x )=x 有3个实数解.三、解答题7.已知函数f (x )=1+|x |-x 2(-2<x ≤2). (1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域.[解析] (1)当0≤x ≤2时,f (x )=1+x -x 2=1; 当-2<x <0时,f (x )=1+-x -x 2=1-x , ∴f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示:(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).8.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左向右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左侧部分的面积y 关于x 的函数解析式.[解析] 如图所示,过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为四边形ABCD 是等腰梯形,底角为45°,AB =22cm ,所以BG =AG =DH =HC =2 cm.又BC =7 cm ,所以AD =GH =3 cm.当点F 在BG 上时,即x ∈(0,2]时,y =12x 2; 当点F 在GH 上时,即x ∈(2,5]时,y =12×2×2+2(x -2)=2x -2; 当点F 在HC 上时,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10. 综上,y =⎩⎨⎧12x 2,x ∈(0,2],2x -2,x ∈(2,5],-12(x -7)2+10,x ∈(5,7].。
人教版数学高一A版必修一作业 .2分段函数及映射

1.2.2.2分段函数及映射一、选择题1.已知f (x )=⎩⎪⎨⎪⎧x +1,x >0,π,x =0,0,x <0,则f (f (f (-2)))等于( )A .πB .0C .2D .π+1 考点 分段函数 题点 分段函数求值 答案 D解析 f (-2)=0,f (0)=π,f (π)=π+12.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0,若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或2考点 分段函数 题点 分段函数求值 答案 B解析 当α≤0时,f (α)=-α=4,得α=-4;当α>0时,f (α)=α2=4,得α=2或α=-2(舍).∴α=-4或α=2. 3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a 等于( )A .-3B .±3C .-1D .±1 考点 分段函数 题点 分段函数求值 答案 D 解析 f (-1)=-(-1)=1.∴f (a )+f (-1)=f (a )+1=2. ∴f (a )=1,即⎩⎪⎨⎪⎧a ≥0,a =1① 或⎩⎪⎨⎪⎧a <0,-a =1,② 解①得a =1,解②得a =-1. ∴a =±1.4.函数f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,+∞)C .[0,3]D .{x |0≤x ≤2或x =3}考点 分段函数题点 分段函数的定义域、值域 答案 D解析 值域为[0,2]∪{3,2}={x |0≤x ≤2或x =3}.5.已知函数f (x )=⎩⎪⎨⎪⎧2,-1≤x ≤1,x ,x <-1或x >1,若f (f (x ))=2,则x 的取值范围是( )A .∅B .[-1,1]C .(-∞,-1)∪(1,+∞)D .{2}∪[-1,1]考点 分段函数 题点 分段函数求值 答案 D解析 若x ∈[-1,1],则f (x )=2,f (f (x ))=f (2)=2,符合题意;若x >1,则f (x )=x ,f (f (x ))=f (x )=x =2,此时只有x =2符合题意;若x <-1,则f (x )=x , f (f (x ))=f (x )=x =2,但因为x <-1,此时没有x 符合题意.故选D.6.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13立方米 B .14立方米 C .18立方米 D .26立方米考点 分段函数 题点 分段函数应用问题 答案 A解析 该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧mx ,0≤x ≤10,2mx -10m ,x >10.由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).7.著名的Dirichlet 函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则D ()D (x )等于( )A .0B .1C.⎩⎪⎨⎪⎧1,x 为无理数,0,x 为有理数 D.⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数 考点 分段函数 题点 分段函数求值 答案 B解析 ∵D (x )∈{0,1},∴D (x )为有理数,∴D ()D (x )=1.8.若集合A ={a ,b ,c },B ={d ,e },则从A 到B 可以建立不同的映射个数为( ) A .5 B .6 C .8 D .9 考点 映射的概念 题点 映射个数问题 答案 C解析 用树状图写出所有的映射为:a →d ⎩⎪⎨⎪⎧b →d ⎩⎪⎨⎪⎧ c →d ,c →e ,b →e ⎩⎪⎨⎪⎧c →d ,c →e ,a →e ⎩⎪⎨⎪⎧b →d ⎩⎪⎨⎪⎧ c →d ,c →e ,b →e ⎩⎪⎨⎪⎧c →d ,c →e ,共8个.二、填空题9.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的定义域是________.考点 分段函数题点 分段函数的定义域、值域 答案 [0,+∞)解析 定义域为[0,1]∪(1,2)∪[2,+∞)=[0,+∞).10.分段函数f (x )=⎩⎪⎨⎪⎧ x ,x >0,-x ,x ≤0可以表示为f (x )=|x |,分段函数f (x )=⎩⎪⎨⎪⎧x ,x ≤3,3,x >3可表示为f (x )=12(x +3-|x -3|),仿照上述式子,分段函数f (x )=⎩⎪⎨⎪⎧6,x <6,x ,x ≥6可表示为f (x )=________.考点 题点答案 12(x +6+|x -6|)解析 因为f (x )=⎩⎪⎨⎪⎧x ,x ≤3,3,x >3可表示为f (x )=12(x +3-|x -3|),其分界点为3,从而式子中含有x +3与x -3,并通过|x -3|前面的“-”构造出需要的结果的形式.所以,对于分段函数f (x )=⎩⎪⎨⎪⎧6,x <6,x ,x ≥6,其分界点为6,故式子中应含有x +6与x -6.又x <6时f (x )=6,故|x-6|的前面应取“+”.因此f (x )=12(x +6+|x -6|).11.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是________.考点 分段函数题点 分段函数与不等式结合 答案 {x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2,解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2,解得x ≤2,∴x <0.综上可知x ≤1. 三、解答题12.已知函数f (x )=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1.(1)求f ⎝⎛⎭⎫-32,f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫92,f ⎝⎛⎭⎫f ⎝⎛⎭⎫12; (2)若f (a )=6,求a 的值. 考点 分段函数 题点 分段函数求值解 (1)∵-32∈(-∞,-1),∴f ⎝⎛⎭⎫-32=-2×⎝⎛⎭⎫-32=3. ∵12∈[-1,1],∴f ⎝⎛⎭⎫12=2. 又2∈(1,+∞),∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (2)=2×2=4. ∵92∈(1,+∞),∴f ⎝⎛⎭⎫92=2×⎝⎛⎭⎫92=9. (2)经观察可知a ∉[-1,1],否则f (a )=2.若a ∈(-∞,-1),令-2a =6,得a =-3,符合题意; 若a ∈(1,+∞),令2a =6,得a =3,符合题意. ∴a 的值为-3或3.13.如图,动点P 从边长为4的正方形ABCD 的顶点B 开始,顺次经C ,D ,A 绕边界运动,用x 表示点P 的行程,y 表示△APB 的面积,求函数y =f (x )的解析式.考点 分段函数 题点 分段函数应用问题 解 当点P 在BC 上运动, 即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时, y =12×4×(12-x )=24-2x . 综上可知,f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.四、探究与拓展14.若定义运算a⊙b=⎩⎪⎨⎪⎧b,a≥b,a,a<b,则函数f(x)=x⊙(2-x)的值域是________.考点分段函数题点分段函数的定义域、值域答案(-∞,1]解析由题意知f(x)=⎩⎪⎨⎪⎧2-x,x≥1,x,x<1.画出图象如图所示:由图易得函数f(x)的值域为(-∞,1].15.已知函数f(x)=|x-3|-|x+1|.(1)求f(x)的值域;(2)解不等式:f(x)>0;(3)若直线y=a与f(x)的图象无交点,求实数a的取值范围.考点分段函数题点分段函数的综合应用解若x≤-1,则x-3<0,x+1≤0,f(x)=-(x-3)+(x+1)=4;若-1<x≤3,则x-3≤0,x+1>0,f(x)=-(x-3)-(x+1)=-2x+2;若x>3,则x-3>0,x+1>0,f(x)=(x-3)-(x+1)=-4.∴f(x)=⎩⎪⎨⎪⎧4,x≤-1,-2x+2,-1<x≤3,-4,x>3.(1)当-1<x≤3时,-4≤-2x+2<4.∴f(x)的值域为[-4,4)∪{4}∪{-4}=[-4,4].(2)f (x )>0,即⎩⎨⎧x ≤-1,4>0①或⎩⎪⎨⎪⎧-1<x ≤3,-2x +2>0② 或⎩⎪⎨⎪⎧x >3,-4>0,③ 解①得x ≤-1,解②得-1<x <1, 解③得x ∈∅.∴f (x )>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1). (3)f (x )的图象如下:由图可知,当a ∈(-∞,-4)∪(4,+∞)时,直线y =a 与f (x )的图象无交点.。
高中数学 1.2.2第2课时分段函数及映射课时作业 新人教a版必修1

第2课时 分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集. (3)作分段函数图象时,应_____________________________________________________. 2.映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中____________确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的__________.一、选择题1.已知,则f (3)为( )A .2B .3C .4D .5 2.下列集合A 到集合B 的对应中,构成映射的是( )3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A .100元B .90元C .80元D .60元4.已知函数,使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-525.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13立方米 B .14立方米 C .18立方米 D .26立方米6.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列不能表示从P 到Q 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23x D .f :x →y =x二、填空题7.已知,则f (7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题10.已知,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是( ) A.∅ B.∅或{1}C.{1} D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集. (2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况. 2.对映射认识的拓展映射f :A →B ,可理解为以下三点:(1)A 中每个元素在B 中必有唯一的元素与之对应;(2)对A 中不同的元素,在B 中可以有相同的元素与之对应;(3)A 中元素与B 中元素的对应关系,可以是:一对一、多对一,但不能一对多. 3.函数与映射的关系映射f :A →B ,其中A 、B 是两个“非空集合”;而函数y =f (x ),x ∈A 为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射. 由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.]4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2,若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧mx , 0≤x ≤10,2mx -10m , x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.]7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6. 8.32{x |x ≥-1且x ≠0} 解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎪⎨⎪⎧x +1, -1≤x <0,-x , 0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧ -a +b =0,b =1.∴⎩⎪⎨⎪⎧a =1,b =1. 当0<x <1时,设f (x )=kx ,将(1,-1)代入, 则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1]. 11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时, y =12×4×(12-x )=24-2x . 综上可知,f (x )=⎩⎪⎨⎪⎧2x , 0≤x ≤4,8, 4<x ≤8,24-2x , 8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2.所以集合A 可为含有一个、二个、三个、四个元素的集合. 无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧S 2 v <25212 500v 2Sv ≥252.。
人教版数学高一-A版必修1练习 第2课时 分段函数及映射

[A 基础达标]1.函数f (x )=⎩⎪⎨⎪⎧x -2,x <2,f (x -1),x ≥2,则f (2)=( ) A .-1 B .0C .1D .2解析:选A.f (2)=f (2-1)=f (1)=1-2=-1.2.下列给出的式子是分段函数的是( )①f (x )=⎩⎪⎨⎪⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎪⎨⎪⎧x +1,x ∈R ,x 2,x ≥2. ③f (x )=⎩⎪⎨⎪⎧2x +3,1≤x ≤5,x 2,x ≤1. ④f (x )=⎩⎪⎨⎪⎧x 2+3,x <0,x -1,x ≥5. A .①②B .①④C .②④D .③④解析:选B.对于①,符合函数的定义,且在定义域的不同区间,有不同的对应关系.对于②,当x =2时,f (2)=3或4,故不是函数.对于③,当x =1时,f (1)=5或1,故不是函数.对于④,符合函数定义,且在定义域的不同区间,有不同的对应关系.3.函数y =x +|x |x的图象是( )解析:选D.y =x +|x |x =⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0.4.a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a ,0},f :x →2x 表示把集合M 中的元素x 映射到集合N 中为2x ,则a +b =( )A .-2B .0C .2D .±2解析:选C.由题意知M 中元素b a只能对应0,1只能对应a ,所以2b a=0,a =2, 所以b =0,a =2,因此a +b =2,故选C.5.设集合A ={a ,b },B ={0,1},则从A 到B 的映射共有( )A .2个B .3个C .4个D .5个解析:选C.如图.6.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1],2-x ,x ∈(1,2]的定义域为________,值域为________. 解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1].答案:[0,2] [0,1]7.已知A =B =R , x ∈A ,y ∈B ,f :x →y =ax +b ,5→5且7→11.若x →20,则x =________. 解析:由题意知,⎩⎪⎨⎪⎧5=5a +b ,11=7a +b ⇒⎩⎪⎨⎪⎧a =3,b =-10. 所以y =3x -10.由3x -10=20,得x =10.答案:108.已知函数f (x )的图象如图,则f (x )的解析式为________.解析:因为f (x )的图象由两条线段组成,由一次函数解析式求法可得f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤1. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-x ,0≤x ≤19.已知A =B =R ,从集合A 到集合B 的映射f :x →2x -1.(1)求与A 中元素3相对应的B 中的元素;(2)求与B 中元素3相对应的A 中的元素.解:(1)将x =3代入对应关系f 可得2x -1=2×3-1=5,即与A 中元素3相对应的B 中的元素为5.(2)由题意可得2x -1=3,解得x =2,所以与B 中元素3相对应的A 中的元素为2. 10.写出下列函数的解析式,并作出函数图象.(1)设函数y =f (x ),当x <0时,f (x )=0;当x ≥0时,f (x )=2.(2)设函数y =f (x ),当x ≤-1时,f (x )=x +1;当-1<x <1时,f (x )=0;当x ≥1时,f (x )=x -1.解:(1)f (x )=⎩⎪⎨⎪⎧0,x <0,2,x ≥0.图象如图(1)所示. (2)f (x )=⎩⎪⎨⎪⎧x +1,x ≤-1,0,-1<x <1,x -1,x ≥1.图象如图(2)所示.[B 能力提升]1.函数f (x )=|x -1|的图象是( )解析:选B.f (x )=|x -1|=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,由f (x )的解析式易知应选B. 2.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b .则函数f (x )=x ⊙(2-x )的值域为________. 解析:由题意得f (x )=⎩⎪⎨⎪⎧2-x ,x ≥1,x ,x <1,画出函数f (x )的图象得值域是(-∞,1].答案:(-∞,1]3.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1,x >1或x <-1, (1)画出f (x )的图象;(2)若f (x )≥14,求x 的取值范围. 解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由于f ⎝⎛⎭⎫±12=14,结合此函数图象可知,使f (x )≥14的x 的取值范围是⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫12,+∞. 4.(选做题)已知函数f (x )=|x +1|+ax (a ∈R).(1)画出当a =2时的函数f (x )的图象;(2)求a =2时函数f (x )在[-3,6]上的值域.解:(1)当a =2时,f (x )=|x +1|+2x =⎩⎪⎨⎪⎧3x +1,x ≥-1,x -1,x <-1,其图象如图所示.(2)由图可知在[-3,6]上函数分为[-3,-1),[-1,6]两段,当x=-3时,f(-3)=-4,当x=6时,f(6)=19.由图象的大致趋势可得,此函数在[-3,6]上的值域为[-4,19].。
数学必修Ⅰ人教新课标A版1-2-2-2分段函数及映射课件(37张)

第二段的定义域为[0,2],值域为[-1,0].
所以该分段函数的定义域为[-1,2],值域为[-1,1).
(2)①当0≤x≤2时,f(x)=1+x-2 x=1;
当-2<x<0时,f(x)=1+-x2-x=1-x.
∴f(x)=11,-x,
0≤x≤2, -2<x<0.
②函数f(x)的图象如图所示,
③由②知,f(x)在(-2,2]上的值域为[1,3). [答案] (1)[-1,2] [-1,1)
[活学活用] 4-x2,x>0,
已知函数f(x)=2,x=0, 1-2x,x<0.
(1)求f(f(-2))的值; (2)求f(a2+1)(a∈R)的值; (3)当-4≤x<3时,求f(x)的值域.
解:(1)∵f(-2)=1-2×(-2)=5, ∴f(f(-2))=f(5)=4-52=-21. (2)当a∈R时,a2+1≥1>0,∴f(a2+1)=4-(a2+1)2=-a4- 2a2+3(a∈R). (3)①当-4≤x<0时,f(x)=1-2x, ∴1<f(x)≤9; ②当x=0时,f(x)=2; ③当0<x<3时,f(x)=4-x2, ∴-5<f(x)<4. 故当-4≤x<3时,函数f(x)的值域是(-5,9].
[类题通法] 1.求分段函数的函数值的方法 先确定要求值的自变量的取值属于哪一段区间,然后代入 该段的解析式求值.当出现f(f(a))的形式时,应从内到外依次求 值,直到求出值为止. 2.求某条件下自变量的值的方法 先假设所求的值在分段函数定义区间的各段上,然后相应 求出自变量的值,切记代入检验.
第二课时 分段函数与映射
分段函数 [提出问题] 某市空调公共汽车的票价按下列规则制定: (1)5千米以内,票价2元; (2)5千米以上,每增加5千米,票价增加1元(不足5千米的按5 千米计算). 已知两个相邻的公共汽车站间相距1千米,沿途(包括起点站 和终点站)有11个汽车站.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(本栏目内容,在学生用书中以独立形式分册装订!)
一、选择题(每小题5分,共20分)
1.函数f (x )=⎩⎪⎨⎪⎧
x -2,x <2,f (x -1),x ≥2,则f (2)=( ) A .-1
B .0
C .1
D .2
解析: f (2)=f (2-1)=f (1)=1-2=-1.
答案: A 2.函数f (x )=⎩⎪⎨⎪⎧
1-x 2,x ≤1,x 2-x -3,x >1,则f ⎝⎛⎭⎫1f (3)的值为( ) A.1516
B .-2716 C.89
D .18
解析: ∵x >1,∴f (3)=32-3-3=3,
∵13<1,∴f ⎝⎛⎭⎫1f (3)=f ⎝⎛⎭
⎫13=1-⎝⎛⎭⎫132=89. 答案: C
3.函数y =x +|x |x 的图象是( )
解析: y =x +|x |x =⎩
⎪⎨⎪⎧
x +1,x >0,x -1,x <0. 答案: D
4.a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →2x 表示把集合M 中的元素x 映射到集合N 中为2x ,则a +b =( )
A .-2
B .0
C .2
D .±2
解析: 由题意知M 中元素b a 只能对应0,1只能对应a ,所以2b a
=0,a =2,所以b =0,a =2,因此a +b =2,故选C.
答案: C
二、填空题(每小题5分,共15分)
5.f (x )=⎩⎪⎨⎪⎧ x ,x ∈[0,1]2-x ,x ∈(1,2]的定义域为________,值域为
________________________________________________________________________.
解析: 函数定义域为[0,1]∪(1,2]=[0,2].
当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1].
答案: [0,2] [0,1]
6.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b,5→5且7→11.若x →20,则x =________.
解析: 由题意知,⎩⎪⎨⎪⎧ 5=5a +b ,11=7a +b ⇒⎩⎪⎨⎪⎧
a =3,
b =-10.
∴y =3x -10.由3x -10=20,得x =10.
答案: 10
7.已知函数f (x )的图象如图,则f (x )的解析式为________.
解析: ∵f (x )的图象由两条线段组成,由一次函数解析式求法可得f (x )=⎩
⎪⎨⎪⎧ x +1,-1≤x <0,
-x ,0≤x ≤1. 答案: f (x )=⎩⎪⎨⎪⎧
x +1,-1≤x <0,-x ,0≤x ≤1. 三、解答题(每小题10分,共20分)
8.已知函数f (x )=⎩⎪⎨⎪⎧ x +2(x <0),x 2(0≤x <2),12x (x ≥2).
(1)求f ⎝⎛⎭
⎫f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12的值; (2)若f (x )=2,求x 的值.
解析: (1)f ⎝⎛⎭⎫-12=⎝⎛⎭⎫-12+2=32
, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫32=⎝⎛⎭⎫322=94
, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫94=12×94=98
. (2)当f (x )=x +2=2时,x =0,不符合x <0.
当f (x )=x 2=2时,x =±2,
其中x =2符合0≤x <2.
当f (x )=12
x =2时,x =4,符合x ≥2. 综上,x 的值是2或4.
9.已知A =B =R ,从集合A 到集合B 的映射f :x →2x -1.
(1)求与A 中元素3相对应的B 中的元素;
(2)求与B 中元素3相对应的A 中的元素.
解析: (1)将x =3代入对应关系f 可得2x -1=2×3-1=5,即与A 中元素3相对应的B 中的元素为5.
(2)由题意可得2x -1=3,解得x =2,所以与B 中元素3相对应的A 中的元素为2.。