实验四线性宽带功率放大器
实验四-OTL功率放大器

实验四OTL功率放大器
一、实验目的
1、熟悉Multisim软件的使用方法。
2、掌握理解功率放大器的工作原理。
3、掌握功率放大器的电路指标测试方法
二、虚礼实验仪器及器材
双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器、晶体三极管2N3906,2N3904,1N3064等
三、实验步骤
如下图所示输入电路图:
1.静态工作点的调整
分别调整R2和R1滑动变阻器器,使得万用表XMM3和XMM2的数据分别为5~10mA 和2.5V,然后测试各级静态工作点填入下表:
(注意,信号发生器的大小为0)
2.最大不失真输出功率理想情况下,L
CC OM
R U P 2
81=
,在实验中可通过测量R L 两端的电压有
效值,来求得实际的L
O OM
R U P 2=。
3. 效率η:
%100⨯=
E
OM
P P η,E P :直流电源供给的平均功率。
理想情况下,%5.78=η。
在实验中,可测量电源供给的平均电流dC I ,从而求得dC CC E I U P ⋅=,负载上的交流功率
已用上述方法求出,因而也就可以计算实际效率了。
4. 输入灵敏度:
输入灵敏度是指输出最大不失真功率时,输入信号V i 之值。
5.频率响应的测试 填表: Ui= 20mV
四、思考题
1、分析实验结果,计算实验内容要求的参数。
2、总结功率放大电路特点及测量方法。
(1)输出功率变大; (2)具有较高的效率; (3)非线性失真小。
测试输出功率,失真,频率范围,效率。
功率放大器实验报告

功率放大器实验报告引言功率放大器是电子电路中常用的一种电路,它可以将输入信号的功率放大到更高的水平,以驱动负载。
在该实验中,我们将通过搭建一个基于晶体管的功率放大器电路来了解功率放大器的基本原理和特性。
实验目的1.学习功率放大器的基本原理和电路结构;2.探究功率放大器的工作特性,如增益、效率等;3.掌握功率放大器电路的搭建与测试方法。
实验器材1.信号发生器2.直流电源3.变压器4.电阻、电容和电感等器件5.双踪示波器6.万用表实验过程1.按照电路图搭建功率放大器电路;2.连接信号发生器、直流电源和负载;3.调节信号发生器的频率和幅度,记录输入和输出的电压值;4.修改电路参数,如改变电源电压、负载电阻等,观察对功率放大器性能的影响。
实验结果与分析电路搭建根据实验要求,我们搭建了一个基于晶体管的功率放大器电路,如图所示:+--------------------------+Signal Generator-| || || Transistor || Amplification || Circuit || || 负载 |D.C. Power Supply-| |+--------------------------+输入信号与输出信号的测量我们使用示波器测量了输入信号和输出信号的波形,并记录下了其频率和幅度。
具体数据如下:输入信号输出信号频率:x Hz 频率:x Hz幅度:x V 幅度:x V功率放大器的增益与效率在实验中,我们通过改变输入信号的幅度,测量了输出信号的幅度,并计算了功率放大器的增益和效率。
我们定义功率放大器的增益为输出功率与输入功率的比值,即:增益(Gain)=P output P input我们定义功率放大器的效率为输出功率与输入功率之比的百分比,即:效率(Efficiency)=P outputP input×100%根据实验测量的数据计算得到的增益和效率如下:输入功率输出功率增益效率P_in: x W P_out: x W 增益: x 效率: x%参数调节与性能分析在实验过程中,我们修改了电路的一些参数,如改变了电源电压、负载电阻等。
功率放大器 实验报告

功率放大器的组装与设计实验目的:培养综合能力,动手能力,分析能力,提高和巩固模电知识,熟悉常见的元器件,和基本焊接方法。
实验仪器:函数发生器,收音机(其他能发出声音的声音源均可),音响,焊接常用的器材如电烙铁,焊锡丝,吸锡泵,镊子等。
实验原理第一部分:1.作用与组成声频放大器又称音频放大器,低频放大器或扩音机,顾名思义,它是放大电信号的装置。
由于各种信号源(声源)输入的信号很弱(几毫伏到1-2伏),不足以推定扬声器放声,因此必须将这些微弱的信号进行放大。
从高保真意义上讲,要求放大器如实地放大原信号,即原汁原味,但从广义上讲,为了使声明更动听,又常常对信号进行必要而适当的修饰与加工。
按声频放大器中各部分的功能不同,可将其分成两部分:其一为前置放大器(还可细分为信号源前置放大和主控放大器)其二称为功率放大器(也称后级放大器)按类又可分为合并式(前置后级一体式)、与分体式(前置与后级分开),分体式一般为高档机。
2.前置放大电路前置放大的作用是对调谐器、点唱机、录音机、传声器,激光唱机以及其它声源送来的信号进行各种处理与放大,以便为功率放大器准备适宜的电信号,使后者顺利工作。
确切的说,前置的作用是对输入的某些信号进行频率均衡或阻抗变换,并对各种信号进行不同量的放大,使各种信号输出电压基本相同,以利于其后主控放大器进行工作。
前置放大器中的主控放大器也称放大器或线路放大器,主要作用是将前面送来的信号进行各种处理,修饰与放大,使之满足功率放大器对输入信号电平的要求,并达到人们对音响效果的某些主观要求,比如,音量调节、响度控制、音调调节、噪声抑制、声道平衡、宽度展宽等功能都在此环节完成。
3.功率放大器其本质是将交流的电能“转中换”为音频信号能。
其构成成分为输入级、前置激励级、功率输出级、保护电路和功率指示、电源。
由于电子技术的飞速发展,现代高保真立体声放大器广泛采用晶体管集成电路,随着人们对电声指标的更高要求,在民用放大器中甲类、超甲类、电流负反馈等其他类型的超低失真放大器逐渐增多,为了改善音质,人们对场效应管也产生了极大的兴趣。
线性放大器实验报告

10%
*采用线性放大器模块的 OUT4 输出端
图四:线性放大器的积分非线性示波器采集的数据(分别为第 5、8 次的截图
4
线性放大器的原理与测试实验报告
MATLAB 拟合的曲线如下图所示,拟合曲线为 Y= -0.0072 X*X+36.1226X+ 6.4336
输 出 电 压
单 位: mv
图五:积分非线性图
答 :A= 输 出电 阻 /输 入电 阻; 如 图一 所示 : 正相 输出 端 时, 放大 倍 数
6
线性放大器的原理与测试实验报告
A=R3/R2=3.92
反向输出端是,A=[R5/(R4+R5)]×[(R2+R3)/R2]=4.69
4、当输入信号脉冲为正弦波时,当频率从 1KHz 增加到 10MHz 时,第一级放大
2、请简述极零相消技术的原理;结合该线性放大器模块原理图进行分析 。 答:在几级串联的系统中,将前级传递函数的极(零)点和后级的零(极)
点相消,从而改善输出波形的方法。 根据电路图可知:本实验模块采用了调节范围比较大的方式进行极零相
消的,通过 SW3 中各个电容与电阻 RW1 和电阻 R8 的串联、并联后和 R9 串联构成 的电路实现极零相消;极-零相消电路代替微分电路与后面的积分电路构成了滤 波成型电路,且零点可调。 3、给出第一级放大电路正相输入端和反相输入端放大倍数的计算公式。
输出电压(Vpp )
1.92v
2.32v
2.73v
放大倍数
4.00
4.14
4.27
输入电压(Vpp)
反相输入端
400mv
560mv
560mv
输出电压(Vpp )
1.52v
70-300MHz20W宽带线性功放研究与实现

70-300MHz20W宽带线性功放探究与实现专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!70-300MHz20W宽带线性功放探究与实现70-300MHz 20W 宽带线性功放探究与实现引言宽带线性功放(Broadband Linear Power Amplifier)在无线通信系统中具有重要的应用价值。
实验四线性宽带功率放大器

47实验四 线性宽带功率放大器一、实验目的了解线性宽带功率放大器工作状态的特点二、实验内容1. 了解线性宽带功率放大器工作状态的特点2. 掌握线性功率放大器的幅频特性三、实验原理及实验电路说明1. 传输线变压器工作原理现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。
为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。
但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。
当然,所付出的代价是输出功率和功率增益都降低了。
因此,一般来说,宽带功率放大器适用于中、小功率级。
对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。
最常见的宽带高频功率放大器是利用宽带变压器做耦合电路的放大器。
宽带变压器有两种形式:一种是利用普通变压器的原理,只是采用高频磁芯,可工作到短波波段;另一种是利用传输线原理和变压器原理二者结合的所谓传输线变压器,这是最常用的一种宽带变压器。
传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。
图9-1为4:1传输线变压器。
图9-2为传输线变压器的等效电路图。
的扩展方法是相互制约的。
为了扩展下限频率,就需要增大初级线圈电感量,使其在低频段也能取得较大的输入阻抗,如采用高磁导率的高频磁芯和增加初级线圈的匝数,但这样做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈的匝数,但这样做又会使下限频率提高。
把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决带宽问题。
传输线变压器有两种工作方式:一种是按照传输线方式来工作,即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好相互抵消。
因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。
功率放大电路 实验报告

功率放大电路实验报告功率放大电路实验报告引言:功率放大电路是电子工程中常见的一种电路,它的作用是将输入信号的功率放大到更高的水平,以便驱动负载。
本实验旨在通过搭建一个简单的功率放大电路,探索其工作原理和性能特点。
实验装置:1. 功率放大器芯片:我们选择了一款常用的功率放大器芯片,具有高增益和低失真的特点。
2. 电源:为了保证电路的正常工作,我们使用了一个稳定的直流电源。
3. 输入信号发生器:为了提供输入信号,我们使用了一个可调频率和幅度的信号发生器。
4. 负载:为了测试功率放大电路的输出能力,我们选择了一个合适的负载。
实验步骤:1. 搭建电路:根据电路原理图,我们将功率放大器芯片、电源、输入信号发生器和负载依次连接起来。
2. 设置参数:根据实验要求,我们将电源电压、输入信号频率和幅度进行调整,以便观察电路的工作情况。
3. 测试输出:通过连接示波器,我们可以实时监测功率放大电路的输出信号,并记录相关数据。
4. 分析结果:根据实验数据,我们可以计算功率放大电路的增益、频率响应和失真程度等指标,并进行分析和比较。
实验结果:根据实验数据和分析,我们得出以下结论:1. 增益特性:功率放大电路在一定范围内具有较高的增益,输入信号经过放大后,输出信号的幅度明显增加。
2. 频率响应:功率放大电路对不同频率的输入信号具有不同的放大效果,一般在特定频率范围内工作最佳。
3. 失真特性:由于电路本身的非线性特点,功率放大电路在放大过程中会引入一定的失真,主要表现为谐波失真和交叉失真。
4. 输出能力:功率放大电路可以驱动较大的负载,输出功率与负载阻抗之间存在一定的关系。
讨论与改进:在实验过程中,我们还发现了一些问题和改进的空间:1. 温度效应:功率放大电路在工作过程中会产生一定的热量,温度的变化可能会影响电路的性能稳定性,需要进一步研究和改进。
2. 失真抑制:为了减少失真的影响,可以采用一些补偿电路或反馈控制技术,提高功率放大电路的线性度和稳定性。
功率放大电路 实验报告

功率放大电路实验报告功率放大电路实验报告一、引言功率放大电路是电子学中的重要组成部分,它能够将输入信号的功率放大到较高的水平,以驱动输出负载。
在本次实验中,我们将探究功率放大电路的基本原理和性能特点。
二、实验目的1. 理解功率放大电路的工作原理;2. 掌握构建功率放大电路的基本方法;3. 分析功率放大电路的性能参数。
三、实验器材和材料1. 功率放大器芯片;2. 电阻、电容等元器件;3. 示波器、信号发生器等实验设备。
四、实验步骤1. 搭建功率放大电路的基本电路图;2. 调节信号发生器的频率和幅度,观察输出信号的变化;3. 测量输入和输出信号的电压、电流等参数;4. 分析实验数据,计算功率放大电路的增益和效率。
五、实验结果与分析通过实验测量和数据分析,我们得到了以下结果:1. 输入信号幅度为1V时,输出信号幅度为10V,说明功率放大电路具有10倍的增益;2. 在一定输入功率范围内,输出功率与输入功率成正比,说明功率放大电路具有较高的效率;3. 随着输入频率的增加,输出信号的失真程度逐渐增加,说明功率放大电路在高频率下存在一定的非线性失真。
六、实验总结通过本次实验,我们对功率放大电路的工作原理和性能特点有了更深入的理解。
功率放大电路在电子设备中具有重要的应用,例如音频放大器、功率放大器等。
合理设计和优化功率放大电路的参数,能够提高信号的质量和系统的效率。
七、实验改进1. 在实验中,我们可以尝试使用不同类型的功率放大器芯片,比较它们的性能差异;2. 可以进一步研究功率放大电路的非线性失真问题,探索有效的抑制方法;3. 可以将功率放大电路与其他电子元件或电路进行组合,实现更复杂的功能。
八、参考文献[1] 电子技术基础教程. 北京:高等教育出版社,2010.[2] 张明. 功率放大电路设计与应用. 北京:电子工业出版社,2015.以上是本次功率放大电路实验的报告,通过实验我们对功率放大电路的原理和性能有了更深入的了解,并提出了一些改进和进一步研究的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
47
实验四 线性宽带功率放大器
一、实验目的
了解线性宽带功率放大器工作状态的特点
二、实验内容
1. 了解线性宽带功率放大器工作状态的特点
2. 掌握线性功率放大器的幅频特性
三、实验原理及实验电路说明
1. 传输线变压器工作原理
现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。
为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。
但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。
当然,所付出的代价是输出功率和功率增益都降低了。
因此,一般来说,宽带功率放大器适用于中、小功率级。
对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。
最常见的宽带高频功率放大器是利用宽带变压器做耦合电路的放大器。
宽带变压器有两种形式:一种是利用普通变压器的原理,只是采用高频磁芯,可工作到短波波段;另一种是利用传输线原理和变压器原理二者结合的所谓传输线变压器,这是最常用的一种宽带变压器。
传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。
图9-1为4:1传输线变压器。
图9-2
为传输线变压器的等效电路图。
的扩展方法是相互制约的。
为
了扩展下限频率,就需要增大
初级线圈电感量,使其在低频
段也能取得较大的输入阻抗,
如采用高磁导率的高频磁芯和
增加初级线圈的匝数,但这样
做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频
率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈
的匝数,但这样做又会使下限频率提高。
把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决
带宽问题。
传输线变压器有两种工作方式:一种是按照传输线方式来工作,
即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好
相互抵消。
因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。
这种工作方式称为传输线模式。
另一种是按照变压器方式工作,此时线圈
中有激磁电流,并在磁芯中产生公共磁场,有铁芯功率损耗。
这种方式称
为变压器模式。
传输线变压器通常同时存在着这两种模式,或者说,传输
变压器正是利用这两种模式来适应不同的功用的。
当工作在低频段时,由于信号波长远大于传输线长度,分布参数很小,
可以忽略,故变压器方式起主要作用。
由于磁芯的磁导率很高,所以虽然
传输线段短也能获得足够大
的初级电感量,保证了传输
线变压器的低频特性较好。
图9-3传输线变压器高频段等效电路图
48
当工作在高频段时,传输线方式起主要作用,由于两根导线紧靠在一起,所以导线任意长度处的线间电容在整个线长上是均匀分布的,如图9-3所示。
也由于两根等长的导线同时绕在一个高μ磁芯上,所以导线上每一线段△l的电感也是均匀分布在整个线长上的,这是一种分布参数电路,可以利用分布参数电路理论分析,这里简单说明其工作原理。
如果考虑到线间的分布电容和导线电感,将传输线看作是由许多电感、电容组成的耦合链。
当信号源加于电路的输入端时,信源将向电容C充电,使C储能,C又通过电感放电,使电感储能,即电能变为磁能。
然后,电感又与后面的电容进行能量交换,即磁能转换为电能。
再往后电容与后面的电感进行能量交换,如此往复不已。
输入信号就以电磁能交换的形式,自始端传输到终端,最后被负载所吸收。
由于理想的电感和电容均不损耗高频能量,因此,如果忽略导线的欧姆损耗,和导线间的介质损耗,则输出端能量将等于输入端的能量。
即通过传输线变压器,负载可以取得信源供给的全部能量。
因此,传输线变压器有很宽的带宽。
2.实验电路组成
图9-4 线性宽带功率放大
本实验单元模块电路如图9-4所示。
该实验电路由两级宽带、高频功率放大电路组成,两级功放都工作在甲类状态,其中Q1(3DG12)、L1组成甲类功率放大器, 工作在线性放大状态,R A1、R6、R7、R8组成静态偏置电阻,调节R A1可改变放大器的增益。
R2为本级交流负反馈电阻,展宽频带,改善非线性失真,T1,T2两个传输线变压器级联作为第一级功放的输出匹配网络,总阻抗比为16:1,使第二级功放的低输入阻抗与第一级功放的高输入阻抗实现匹配,后级电路分析同前级。
四、实验步骤
1.了解线性宽带功率放大器工作状态的特点
对照电路图9-4,了解实验板上各元件的位置与作用。
将线性宽带功率放大器的电源开关向下拨,并观察工作指示灯是否点亮,红灯为+12V 电源指示灯
2.调整静态工作点
不加输入信号,用万用表的电压档(20V)档测量三极管Q1的射极电压(即射极电阻R8两端电压),调整基极偏置电阻R A1使V e=0.53V;测量三极管Q2的射极电压(即射极电阻R11两端电压),调整基极偏置电阻R A2使V e=1.50V,根据电路计算静态工作点。
49
3.测量电压增益A vo
在J1输入频率为11.5MHz,V p-p=50mV的高频信号,用示波器测输入信号的峰-峰值Vi(THI处观察),测输出信号的峰-峰值为Vo(TH2处观察),则小信号放大的电压放大倍数为A vo=V o/V i。
4.用扫频仪观察线性宽带功率放大器通频带并记录下来
频标置10M/1M档位,调节扫频宽度使相邻两个频标在横轴上占有适当的格数,输入信号适当衰减,将扫频仪射频输出端送入电路输入端J1处,电路输出端J2接至扫频仪检波器输入端,调节输出衰减和Y轴增益,使谐振特性曲线在纵轴占有一定高度,读出其曲线下降3dB处对称点的带宽。
BW=B0.7=f H-f L
并画出幅频特性曲线(注此电路放大倍数较大,扫频仪输出、输入信号都要适当衰减)。
5.用点频法测量放大器的频率特性
将峰-峰值100mV左右的的高频信号从J1处送入,以0.1 MHz步进从1MHz到1.6MHz,再以1 MHz步进从2 MHz到50 MHz,记录输出电压Vo。
自行设计表格,将数据填入表格中。
五、实验报告要求
1.写明实验目的。
2.画出实验电路的交流等效电路。
3.计算静态工作点,与实验实测结果比较。
4.整理实验数据,对照电路图分析实验原理。
5.在坐标纸上画出线性功率放大器的幅频特性。
六、实验仪器
1.高频实验箱1台
2.双踪示波器1台
3.频率特性测试仪(可选)1台
4.万用表1块
50。