初中数学旋转难题
初中九年级数学旋转试卷

一、选择题(每题5分,共25分)1. 下列关于旋转的说法中,正确的是()A. 旋转是图形绕一点旋转一定角度的变换B. 旋转后图形的大小和形状都不变C. 旋转后图形的对应线段不一定相等D. 旋转后图形的对应角不一定相等2. 在平面直角坐标系中,点P(2,3)绕原点旋转90°后的坐标是()A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)3. 下列图形中,是中心对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 梯形4. 在平面直角坐标系中,点A(1,2),点B(3,4),点C(5,6)组成的三角形绕原点旋转180°后,所得图形的顶点坐标分别为()A. A'(-1,-2),B'(-3,-4),C'(-5,-6)B. A'(1,-2),B'(3,-4),C'(5,-6)C. A'(-1,2),B'(-3,4),C'(-5,6)D. A'(1,2),B'(3,4),C'(5,6)5. 下列关于旋转的特征的说法中,正确的是()A. 图形中每一点都绕着旋转中心旋转了相同的角B. 对应点到旋转中心的距离相等C. 对应线段的长度相等D. 以上都是二、填空题(每题5分,共25分)6. 在平面直角坐标系中,点P(3,4)绕原点逆时针旋转90°后的坐标是_________。
7. 在平面直角坐标系中,点A(1,2),点B(3,4),点C(5,6)组成的三角形绕原点旋转180°后,所得图形的顶点坐标分别为_________。
8. 在平面直角坐标系中,点P(2,3)绕原点旋转90°后的坐标是_________。
9. 在平面直角坐标系中,点A(1,2),点B(3,4),点C(5,6)组成的三角形绕原点旋转180°后,所得图形的顶点坐标分别为_________。
初中数学图形的平移,对称与旋转的难题汇编附解析

故选C.
【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.
12.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()
C.( +672 , )D.(2020+674 ,0)
【答案】B
【解析】
【分析】
根据题意可知三角形在 轴上的位置每三次为一个循环,又因为 ,那么 相当于第一个循环体的 即可算出.
【详解】
由题意知, , ,
则 , , ,
结合图形可知,三角形在 轴上的位置每三次为一个循环,
,
,
,
故选 .
【点睛】
考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′= = =5.故选B.
16.下列说法中正确的是()
①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形
A.30°B.60°C.72°D.90°
【答案】C
【解析】
【分析】
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,
初中数学《几何旋转》重难点模型汇编(四大题型)含解析

专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
中考数学初中数学 旋转(大题培优 易错 难题)及详细答案

中考数学初中数学 旋转(大题培优 易错 难题)及详细答案一、旋转1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。
(2)△ABE 为等边三角形。
证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。
又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。
在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。
∴11BAD CAD BAC 22α∠=∠=∠=。
∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。
∴BEC BAD ∠=∠。
在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。
∴AB=BE 。
∴△ABE 为等边三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。
又∵∠DEC=45°,∴△DCE 为等腰直角三角形。
∴DC=CE=BC 。
∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。
而1EBC 30152α∠=︒-=︒。
∴30α=︒。
(1)∵AB=AC ,∠BAC=α,∴180ABC 2α︒-∠=。
专题05 旋转重难点题型分类(原卷版)-初中数学上学期重难点题型分类高分必刷题(人教版)

专题05 旋转重难点题型分类专题简介:本份资料包含《旋转》这一章在各次期中、期末考试中常考的填空、选则题和主流中档大题,具体包含的题型有中心对称图形、利用旋转的性质求角度和边长、坐标系中的图形旋转、旋转的中档大题、旋转的综合压轴题这五类题型。
题型一:中心对称图形1.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C. D.2.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.4.下列图形中,既是轴对称又是中心对称的图形是()A.正三角形B.矩形C.平行四边形D.正五边形题型二:利用旋转的性质求角度和边长5.如图,D是等腰Rt△ABC内一点,BC是斜边,如果将△ABD绕点A按逆时针方向旋转到△ACD′的位置,则∠ADD′的度数是()A.25°B.30°C.35°D.45°6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°8.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为.9.一个正三角形至少绕其中心旋转度,就能与本身重合,一个正六边形至少绕其中心旋转度,就能与其自身重合.10.一个平行四边形ABCD,如果绕其对角线的交点O旋转,至少要旋转度,才可与其自身重合.11.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A.B.C.D.题型三:坐标系中的图形旋转:旋转90度,横纵坐标对调,符号看象限12.以原点为中心,把点P(1,3)顺时针旋转90°,得到的点P′的坐标为()A.(3,﹣1)B.(﹣3,1)C.(1,﹣3)D.(﹣1,﹣3)13.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q的坐标为()A.(﹣4,5)B.(4,﹣5)C.(﹣5,4)D.(5,﹣4)14.已知点A(3,n)关于y轴对称的点的坐标为(﹣3,2),那么n的值为,点A关于原点对称的点的坐标是.15.若点A(2,a)关于原点的对称点是B(b,﹣3),则ab的值是.16.如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).(1)作出△ABC关于原点O的中心对称图形△A1B1C1;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;(3)在(2)的条件下,请直接写出点A1、C2的坐标,并求出旋转过程中线段OC所扫过的面积.17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,求出A运动经过的路径的长度.18.如图,在平面直角坐标系中,A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为对称中心,画出△A1AC1的中心对称图形.题型四:旋转的中档大题19.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连接EF,则△AEF是三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.20.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB =7.(1)求BE的长;(2)在图中作出延长BE与DF的交点G,并说明BG⊥DF.21.如图,点E是正方形ABCD边CD的中点,△ADE绕着点A旋转后到达△ABF的位置,其中点F落在了边CB的延长线上,连接EF.(1)求证:△AEF是等腰直角三角形.(2)若AB=4,求△AEF的面积.22.如图,正方形ABCD,E,F分别为BC、CD边上一点.①若∠EAF=45°,求证:EF=BE+DF;②若△AEF绕A点旋转,保持∠EAF=45°,问△CEF的周长是否随△AEF位置的变化而变化?题型五:旋转的综合压轴题23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?(直接写出答案)24如图,正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45°.求证:EF=BE+DF.(2)若△AEF绕A点旋转,保持∠EAF=45°,问△CEF的周长是否随△AEF位置的变化而变化?(3)已知正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.25.问题:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、DF之间的数量关系.(1)发现证明小文把△ADF绕点A顺时针旋转90°至△ABG,从而发现BE、EF、DF之间的数量关系为;若正方形ABCD的边长为a,则△CEF的周长为;(2)类比探究如图②,在等腰△ABC中,AB=AC=2,∠BAC=120°,以BC为边向BC下方作等边△DBC,点E,F分别是边BD,DC上的动点,且∠EAF=60°.①试判断BE、EF、CF之间的数量关系,并说明理由.②试判断当点E,F的位置变化时,△EDF的周长是否发生变化,若变化,试说明怎么变化;若无变化,请直接写出△DEF的周长.(3)拓展延伸在(2)的条件下,以BC为边向BC上方作等边△DBC,点E,F分别是边BD,DC上的动点,且∠EAF=60°,当△DEF是直角三角形时,请直接写出DE的长度.26.定义:有一组对角互补的四边形叫做互补四边形.(1)互补四边形ABCD中,若∠B:∠C:∠D=2:3:4,求∠A的度数;(2)如图1,在四边形ABCD中,BD平分∠ABC,AD=CD,BC>BA.求证:四边形ABCD是互补四边形;(3)如图2,互补四边形ABCD中,∠B=∠D=90°,AB=AD=,点E,F分别是边BC,CD的动点,且∠EAF=∠BAD=60°,△CEF周长是否变化?若不变,请求出不变的值;若有变化,说明理由;(4)如图3,互补四边形ABCD中,∠A=∠C=90°,AB=BC,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,求CD的长.。
初中数学《旋转》专题100题含答案

(2)连接h′,C‸,如图③,求证:四边形C‸′h是平行四边形.
24.如图,将OABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,将线段
AB绕点B顺时针旋转9to.得线段A'B,点A的对应点为A',连接AA'交线段BC于点‸.
(1)写出点B的坐标;
(2)画出O ABC绕点0旋转1‸to后得到的图形O A1B1C1,并写出点B1的坐标?
33. 如图,在建立了平面直角坐标系的正方形网格中,A2t2,B1tt,C3t1.
(1)画出O ABC关于x轴对称的O A1B1C1.
(1)作出旋转后的图形.
(2)C‸=.
‸B
25.如图,已知正方形ABC‸中,Bh平分²‸BC且交C‸边于点h,将OBCh绕点C顺时针旋转到
O‸C′的位置,并延长Bh交‸′于点G.
(1)求证:O B‸G∽O ‸hG;
(2)若hG · BG = t,求Bh的长.
26.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个OABC和一点0,OABC
(3)求出在O ABC旋转的过程中,点C经过的路径长.
7.正方形ABC‸的边长为3,h,′分别是AB,BC边上的点,且²h‸′=t5o.将O‸Ah绕点‸
逆时针旋转9to,得到O ‸Ch.
(1)求证:h′=′h
(2)当Ah=1时,求h′的长.
8. 如图,将OABC放于平面直角坐标系中,得到顶点坐标为A—3tt,B—3tt,Ctt3,以B为旋转中心,在平面直角坐标系内将O ABC顺时针旋转9to.
(2)将O ABC绕点0顺时针旋转9to,画出旋转后得到的O A2B2C2,并直接写出点A旋转到点A2所经过的路径长.
中考数学初中数学 旋转-经典压轴题附答案

中考数学初中数学旋转-经典压轴题附答案一、旋转1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3cm,∴△BDE的最小周长=CD3;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.3.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.4.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.①求证:△ABE∽△ACD;②计算:BD2+CE2的值.【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.【解析】【分析】(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.【详解】(1)结论:BE=CD,BE⊥CD.理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.在△CAD 和△BAE 中,∵AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△BAE ,∴CD =BE ,∠ACD =∠ABE .∵∠BFA =∠CFG ,∠BFA +∠ABF =90°,∴∠CFG +∠ACD =90°,∴∠CGF =90°,∴BE ⊥CD . (2)①设AE 与CD 于点F ,BE 与DC 的延长线交于点G ,如图3.∵∠CABB =∠EAD =90°,∴∠CAD =∠BAE .∵CA =3,AB =5,AD =6,AE =10,∴AE AB =AD AC=2,∴△ABE ∽△ACD ; ②∵△ABE ∽△ACD ,∴∠AEB =∠CDA . ∵∠AFD =∠EFG ,∠AFD +∠CDA =90°,∴∠EFG +∠AEB =90°,∴∠DGE =90°,∴DG ⊥BE ,∴∠AGD =∠BGD =90°,∴CE 2=CG 2+EG 2,BD 2=BG 2+DG 2,∴BD 2+CE 2=CG 2+EG 2+BG 2+DG 2. ∵CG 2+BG 2=CB 2,EG 2+DG 2=ED 2,∴BD 2+CE 2=CB 2+ED 2=CA 2+AB 2+AD 2+AD 2=170.【点睛】本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.5.如图1,菱形ABCD ,AB 4=,ADC 120∠=,连接对角线AC 、BD 交于点O , ()1如图2,将AOD 沿DB 平移,使点D 与点O 重合,求平移后的A'BO 与菱形ABCD 重合部分的面积.()2如图3,将A'BO 绕点O 逆时针旋转交AB 于点E',交BC 于点F ,①求证:BE'BF 2+=;②求出四边形OE'BF 的面积.【答案】()() 13?2①证明见解析3②【解析】【分析】(1)先判断出△ABD 是等边三角形,进而判断出△EOB 是等边三角形,即可得出结论;(2)先判断出 ≌△OBF ,再利用等式的性质即可得出结论;(3)借助①的结论即可得出结论.【详解】()1四边形为菱形,ADC 120∠=,ADO 60∠∴=,ABD ∴为等边三角形,DAO 30∠∴=,ABO 60∠=,∵AD//A′O ,∴∠A′OB=60°,EOB ∴为等边三角形,边长OB 2=,∴重合部分的面积:3434⨯=, ()2①在图3中,取AB 中点E ,由()1知,∠EOB=60°,∠E′OF=60°,∴∠EOE′=∠BOF ,又∵EO=BO ,∴∠OEE′=∠OBF=60°,∴△OEE′≌△OBF ,∴EE′=BF ,∴BE′+BF=BE′+EE′=BE=2;②由①知,在旋转过程中始终有△OEE′≌△OBF,∴S△OEE′=S△OBF,∴S四边形OE′BF =OEBS3=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质,等边三角形的判定与性质,综合性较强,熟练掌握相关内容、正确添加辅助线是解题的关键.6.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②1233)3<a<3,a>3【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、3,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG折叠纸片,使点C落在EF上的点P处∴PB=BC∴PB=PC=BC∴△PBC 是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ =⎧⎨=⎩∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,22=3QN NJ -x , ∵IJ=6cm ,∴3,∴33cm ). (3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6, 则tan60°=3=2a b , ∴a=32b , ∴0<b≤632=33; ②如图当DF 与DC 重合时,DF=DE=6, ∴a=sin60°×DE=632=33, 当DE 与DA 重合时,a=6643sin6032==︒, ∴33<a <43; ③如图∵△DEF 是等边三角形 ∴∠FDC=30°∴DF=6643 cos3032==︒∴a>43点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.7.如图1,四边形ABCD 是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.8.如图1,△ABC中,CA=CB,∠ACB=90°,直线l经过点C,AF⊥l于点F,BE⊥l于点E.(1)求证:△ACF≌△CBE;(2)将直线旋转到如图2所示位置,点D是AB的中点,连接DE.若AB=2,∠CBE=30°,求DE的长.【答案】(1)答案见解析;(226+【解析】试题分析:(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,即可得到结论;(2)连接CD,DF,证得△BCE≌△ACF,根据全等三角形的性质得到BE=CF,CE=AF,证得△DEF是等腰直角三角形,根据等腰直角三角形的性质得到EF2DE,EF=CE+BE,进而得到DE的长.试题解析:解:(1)∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△ACF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBE(AAS);(2)如图2,连接CD,DF.∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF.∵AF⊥l于点F,∴∠AFC=90°.在△BCE与△CAF中,∵90AFC BECEBC ACFBC AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△CAF(AAS);∴BE=CF.∵点D是AB的中点,∴CD=BD,∠CDB=90°,∴∠CBD=∠ACD=45°,而∠EBC=∠CAF,∴∠EBD=∠DCF.在△BDE与△CDF中,∵BE CFEBD FCDBD CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS),∴∠EDB=∠FDC,DE=DF.∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,∴EF2DE,∴EF=CE+CF=CE+BE.∵CA=CB,∠ACB=90°,AB2∴BC=4.又∵∠CBE=30°,∴CE=12BC=2,BE3CE3∴EF=CE+BE3∴DE223226.点睛:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形斜边上的中线的性质,证得△BCE≌△ACF是解题的关键.9.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG =12OB =12×4=2,∴M (1,2); (II )如图1,同理得:OG =AG =12t .∵∠BAC =90°,∴∠BAO +∠CAF =90°.∵∠CAF +∠ACF =90°,∴∠BAO =∠ACF .∵∠MGA =∠AFC =90°,MA =AC ,∴△AMG ≌△CAF ,∴AG =CF =12t ,AF =MG =2,∴EC =4﹣12t ,BE =OF =t +2,∴S △BCE =12EC •BE =12(4﹣12t )(t +2)=﹣14t 2+32t +4; S △ABC =12•AB •AC =12•216t +•21162t +=14t 2+4,∴S =S △BEC +S △ABC =32t +8. 当A 与O 重合,C 与F 重合,如图2,此时t =0,当C 与E 重合时,如图3,AG =EF ,即12t =4,t =8,∴S 与t 之间的函数关系式为:S =32t +8(0≤t ≤8); (III )如图1,易得△ABO ∽△CAF ,∴AB AC =OB AF =OA FC =2,∴AF =2,CF =12t ,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.10.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.11.思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD ∥AB 交AP 的延长线于点D ,此时测得CD =200米,那么A ,B 间的距离是 米.思维探索:(2)在△ABC 和△ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将△ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时△ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ; ②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值.【答案】(1)200;(2)①PC =PE ,PC ⊥PE ;②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE ,见解析;③PC 21033+. 【解析】 【分析】(1)由CD ∥AB ,可得∠C =∠B ,根据∠APB =∠DPC 即可证明△ABP ≌△DCP ,即可得AB =CD ,即可解题.(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2=1033+求出22110332PC EC +==【详解】(1)解:∵CD ∥AB ,∴∠C =∠B , 在△ABP 和△DCP 中,BP CP APB DPC B C =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴△ABP ≌△DCP (SAS ), ∴DC =AB . ∵AB =200米. ∴CD =200米, 故答案为:200.(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知∴△FBP ≌△EDP (SAS ), ∴PF =PE ,BF =DE , 又∵AC =BC ,AE =DE , ∴FC =EC , 又∵∠ACB =90°,∴△EFC 是等腰直角三角形, ∵EP =FP , ∴PC =PE ,PC ⊥PE .②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF , 同①理,可知△FBP ≌△EDP (SAS ), ∴BF =DE ,PE =PF =12EF , ∵DE =AE , ∴BF =AE ,∵当α=90°时,∠EAC =90°, ∴ED ∥AC ,EA ∥BC ∵FB ∥AC ,∠FBC =90, ∴∠CBF =∠CAE , 在△FBC 和△EAC 中,BF AE CBE CAE BC AC =⎧⎪∠=∠⎨⎪=⎩, ∴△FBC ≌△EAC (SAS ), ∴CF =CE ,∠FCB =∠ECA , ∵∠ACB =90°,∴∠FCE =90°,∴△FCE 是等腰直角三角形, ∵EP =FP , ∴CP ⊥EP ,CP =EP =12EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150° 同②可得△FBP ≌△EDP (SAS ),同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP =22CE , 在Rt △AHE 中,∠EAH =30°,AE =DE =1, ∴HE =12,AH =32, 又∵AC =AB =3, ∴CH =3+32, ∴EC 2=CH 2+HE 2=1033+ ∴PC 2=21103322EC +=【点睛】本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.12.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
初中数学巧用旋转进行计算之三大题型及答案

解题技巧专题:巧用旋转进行计算之三大题型【考点导航】目录【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】【题型三利用旋转计算面积】【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】1(2023春·内蒙古巴彦淖尔·九年级校考期中)如图,在△ABC中,BC<BA,将△BCA以点B为中心逆时针旋转得到△BED,点E在边CA上,ED交BA于点F,若∠FEA=40°,则∠DBF=()A.40°B.50°C.60°D.70°【变式训练】1(2023春·辽宁沈阳·八年级沈阳市第四十三中学校考期中)如图,在△ABC中,∠B=42°,将△ABC 绕点A逆时针旋转,得到△ADE,点D恰好落在BC的延长线上,则旋转角的度数()A.86°B.96°C.106°D.116°2(2023春·河南新乡·七年级统考期末)如图,在△ABC中,∠BAC=104°,将△ABC绕点A逆时针旋转94°得到△ADE,点B的对应点为点D,若点B,C,D恰好在同一条直线上,则∠E的度数为()A.25°B.30°C.33°D.40°3(2023·浙江温州·校联考三模)如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转得△ADE,使点D恰好落在AC边上,连结CE,则∠ACE的度数为()A.45°B.55°C.65°D.75°4(2023春·甘肃兰州·八年级兰州市第五十六中学校考期中)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB C 的位置,使得CC ∥AB,划∠BAB 的度数是()A.35°B.40°C.50°D.70°5(2023春·江苏连云港·八年级校考阶段练习)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.70°C.75°D.85°6(2023春·江苏盐城·八年级校考阶段练习)如图,∠AOB=90°,∠B=20°,△A OB 可以看作是△AOB绕点O顺时针旋转α角度得到的.若点A 在AB上,则旋转角α的度数是.7(2023春·上海嘉定·七年级校考期末)已知△ABC中,AB=AC,将△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,边DE交边AC于点F(如图),如果△CDF为等腰三角形,则∠A的度数为.【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】1(2023秋·福建莆田·九年级校考开学考试)如图,将△ABC绕点C逆时针旋转一定的角度得到△A B C ,此点A在边B C上,若BC=5,AC=3,则AB 的长为()A.5B.4C.3D.2【变式训练】1(2023春·四川达州·八年级校考期中)如图,把△ABC绕点C逆时针旋转90°得到△DCE,若∠ACB =90°,∠A=30°,AB=10,AC=8,则AD的长为()A.2B.3C.4D.52(2023春·陕西汉中·八年级统考期中)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=22,DE=1,则线段BD的长为.3(2023春·四川成都·八年级成都嘉祥外国语学校校考期中)如图.Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A BC ,若点C 在AB上,则AA 的长为.4(2023·山西运城·校联考模拟预测)如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC的中点,点E是AB边上的一点,连接DE,将线段DE绕点D顺时针旋转90°,得到DF,连接AF,EF,若BE= 22,则AF的长为.5(2023·河南周口·统考一模)如图1,在△ABC中,∠A=90°,AB=AC=2,D,E分别为边AB和AC的中点,现将△ADE绕点A自由旋转,如图2,设直线BD与CE相交于点P,当AE⊥EC时,线段PC 的长为.6(2023春·陕西渭南·八年级统考阶段练习)如图,在△ABC中,∠B=60°,AB=3,将△ABC绕点A 按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在边BC上,求BD的长.【题型三利用旋转计算面积】1(2023秋·湖南永州·九年级校考开学考试)如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A.14B.12C.13D.不能确定【变式训练】1(2023春·山东青岛·八年级统考期中)将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB C ,则图中阴影部分的面积是( )cm2.A.12.5B.2536C.2533D.不能确定2(2023秋·四川德阳·九年级统考期末)如图,边长为定值的正方形ABCD的中心与正方形EFGH的顶点E重合,且与边AB、BC相交于M、N,图中阴影部分的面积记为S,两条线段MB、BN的长度之和记为l,将正方形EFGH绕点E逆时针旋转适当角度,则有()A.S变化,l不变B.S不变,l变化C.S变化,l变化D.S与l均不变3(2023春·广东清远·八年级校考期中)如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A逆时针方向旋转60°到△ABC 的位置,则图中阴影部分的面积是.4(2023春·江苏宿迁·八年级校考阶段练习)马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD的对角线AC、BD相交于点O,正方形A B C O与正方形ABCD的边长相等.在正方形A B C O绕点O旋转的过程中,OA 与AB相交于点M,OC 与BC相交于点N,探究两个正方形重叠部分的面积与正方形ABCD的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD面积的”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD中,AB=AD,∠BAD =∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积.请你帮小颖解答这道题.5(2023春·广东深圳·八年级统考期末)【问题背景】如图1,在▱ABCD中,AB⊥DB.将△ABD绕点B逆时针旋转至△FBE,记旋转角∠ABF=α0°<α≤180°,当线段FB与DB不共线时,记△ABE的面积为S1,△FBD的面积为S2.【特例分析】如图2,当EF恰好过点A,且点F,B,C在同一条直线上时.(1)α=°;(2)若AD=43,则S1=,S2=;【推广探究】某数学兴趣小组经过交流讨论,猜想:在旋转过程中,S1与S2之间存在一定的等量关系.再经过独立思考,获得了如下一些解决思路:思路1:如图1,过点A,E分别作直线平行于BE,AB,两直线交于点M,连接BM,可证一组三角形全等,再根据平行四边形的相关性质解决问题;思路2:如图2,过点E作EH⊥AB于点H,过点D作DG⊥FB,交FB的延长线于点G,可证一组三角形全等,再根据旋转的相关性质解决问题;⋯⋯(3)如图3,请你根据以上思路,并结合你的想法,探究S1与S2之间的等量关系为,并说明理由.【拓展应用】在旋转过程中,当S1+S2为▱ABCD面积的12时,α的值为解题技巧专题:巧用旋转进行计算之三大题型【考点导航】目录【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】【题型三利用旋转计算面积】【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】1(2023春·内蒙古巴彦淖尔·九年级校考期中)如图,在△ABC中,BC<BA,将△BCA以点B为中心逆时针旋转得到△BED,点E在边CA上,ED交BA于点F,若∠FEA=40°,则∠DBF=()A.40°B.50°C.60°D.70°【答案】A【分析】根据旋转的性质可得∠A=∠D,由对顶角相等可得∠BFD=∠EFA,根据三角形的外角性质可得∠DBF=∠AEF,即可求解.【详解】解:∵将△BCA以点B为中心逆时针旋转得到△BED,∴∠A=∠D,∵∠BFD=∠EFA,∴∠BFE=∠A+∠AEF=∠D+∠DBF∵∠FEA=40°,∴∠DBF=∠AEF=40°,故选:A.【点睛】本题考查了旋转的性质,三角形的外角的性质,熟练掌握旋转的性质是解题的关键.【变式训练】1(2023春·辽宁沈阳·八年级沈阳市第四十三中学校考期中)如图,在△ABC中,∠B=42°,将△ABC 绕点A逆时针旋转,得到△ADE,点D恰好落在BC的延长线上,则旋转角的度数()A.86°B.96°C.106°D.116°【答案】B【分析】由旋转的性质可知AB=AD,可算出∠ADB=42°,就可以算出旋转角.【详解】由旋转的性质可知:AB=AD,∠BAD是旋转角,∵AB=AD,∴∠ADB=∠B=42°,∴∠BAD=180°-∠ADB-∠B=96°,故选:B.【点睛】本题考查旋转的性质、等边对等角、三角形内角和定理,找到旋转的对应边、对应角是解决问题的关键.2(2023春·河南新乡·七年级统考期末)如图,在△ABC中,∠BAC=104°,将△ABC绕点A逆时针旋转94°得到△ADE,点B的对应点为点D,若点B,C,D恰好在同一条直线上,则∠E的度数为()A.25°B.30°C.33°D.40°【答案】C【分析】由旋转的性质可得∠BAD=94°,AB=AD,由等腰三角形的性质可得∠B=∠ADB=43°,即可求解.【详解】解:∵将△ABC绕点A逆时针旋转94°得到△ADE,∴∠BAD=94°,AB=AD,∴∠B=∠ADB=43°,∵∠BAC=104°,∴∠C=180°-104°-43°=33°,故选:C.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.3(2023·浙江温州·校联考三模)如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转得△ADE,使点D恰好落在AC边上,连结CE,则∠ACE的度数为()A.45°B.55°C.65°D.75°【答案】C【分析】由旋转的性质可知,旋转前后对应边相等,对应角相等,得出等腰三角形,再根据等腰三角形的性质求解.【详解】解:由旋转的性质可知,∠CAE=∠BAC=50°,AC=AE,∴∠ACE=∠AEC,在△ACE中,∠CAE+∠ACE+∠AEC=180°,∴50°+2∠ACE=180°,解得:∠ACE=65°,故选:C.【点睛】本题主要考查了旋转的性质,找出旋转角和旋转前后的对应边得出等腰三角形是解答此题的关键.4(2023春·甘肃兰州·八年级兰州市第五十六中学校考期中)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB C 的位置,使得CC ∥AB,划∠BAB 的度数是()A.35°B.40°C.50°D.70°【答案】B【分析】根据平行线的性质,结合旋转性质,由等腰三角形性质及三角形内角和定理求解即可得到答案.【详解】解:∵CC ∥AB,∠CAB=70°,∴∠C CA=∠CAB=70°,∵将△ABC绕点A逆时针旋转到△AB C 的位置,∴∠C AB =∠CAB=70°,AC =AC,∴∠AC C=∠C CA=70°,∴∠C AC=180°-70°-70°=40°,∵∠BAB =∠CAB-CAB ,∠CAC =∠C AB -CAB ,∴∠BAB =∠C AC=40°,即旋转角的度数是40°,故选:B.【点睛】本题考查旋转性质求角度,涉及平行线的性质、旋转性质、等腰三角形的判定与性质及三角形内角和定理,熟练掌握旋转性质,数形结合,是解决问题的关键.5(2023春·江苏连云港·八年级校考阶段练习)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.70°C.75°D.85°【答案】D【分析】根据旋转的性质得出∠C=∠E=70°,∠BAC=∠DAE,根据三角形内角和定理可得∠CAF=20°,进而即可求解.【详解】解:如图所示,设AD,BC交于点F,∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°-∠C=90°-70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.故选:D.【点睛】本题考查了旋转的性质,三角形的内角和定理,熟练掌握旋转的性质是解题的关键.6(2023春·江苏盐城·八年级校考阶段练习)如图,∠AOB=90°,∠B=20°,△A OB 可以看作是△AOB绕点O顺时针旋转α角度得到的.若点A 在AB上,则旋转角α的度数是.【答案】40°/40度【分析】根据旋转的性质得到AO=A O,根据等边对等角得到∠A=70°=∠OA A,再利用三角形内角和定理计算即可.【详解】解:△A OB 可以看作是△AOB绕点O顺时针旋转α角度得到的,点A 在AB上,∴AO=A O,∵∠B=20°,∠AOB=90°,∴∠A=70°=∠OA A,∴∠AOA =180°-2×70°=40°,即旋转角α的度数是40°,故答案为:40°.【点睛】本题考查了旋转的性质,等边对等角,三角形内角和定理,关键是得出∠A=70°=∠OA A,题目比较典型,难度不大.7(2023春·上海嘉定·七年级校考期末)已知△ABC中,AB=AC,将△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,边DE交边AC于点F(如图),如果△CDF为等腰三角形,则∠A的度数为.【答案】36°或180°7【分析】如图,设∠B=x,利用等腰三角形的性质和三角形内角和定理得到∠A=180°-2x,再利用旋转的性质得CB=CD,∠2=∠B=x,则∠1=∠B=x,利用平角定理得∠5=180°-2x,利用三角形外角性质∠3=360°-4x得,讨论:当CD=CF时,∠2=∠3=x,则x=360°-4x;当CD=DF时,∠4=∠3,利用∠2+∠3+∠4=180°得到x+2360°-4x=180°;当CF=DF时,∠2=∠4=x,利用∠2+∠3+∠4= 180°得到x+x+360°-2x=180°,然后分别解关于x的方程,然后计算180°-2x即可得到∠A的度数.【详解】解:如图,设∠B=x,∵AB=AC,∴∠ACB=∠B=x∴∠A=180°-2x,∵△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,∴CB=CD,∠2=∠B=x,∴∠1=∠B=x,∴∠5=180°-2x,∠3=∠A+∠5=360°-4x,当CD=CF时,△CDF为等腰三角形,即∠2=∠3=x,则x=360°-4x,解得x=72°,此时∠A=180°-2x =36°;当CD=DF时,△CDF为等腰三角形,即∠4=∠3,而∠2+∠3+∠4=180°,则x+2360°-4x=180°,解得x=540°7,此时∠A=180°-2x=180°7,当CF=DF时,△CDF为等腰三角形,即∠2=∠4=x,而∠2+∠3+∠4=180°,则x+x+360°-2x=180°,无解,故舍去,综上所述,△CDF为等腰三角形时∠A的度数为36°或180°7,故答案为36°或180°7.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了三角形内角和、等腰三角形的性质和分类讨论思想.【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】1(2023秋·福建莆田·九年级校考开学考试)如图,将△ABC绕点C逆时针旋转一定的角度得到△A B C ,此点A在边B C上,若BC=5,AC=3,则AB 的长为()A.5B.4C.3D.2【答案】D【分析】根据图形旋转的性质可得CB =CB=5,即可求解.【详解】解:∵将△ABC绕点C逆时针旋转一定的角度得到△A B C ,此点A在边B C上,∴CB =CB=5,∴AB =CB -CA=5-3=2.故选:D.【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转的性质是解题的关键.【变式训练】1(2023春·四川达州·八年级校考期中)如图,把△ABC绕点C逆时针旋转90°得到△DCE,若∠ACB =90°,∠A=30°,AB=10,AC=8,则AD的长为()A.2B.3C.4D.5【答案】A【分析】利用勾股定理求得BC=6,再根据旋转的性质可得CD=CB=6,即可求解.【详解】解;∵∠ACB=90°,AB=10,AC=8,∴BC=102-82=6,∵把△ABC绕点C逆时针旋转90°得到△DCE,∴CD=CB=6,∴AD=AC-CD=8-6=2,故选:A.【点睛】本题考查勾股定理和旋转的性质,熟练掌握旋转的性质是解题的关键.2(2023春·陕西汉中·八年级统考期中)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=22,DE=1,则线段BD的长为.【答案】32【分析】先由旋转的性质得到AD=AB,DE=BC=1,AE=AC=22,∠DAB=90°,然后由∠ACB= 90°计算出AB的长度,最后由勾股定理算出线段BD的长.【详解】解:由旋转得,AD=AB,DE=BC=1,AE=AC=22,∠DAB=90°,∵∠ACB=90°,∴AB=AC2+BC2=222+12=3,∴AD=AB=3,∵∠DAB=90°,∴BD=AB2+AD2=32+32=32,故答案为:32.【点睛】本题考查了旋转的性质和勾股定理,熟练应用“旋转过程中对应线段相等”是解题的关键.3(2023春·四川成都·八年级成都嘉祥外国语学校校考期中)如图.Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A BC ,若点C 在AB上,则AA 的长为.【答案】25【分析】先根据勾股定理求出AB的长,再利用旋转的性质可得AC=A C =4,BC=BC =3,∠C=∠BC A =90°,从而求出的长,然后在Rt△A C A中,利用勾股定理进行计算即可解答.【详解】解:∵∠C=90°,BC=3,AC=4,∴AB=AC2+BC2=42+32=5,由旋转得:AC=A C =4,BC=BC =3,∠C=∠BC A =90°,∴AC =AB-BC =5-3=2,∠AC A =180°-∠BC A =90°,∴AA =C A2+A C 2=22+42=25,故答案为:25.【点睛】本题考查了旋转的性质,勾股定理的应用,化为最简二次根式,熟练掌握旋转的性质是解题的关键.4(2023·山西运城·校联考模拟预测)如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC的中点,点E是AB边上的一点,连接DE,将线段DE绕点D顺时针旋转90°,得到DF,连接AF,EF,若BE= 22,则AF的长为.【答案】2【分析】由等腰直角三角形的性质可求AD=DH,由旋转的性质可得DE=DF,∠EDF=90°=∠ADH,由“SAS”可证△ADF≌△HDE,可得AF=HE=2.【详解】解:如图,取AB的中点H,连接CH,DH,∵∠C=90°,AC=BC=6,H是AB的中点,∴AB=62,AH=BH=32=CH,CH⊥AB,又∵点D是AC的中点,∴AD =CD =DH ,AD ⊥DH ,∵BE =22,∴EH =2,∵将线段DE 绕点D 顺时针旋转90°,∴DE =DF ,∠EDF =90°=∠ADH ,∴∠ADF =∠EDH ,∴△ADF ≌△HDE SAS ,∴AF =HE =2,故答案为:2.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.5(2023·河南周口·统考一模)如图1,在△ABC 中,∠A =90°,AB =AC =2,D ,E 分别为边AB 和AC 的中点,现将△ADE 绕点A 自由旋转,如图2,设直线BD 与CE 相交于点P ,当AE ⊥EC 时,线段PC 的长为.【答案】3-1或3+1【分析】由△ADE 绕点A 自由旋转可知有以下两种情况:①当点E 在AC 的右侧时,AE ⊥CE ,先证△ABD 和△ACE 全等,进而可证四边形AEPD 为正方形,然后求出PE =1,CE =3,进而可得PC 的长;②当点E 在AC 的右侧时,AE ⊥CE ,同理①证△ABD 和△ACE 全等,四边形AEPD 为正方形,进而得PE =1,CE =3,据此可求出PC 的长,综上所述即可得出答案.【详解】解:∵△ADE 绕点A 自由旋转,∴有以下两种情况:①当点E 在AC 的右侧时,AE ⊥CE ,如图:由旋转的性质得:∠DAE =∠BAC =90°,∴∠BAD +∠DAC =∠DAC +∠CAE =90°,∴∠BAD =∠CAE ,∵AB =AC =2,D ,E 分别为边AB 和AC 的中点,∴AD =AE =1,在△ABD 和△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴∠ADB =∠AEC =90°,∴∠ADP =∠DAE =∠AEC =90°,∴四边形AEPD 为矩形,又AD =AE =1,∴矩形AEPD 为正方形,∴PE =AE =1,在Rt△AEC中,AE=1,AC=2,∠AEC=90°,由勾股定理得:CE=AC2-AE2=3,∴PC=CE-PE=3-1;②当点E在AC的右侧时,AE⊥CE,如图:同理可证:△ABD≌△ACE(SAS),四边形AEPD为正方形,∴BD=CE,PE=AE=1,在Rt△ABD中,AD=1,AB=2,∠ADB=90°,由勾股定理的:BD=AB2-AD2=3,∴CE=BD=3,∴PC=CE+PE=3+1.综上所述:当AE⊥EC时,线段PC的长为3-1或3+1.答案为:3-1或3+1.【点睛】此题主要考查了图形的旋转变换及其性质,等腰直角三角形的性质,正方形的判定及性质,全等三角形的判定及性质,勾股定理等,解答此题的关键是熟练掌握图形的旋转变换,全等三角形的判定、正方形的判定方法,灵活运用勾股定理进行计算,难点是根据题意进行分类讨论并画出示意图,漏解是易错点之一.6(2023春·陕西渭南·八年级统考阶段练习)如图,在△ABC中,∠B=60°,AB=3,将△ABC绕点A 按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在边BC上,求BD的长.【答案】3【分析】根据旋转的性质得出△ABD是等边三角形,根据等边三角形的性质即可求解.【详解】∵∠B=60°,AB=3,将△ABC绕点A按逆时针方向旋转得到△ADE,∴AB=AD,∠B=60°,AB=3,∴△ABD是等边三角形,∴BD=AB=3,【点睛】本题考查了旋转的性质,等边三角形的判定和性质,熟练掌握旋转的性质和等边三角形的判定是解题的关键.【题型三利用旋转计算面积】1(2023秋·湖南永州·九年级校考开学考试)如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A.14B.12C.13D.不能确定【答案】A【分析】根据正方形的性质得出OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM,即可求出两个正方形重叠部分的面积.【详解】解:∵四边形ABCD和四边形OEFG都是正方形,∴OB=OC,∠OBC=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON+∠BOM=∠MOC+∠BOM=90°∴∠BON=∠MOC.在△OBN与△OCM中,∠OBN=∠OCM OB=OC∠BON=∠COM,∴△OBN≌△OCM ASA,∴S△OBN=S△OCM,∴S四边形OMBN =S△OBC=14S正方形ABCD=14×1×1=14.故选:A.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的性质和判定等知识,能推出四边形OMBN 的面积等于三角形BOC的面积是解此题的关键.【变式训练】1(2023春·山东青岛·八年级统考期中)将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB C ,则图中阴影部分的面积是( )cm2.A.12.5B.2536C.2533D.不能确定【答案】B【分析】设AB 与B C 交于D 点,根据旋转角∠CAC =15°,等腰直角△ABC 的一锐角∠CAB =45°,可求∠C AD ,旋转前后对应边相等,对应角相等,AC =AC =5cm ,∠C =∠C =90°,解直角△AC D ,可求阴影部分面积.【详解】解:设AB 与B C 交于D 点,根据旋转性质得∠CAC =15°,而∠CAB =45°,∴∠C AD =∠CAB -∠CAC =30°,又∵AC =AC =5cm ,∠C =∠C =90°,∴设C D =x ,则AD =2x ,∴AD 2=AC 2+C D 2,即2x 2=52+x 2,∴解得x =533,∴C D =533cm ,∴阴影部分面积为:12×5×533=2536cm 2 .故选:B .【点睛】本题考查了旋转的性质,等腰三角形的性质,勾股定理.关键是通过旋转的性质判断阴影部分三角形的特点,计算三角形的面积.2(2023秋·四川德阳·九年级统考期末)如图,边长为定值的正方形ABCD 的中心与正方形EFGH 的顶点E 重合,且与边AB 、BC 相交于M 、N ,图中阴影部分的面积记为S ,两条线段MB 、BN 的长度之和记为l ,将正方形EFGH 绕点E 逆时针旋转适当角度,则有()A.S 变化,l 不变B.S 不变,l 变化C.S 变化,l 变化D.S 与l 均不变【答案】D 【分析】如图,连接EB ,EC .证明△EBM ≌△ECN ASA ,可得结论.【详解】解:如图,连接EB ,EC .∵四边形ABCD 和四边形EFGH 均为正方形,∴EB =EC ,∠EBM =∠ECN =45°,∠MEN =∠BEC =90°,∴∠BEN +∠BEM =∠BEN +∠CEN =90°,∴∠BEM =∠CEN ,在△EBM 和△ECN 中,∠EBM =∠ECNEB =EC ∠BEM =∠CEN,∴△EBM ≌△ECN ASA ,∴BM =CN ,∴S 阴=S 四边形EMBN =S △EBC =14S 正方形ABCD=定值,l =MB +BN =CN +BN =BC =定值,故选:D .【点睛】本题考查正方形的性质,旋转的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3(2023春·广东清远·八年级校考期中)如图,在△ABC 中,∠C =90°,AC =BC =2,将△ABC 绕点A 逆时针方向旋转60°到△ABC 的位置,则图中阴影部分的面积是.【答案】3【分析】过点B 作B D ⊥AB 于点D ,根据旋转的性质可得到△ABB 是等边三角形,S △ABC =S △AB C ,进而得到阴影部分的面积等于S △ABB ,再由勾股定理求出AB ,继而得到S △ABB,即可求解.【详解】解:如图,过点B 作B D ⊥AB 于点D ,∵将△ABC 绕点A 逆时针方向旋转60°到△ABC 的位置,∴AB =AB ,∠BAB =60°,△ABC ≌△AB C ,∴△ABB 是等边三角形,S △ABC =S △AB C,∴AB =BB ,阴影部分的面积等于S △ABB,∵AC =BC =2,∠C =90°,∴AB =AC 2+BC 2=2,∴BB =2,BD =1,∴B D =BB 2-BD 2=3,∴S △ABB=12AB ×B D =12×2×3=3,即阴影部分的面积是3.故答案为:3【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质,等边三角形的判定和性质,熟练运用旋转的性质是本题的关键.4(2023春·江苏宿迁·八年级校考阶段练习)马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD 的对角线AC 、BD 相交于点O ,正方形A B C O 与正方形ABCD 的边长相等.在正方形A B C O 绕点O 旋转的过程中,OA 与AB 相交于点M ,OC 与BC 相交于点N ,探究两个正方形重叠部分的面积与正方形ABCD 的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD 面积的”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,求四边形ABCD 的面积.请你帮小颖解答这道题.【答案】(1)14,见解析(2)18,见解析【分析】(1)只需要证明△MOB ≌△NOC 得到S △MOB =S △NOC ,即可求解.(2)过A 作AE ⊥AC ,交CD 的延长线于E ,证明△EAD ≌△CAB 得到S △ABC =S △ADE ,AE =AC =6,则S △AEC =12×6×6=18S 四边形ABCD =S △ACD +S △ABC =S △ACD +S △ADE =S △EAC =12AE ⋅AC =18.【详解】(1)解:∵四边形ABCD 是正方形,四边形OA B C 是正方形,∴AC ⊥BD ,OB =OC ,∠OBM =∠OCN =45°,∠A OC =90°,∴∠BOC =∠A OC =90°,∴∠BOM =∠CON ,∴△BOM ≌△CON ASA ,∴S △BOM =S △CON ,∴S 四边形OMBN =S △OBC =14S 正方形ABCD .答案为:14;(2)过A 作AE ⊥AC ,交CD 的延长线于E ,∵AE ⊥AC ,∴∠EAC =90°,∵∠DAB =90°,∴∠DAE =∠BAC ,∵∠BAD =∠BCD =90°,∴∠ADC +∠B =180°,∵∠EDA+∠ADC =180°,∴∠EDA =∠B ,∵AD =AB ,在△ABC 与△ADE 中,∠EAD =∠CABAD =AB ∠EDA =∠B,∴△ABC ≌△ADE ASA ,∴AC =AE ,∵AC =6,∴AE =6,∴S △AEC =12×6×6=18,∴S 四边形ABCD =18.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,四边形内角和,熟知全等三角形的性质与判定是解题的关键.5(2023春·广东深圳·八年级统考期末)【问题背景】如图1,在▱ABCD 中,AB ⊥DB .将△ABD 绕点B 逆时针旋转至△FBE ,记旋转角∠ABF =α0°<α≤180° ,当线段FB 与DB 不共线时,记△ABE 的面积为S 1,△FBD 的面积为S 2.【特例分析】如图2,当EF 恰好过点A ,且点F ,B ,C 在同一条直线上时.(1)α=°;(2)若AD =43,则S 1=,S 2=;【推广探究】某数学兴趣小组经过交流讨论,猜想:在旋转过程中,S 1与S 2之间存在一定的等量关系.再经过独立思考,获得了如下一些解决思路:思路1:如图1,过点A ,E 分别作直线平行于BE ,AB ,两直线交于点M ,连接BM ,可证一组三角形全等,再根据平行四边形的相关性质解决问题;思路2:如图2,过点E 作EH ⊥AB 于点H ,过点D 作DG ⊥FB ,交FB 的延长线于点G ,可证一组三角形全等,再根据旋转的相关性质解决问题;⋯⋯(3)如图3,请你根据以上思路,并结合你的想法,探究S 1与S 2之间的等量关系为,并说明理由.【拓展应用】在旋转过程中,当S 1+S 2为▱ABCD 面积的12时,α的值为【答案】(1)60;(2)33;33;(3)S 1=S 2,理由见解析;拓展应用:60°或120°【分析】(1)由旋转的性质和平行四边形的性质,等角对等边,可得△ABF 是等边三角形,即可求解;(2)过点F 作FM ⊥BD 交DB 延长线于点M ,设AD ,BE 交于点N ,通过证明△ABN ≌△FBM AAS ,进而得出s 1=s 2,再证明AE =AF ,可得S △ABE =12S △EFB ,仅为求解即可;(3)分别根据思路1和2进行推理证明即可;拓展应用:先根据面积之间的关系得出BD=2DG,继而得出∠DBG=30°=∠ABE,分别在图3和图2中进行求解即可.【详解】(1)由旋转可得,∠F=∠BAD,BA=BF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠ABF=∠BAD,∴∠ABF=∠F,∴BA=AF,∴BA=AF=BF,∴△ABF是等边三角形,∴∠ABF=α=60°,故答案为:60;(2)如图,过点F作FM⊥BD交DB延长线于点M,设AD,BE交于点N,∵AD∥BC,∴∠ANE=∠ANB=∠EBF=90°=∠ABM,∠EAN=∠AFB,∴∠MBF=∠ABN,∵BF=BA,∴△ABN≌△FBM AAS,∴AN=FM,∵BD=BE,∴S1=S2,∵△ABF是等边三角形,∴∠AFB=60°=∠EAN,AB=AF,∴∠E=30°=∠ABE,∴AE=AB,∴AE=AF,S△EFB,∴S△ABE=12∵AD=43,∴AB=23=BF,BD=6=BE,×6×23=63,∴S△EFB=12∴S△ABE=33,∴s1=s2=33,故答案为:33,33;(3)解:S1=S2,理由如下:思路1:如图,过点A,E分别作直线平行于BE,AB,两直线交于点M,连接BM,∵AM∥BE,ME∥AB,∴四边形ABEM为平行四边形,∴AM=BE,∠MAB+∠ABE=180°,∵旋转,∴AB=BF,BD=BE,∠ABD=∠EBF=90°,∴BD =AM ,∵∠ABD +∠ABE +∠EBF +∠FBD =360°,∴∠ABE +∠DBF =180°,∴∠MAB =∠DBF ,在△MAB 和△DBF 中,AM =BD∠MAB =∠DBF AB =BF,∴△MAB ≌△DBF ,∴S △MAB =S 2,∵ME ∥AB ,∴S △MAB =S 1,∴S 1=S 2.思路2:如图,过点E 作EH ⊥AB 交AB 延长线于点H ,过点D 作DG ⊥BF 交BF 延长线于点G ,∵EH ⊥AB ,DG ⊥BF ,∴∠H =∠G =90°,∵旋转,∴BD =BE ,AB =BF ,∠DBA =∠EBF =90°,∴∠EBG =90°,∴∠EBG =∠ABD ,∴∠EBG -∠ABG =∠ABD -∠ABG ,即∠EBH =∠GBD ,在△EBH 和△DBG 中,∠H =∠G∠EBH =∠GBD BD =BE,∴△EBH ≌△DBG ,∴EH =DG ,∴S 1=12AB ⋅EH =12BF ⋅DG =S 2;拓展应用:∵S 1=S 2,∴当S 1+S 2为▱ABCD 面积的12时,S 1=S 2=14S 平行四边形ABCD ,由(3)思路2得,S 1=12⋅AB ⋅EH ,S 平行四边形ABCD =AB ⋅BD ,EH =DG ,∴12⋅AB ⋅EH =14AB ⋅BD ,∴BD =2EH ,即BD =2DG ,∴∠DBG =30°=∠ABE ,如图3,∠ABF =120°;如图2,∠DBE =∠ABF=90°-30°=60°,综上,α的值为60°或120°,故答案为:60°或120°.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,等腰三角形的判定和性质,全等三角形的判定和性质,平行四边形的性质,直角三角形的性质,熟练掌握知识点是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学旋转难题 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】
1.如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是
B D 中点)按顺时针方向旋转.
(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或
测量BM ,FN 的长度,猜想BM ,FN
(2)若三角尺GEF 旋转到如图13-3AB 的延长线相交于点M ,线段BD 的延长线与GF 1)
2.(10中,AB =BA
按如图为
F ,一条直角边与AC
边恰
好经过点B .
(1
)在图15-1中请你通过观察、测量BF 与CG
的
长度,猜想并写出BF 与CG 满足的数量关系,
然后证明你的猜想;
(2)当三角尺沿AC 方向平移到图15-2所示的位
置
时,
一条直角边仍与AC 边在同一直线上,另一条
直角边交BC 边于点D ,过点D 作DE ⊥BA 于 点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足 的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC 方向继续平
移到图15-3所示的位置(点F 在线段AC 上,
图13-2
图13-3图13-1
A (
B ( E )
图15-3
图15-1
且点F 与点C 不重合)时,(2)中的猜想是否 仍然成立?(不用说明理由)
3.(2010 梅州)用两个全等的正方形ABCD 和CDFE 拼成一个矩形ABEF ,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF 的中点D 重合,且将直角三角尺绕点
D 按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF 的两边BE EF ,相交于点G H ,时,如图甲,通过观察或测量BG 与EH 的长度,你能得到什么结论?并证明你的结论. (2)当直角三角尺的两直角边分别与BE 的延长线,EF 的延长线相交于点G H ,时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
4.(09烟台市)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2. (1)求证:△BDE ≌△BCF ;
(2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为S ,求S 的取值范围.
5.如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示). (1)求DBF S △;
(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △; (3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.
A B
G C E
H F D 图甲
A B
G
C E
H
F D 图乙
C
C
6.如图,在边长为4的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点Q .
(1)试证明:无论点P 运动到AB 上何处时,都有△ADQ ≌△ABQ ; 积是正
(2)当点P 在AB 上运动到什么位置时,△ADQ 的面方形ABCD 面积的
6
1; (3)若点P 从点A 运动到点B ,再继续在BC 上运动到点C ,在整个运动过程中,当点P 运动到什么位置时,
△ADQ 恰为等腰三角形.
1.解:(1)BM=FN。
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠ABD=∠F=45°,OB=OF,
又∵∠BOM=∠FON,
∴△OBM≌△OFN,
∴BM=FN;
(2)BM=FN仍然成立。
证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF,
∴∠MBO=∠NFO=135°,
又∵∠MOB=∠NOF,
∴△OBM≌△OFN,
∴BM=FN。
2.
3.解:(1)BG=EH.
∵四边形ABCD和CDFE都是正方形,
∴DC=DF,∠DCG=∠DFH=∠FDC=90°,
∵∠CDG+∠CDH=∠CDH+∠FDH=90°,
∴∠CDG=∠FDH,
∴△CDG≌△FDH,
∴CG=FH,
∵BC=EF,
∴BG=EH.
(2)结论BG=EH仍然成立.同理可证△CDG≌△FDH,
∴CG=FH,
∵BC=EF,
∴BC+CG=EF+FH,
∴BG=EH.
4.
5.
6.。