人教版七年级上册数学1.有理数加、减、乘、除中的简便运算

合集下载

七年级上册数学有理数加减乘除混合运算

七年级上册数学有理数加减乘除混合运算

七年级上册数学有理数加减乘除混合运算一、有理数混合运算的基本概念有理数混合运算是基于有理数的加、减、乘、除四则运算,以及乘方和开方的运算。

有理数包括正数、负数和0。

在混合运算中,我们需要注意运算的顺序和法则。

二、数的加减法数的加减法遵循以下法则:1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 相反数:a=-(-a)4. 0的任何非零有理数(0除外)相加,结果为0。

三、数的乘除法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

除法法则:两数相除,同号得正,异号得负,并把绝对值相除,0不能作除数。

四、混合运算的顺序混合运算的顺序是先乘方,再乘除,最后加减;如果有括号,先算括号里面的。

五、代数式的值代数式的值是指将字母的取值代入代数式后得到的数值。

求代数式的值有两种方法:一种是直接代入求值;另一种是整体代入求值。

六、方程的基本概念方程是一种含有未知数的等式。

一元一次方程是指只含有一个未知数,并且未知数的次数是1的方程。

解一元一次方程就是求出使方程成立的未知数的值。

七、一元一次方程的解法解一元一次方程的基本步骤包括去分母、去括号、移项、合并同类项、系数化为1等步骤。

通过这些步骤,我们可以将复杂的一元一次方程简化,并求出未知数的值。

八、实际问题的数学模型实际问题中,我们可以通过建立数学模型来解决问题。

数学模型是指用数学语言描述实际问题,并把问题的数量关系和数学规律联系起来的一种工具。

通过建立数学模型,我们可以更好地理解和解决实际问题。

九、综合应用举例有理数加减乘除混合运算在实际生活中有着广泛的应用。

例如,购物时计算花费、计算物品的总重量或总价、计算速度和路程等等都需要用到有理数混合运算的知识。

通过这些实际应用的例子,我们可以更好地理解和掌握有理数混合运算的知识。

人教版七年级上册数学专题有理数加减乘除中的简便运算课件

人教版七年级上册数学专题有理数加减乘除中的简便运算课件

(1) 535 +(-235 )25+4 +13(- );
53 1
7
(2) -192 +145 +(4-3 )+(-22.5) +1(2-15 );
4
3
4
(3) -185 +(+553 )+(-53.6)+(5+18 ) +(-100).
5
题型❶:有理数加法运算律的运用
技巧归纳
6
题型❷:有理数乘法运算律的运用
例1 按要求进行简便计算.
❹ 凑整法
(+8.4)+(-12)+(-8)+(+3.6)+(+3.7)+(-0.7)+13
❺ 同形结合法
-3
1 3
+2
1 2
+(-5
1 6
)
❻ 拆项法
-2022
5 6
+(-2021
2 3
)+4044
2 3
+(-1
1 2
).
4
题型❶:有理数加法运算律的运用
专题训练
1.计算:
典例讲评
例2 计算:
(-
3 4
-
5 8
+
9 12
)×(-24)
7
题型❷:有理数乘法运算律的运用
专题训练
1.用简便方法计算: ① ② ③
8
题型❷:有理数乘法运算律的运用
技巧归纳
9
题型❸:逆用有理数乘法运算律
典例讲评
例3
计算:-13×23
- 0.34×27 +

001.1.类比归纳专题:有理数加、减、乘、除中的简便运算

001.1.类比归纳专题:有理数加、减、乘、除中的简便运算

类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三◆类型一 加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】(1)114-(+6)-358+(-1.25)-⎝⎛⎭⎫-358;(2)2.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】(1)(-6.82)+3.78+(-3.18)-3.78;(2)1918+⎝⎛⎭⎫-534+⎝⎛⎭⎫-918-1.25.*三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是( )A .0B .-1C .2016D .-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a ≥0时,|a|=a ;当a<0时,|a|=-a.根据以上阅读完成下列问题:(1)|3.14-π|=________;(2)计算:⎪⎪⎪⎪12-1+⎪⎪⎪⎪13-12+⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪19-18+⎪⎪⎪⎪110-19.◆类型二 运用分配律解题的技巧一、正用分配律5.计算.(1)⎝⎛⎭⎫12-34+18×(-24);(2)391314×(-14).二、逆用分配律6.计算:4×⎝⎛⎭⎫-367-3×⎝⎛⎭⎫-367-6×367.三、除法变乘法,再利用分配律7.计算:⎝⎛⎭⎫16-27+23÷⎝⎛⎭⎫-542.参考答案与解析1.解:(1)原式=114+(-1.25)-6+⎝⎛⎭⎫358-358=-6. (2)原式=2.3+6.2-(1.7+2.2+1.1)=8.5-5=3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)=-10.(2)原式=1918+⎝⎛⎭⎫-918+⎣⎡⎦⎤⎝⎛⎭⎫-534-1.25=10-7=3. 3.D4.解:(1)π-3.14(2)原式=1-12+12-13+13-14+…+18-19+19-110=1-110=910. 5.解:(1)原式=-12+18-3=3.(2)原式=⎝⎛⎭⎫40-114×(-14)=40×(-14)-114×(-14)=-560+1=-559. 6.解:原式=-367×(4-3+6)=-27. 7.解:原式=⎝⎛⎭⎫16-27+23×⎝⎛⎭⎫-425=-75+125-285=-235.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。

人教版七年级上数学课件有理数的加、减、乘、除混合运算

人教版七年级上数学课件有理数的加、减、乘、除混合运算

再根据你对所提供材料的理解,选择合适的方法计算:
( 1 ) (1 3 2 2). 42 6 14 3 7
人教版七年级上数学课件 1.4.2 第2课时 有理数的加、减、乘、除混合运算( 共24张P PT)
人教版七年级上数学课件 1.4.2 第2课时 有理数的加、减、乘、除混合运算( 共24张P PT)
人教版七年级上数学课件 1.4.2 第2课时 有理数的加、减、乘、除混合运算( 共24张P PT)
(2) 3 6( 1) 6
解法一: 3 6 ( 1)
6 3 (1) 3
这个解法 是错误的
解法二:
3 6 ( 1 ) 6
3 1 ( 1 ) 66
3 1 1 1 6 6 12
这个解法 是正确的
例1 计算:
(1) 6 (12) (3)
(2) (48) 8 (25) (6)
(3) 42 ( 2) ( 3) (0.25)
3
4
解:(1)原式=
(2)原式= (3)原式=
人教版七年级上数学课件 1.4.2 第2课时 有理数的加、减、乘、除混合运算( 共24张P PT)
下面两题的解法正确吗?若不正确,你能
人教版七年级上数学课件 1.4.2 第2课时 有理数的加、减、乘、除混合运算( 共24张P PT)
人教版七年级上数学课件 1.4.2 第2课时 有理数的加、减、乘、除混合运算( 共24张P PT)
例2 请你仔细阅读下列材料:计算
( 1 ) (2 1 1 2) 30 3 10 6 5
解法一:
人教版七年级上数学课件 1.4.2 第2课时 有理数的加、减、乘、除混合运算( 共24张P PT)
人教版七年级上数学课件 1.4.2 第2课时 有理数Байду номын сангаас加、减、乘、除混合运算( 共24张P PT)

统编教材人教版七年级数学上册1.4.2 第2课时 有理数的加减乘除混合运算 课件

统编教材人教版七年级数学上册1.4.2 第2课时 有理数的加减乘除混合运算 课件

知识管理
1.有理数的乘除混合运算 法 则:有理数的乘除混合运算往往先将除法化成乘法,然后确定积 的符号,最后求出结果. 2.有理数的加减乘除混合运算 法 则:有理数的加减乘除混合运算,先算 乘除 ,再算 加减 , 有括号的先算括号里面的.
归类探究
类型之一 有理数的乘除混合运算 计算:
(1)-52÷(-5)×(-2); (2)-34×-16÷-94.
解:(1)原式=-52×85×-14=1. (2)原式=-4×12×(-2)×2=8. (3)原式=-57×134×35=-2.
5.计算: (1)42×-17+(-0.25)÷34; (2)-1-2.5÷-114; (3)[12-4×(3-10)]÷4.
解:(1)-613.(2)1.(3)10.
解:(1)-52÷(-5)×(-2) =-52×-15×(-2) =-1.
(2)-34×-16÷-94 =-34×16×49 =-118. 【点悟】 有理数的乘除混合运算,可统一化为乘法运算.
类型之二 有理数的加减乘除混合运算 计算:
=23×(-30)-110×(-30)+16×(-30)-25×(-30) =-20+3-5+12 =-10, 故原式=-110. 请 你 根 据 对 所 提 供 材 料 的 理 解 , 选 择 合 适 的 方 法 计 算 : -412 ÷16-134+23-27.
解:原式的倒数是
错误的原因是 运算顺序不对,或者是在同级运算中,没有按照从左到
右的顺序进行 . (2)这个计算题的正确答案应该是
-910
.
解: (2)原式=-52÷(-15)×-115 =-52×115×115 =-910. 这个计算题的正确答案应该是-910.
分层作业

有理数简便运算方法

有理数简便运算方法

有理数简便运算方法理数是可以表示为整数或者有限小数的数。

有理数的运算可以通过将有理数转化为分数来进行简化。

以下是有理数的简便运算方法。

一.有理数的加法和减法运算1.同号有理数相加:若两个有理数同为正数或同为负数,则只需将它们的绝对值相加,然后给结果加上相同的符号。

例如:2+3=5,(-2)+(-3)=-52.异号有理数相加:若两个有理数一个为正数,一个为负数,则只需将它们的绝对值相减,然后给结果取两个数绝对值较大的符号。

例如:3+(-2)=3-2=1,(-3)+2=2-3=-13.有理数的减法:有理数的减法可以转化为加法运算,即将减数变为其相反数,然后进行加法运算。

例如:2-3=2+(-3)=-1二.有理数的乘法运算1.同号有理数相乘:若两个有理数同为正数或同为负数,则只需将它们的绝对值相乘,然后给结果加上相同的符号。

例如:2×3=6,(-2)×(-3)=62.异号有理数相乘:若两个有理数一个为正数,一个为负数,则只需将它们的绝对值相乘,然后给结果加上负号。

例如:2×(-3)=-(2×3)=-6,(-2)×3=-(2×3)=-6三.有理数的除法运算有理数的除法可以转化为乘法运算,即将被除数乘以除数的倒数,即除数的倒数是除数分子与分母交换位置得到的分数。

例如:2÷3=2×(1/3)=2/3,(-2)÷(-3)=(-2)×(1/(-3))=2/3四.有理数的混合运算有理数的混合运算可以按照四则运算的顺序进行:先进行括号内的运算,然后进行乘除法运算,最后进行加减法运算。

例如:2+(3×4)=2+12=14,3-(2+1)×4=3-3×4=3-12=-9以上是有理数的简便运算方法,通过将有理数转化为分数进行运算,可以简化计算的步骤,方便快捷地进行有理数的加减乘除运算。

七年级数学人教版(上册)【知识讲解】第3课时有理数的加减乘除混合运算

七年级数学人教版(上册)【知识讲解】第3课时有理数的加减乘除混合运算

9.某儿童服装店老板以 32 元/件的价格买进 30 件连衣裙,针对
不同的顾客,30 件连衣裙的售价不完全相同.若以 45 元为标准,将
超过的钱数记为正,不足的钱数记为负,记录结果如下表:
售出件数/件 7
6
3
5
4
5
售价/元
+3 +2 +1 0 -1 -2
该服装店售完这 30 件连衣裙后,赚了 412 元.
6.(2020·杭州)已知某快递公司的收费标准为:寄一件物品不超
过 5 kg,收费 13 元;超过 5 kg 的部分每千克加收 2 元.圆圆在该快
递公司寄一件 8 kg 的物品,需要付费( B )
A.17 元
B.19 元
C.21 元
D.23 元
7.小明在山顶测得温度是-2.5 ℃,同一时刻小红在山脚测得 温度是 5.5 ℃.已知该地区高度每增加 100 m,气温大约降低 1 ℃, 则这座山峰的高度大约是多少米?
解:由题意,得[5.5-(-2.5)]÷1×100=800(m). 答:这座山峰的高度大约是 800 m.
8.(2021·镇江)如图,输入数值 1 921,按所示的程序运算(完成 一个方框内的运算后,把结果输入下一个方框继续进行运算),输出 的结果为( D )
A.1 840 C.1 949
B.1 921 D.2 021
21 1 = 8 -4-8
5 =2-4
3 =-2.
知识点 2 利用计算器进行有理数的加减乘除混合运算 5.用计算器计算(结果保留两位小数): (1)(-37)×125÷(-75)≈ 61.67 . (2)-4.375×(-0.112)-2.321÷(-5.157)≈ 0.94 .
知识点 3 有理数运算的实际应用

第二章 有理数的运算 小结与复习课件(共16张PPT) 人教版(2024)数学七年级上册

第二章 有理数的运算 小结与复习课件(共16张PPT) 人教版(2024)数学七年级上册

2. 有理数的减法
减法法则:减去一个数,等于加上这个数的相反数.
3. 有理数的乘法
(1) 乘法法则
乘法的交换律
(2) 乘法的运算律 乘法的结合律
乘法的分配律
4. 有理数的除法
除法法则:除以一个数,等于乘这个数的倒数.
5. 有理数的乘方 求几个相同因数的积的运算,叫做乘方.
6. 有理数的混合运算
a 幂
考点讲练 考点1: 有理数的运算
例1 计算:
解:
1. 把减法转化为加法 时,要注意符号; 2. 对几个有理数相加 减的题目,要注意观 察,将哪些数放在一 起会使计算简便.
= 21 - 27 + 30 - 10 = 14.
注意符号问题
= -2×12×12 = -288.
先确定商的符号, 再把绝对值相除
注意:1. 底数或因数 是带分数时,要先将 带分数化成假分数; 2. 区分 -24 与 (-2)4.
练一练
1. 计算:(1) -3 + 8 - 7 - 15; (2) 23 - 6×(-3) + 2×(-4);
答案:(1) -17. (3) -3.3.
(2) 33.
考点2: 科学记数法
例2 (保定模拟考) 地球与太阳的最远距离约为 15 200
1 400 000 000 000 元,比上年增长 4.5%,其中数据
1 400 000 000 000 用科学记数法表示为( A )
A. 1.4×1012
B. 0.14×1013
C. 1.4×1013
D. 14×1011
考点3: 近似数
例3 用四舍五入法对 0.030 47 取近似值,精确到
0.001 的结果是(D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进行有理数四则混合运算时,先观察算式特征,再思考其是否可以运用 乘法分配律简化计算.
特别要注意,有些计算逆用乘法分配律后可以简化计算,还有些除法运 算转化为乘法运算后也可以用乘法分配律简化计算.
6
426
⑵ 4.4 1 6 3 3 2 2.4
3
3
⑵解:原式=(4.4 2.4) ( 1 3 2) (3 6) 33
=-2-4+9
=(-6)+9
=3
方法总结
进行有理数加减混合运算时,如遇相反数、同分母、可以凑整的,可以 优先考虑运用加法交换律和结合律,将具有以上关系的项结合后计算,最后 将同号的结合计算,这样可以使计算变得简单.
二、计算结果成规律的相结合 计算:1-2+3-4+5-6+……+2015-2016
解:原式=(1-2)+(3-4)+(5-6)+……+(2015-2016)
=-1×(2016÷2) =-1008
1008组
类型二:乘法分配律的解题技巧
正用分配律、逆用分配律或除法变为乘法,再利用分配律
计算:⑴
12
6
426
⑵ 4.4 1 6 3 3 2 2.4
3
3
计算:⑴ 3 5 0.5 7 3 5 1 3 1 7.75
6
426
⑵ 4.4 1 6 3 3 2 2.4
3
3
⑴ 解:原式=(3 5 3 1) (7 3 7.75) (0.5 5 1)
66
4
2
=7+0-6
=1
计算:⑴ 3 5 0.5 7 3 5 1 3 1 7.75
1

370
1 4
0.25
24.5
5
1 2
25%
解:⑵原式= 370 1 1 24.5 5.5 1
44
4
=(370 24.5 5.5) 1
4
=400 1
4
=100
49
24 25
1 5
原式=49 24 5
25

50
1 25
5
=-250+ 1 5
= 249 4 5
方法总结
如何提高有理数计算能力呢?
计算:⑴ 3 5 0.5 7 3 5 1 3 1 7.75
6
426
⑵ 4.4 1 6 3 3 2 2.4
3
3
类型一:加减混合运算的技巧 一、相反数相结合、同分母结合、凑整结合或同号结合
计算:⑴ 3 5 0.5 7 3 5 1 3 1 7.75
1 4
1 6
1 2
1

370
1 4
0.25
24.5
5
1 2
25%
计算:⑴
12
Hale Waihona Puke 1 41 61 2
1

370
1 4
0.25
24.5
5
1 2
25%
解:⑴原式=
12
1 4
12
1 6
12
1 2
12
1
=-3+2-6+12
=(-3-6)+(2+12)
=-9+14
=5
计算:⑴
12
1 4
1 6
1 2
相关文档
最新文档