全国高中数学联赛模拟试题(九) 新人教A版

合集下载

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。

为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。

请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。

解:由题意得,房子在四周建墙,所以共4个墙面。

墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。

因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。

用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。

因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。

当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。

当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。

所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。

因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。

2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。

求$\sum_{k=1}^{2019}s_k$的个位数。

2023-2024学年广西桂林市高中数学人教A版选修三随机变量及其分布强化训练-9-含解析

2023-2024学年广西桂林市高中数学人教A版选修三随机变量及其分布强化训练-9-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年广西桂林市高中数学人教A版选修三随机变量及其分布强化训练(9)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)121. 从集合M={1,2,3,4}中任取三个元素组成三位数.记组成三位数的三个数字中偶数个数为ζ,则ζ的数学期望为( )A.B. C.D. 2. 我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,功不可没,“三药”分别为金花清感颗粒、连花清瘟胶囊、血必清注射液;“三方”分别为清肺排毒汤、化败毒方、 宣肺败毒方.若某医生从“三药三方”中随机选出两种,事件表示选出的两种中至少有一药,事件表示选出的两种中有一方,则( )A. B. C. D.353. 设随机变量服从正态分布 , 若 , 则的值为( )A. B. C. D. 9,49,24,12,14. 样本数据的平均数, 方差 , 则样本数据.的平均数,方差分别为( )A. B. C. D. 0.97590.81860.730.47725. 已知某地居民在2020年“双十一”期间的网上购物消费额ξ(单位:千元)服从正态分布 ,则该地某居民在2020年“双十一”期间的网上购物消费额在 内的概率为( )附:随机变量ξ服从正态分布,,0.9545,.A. B. C. D. 6. 已知随机变量 的分布列为( )则 的值为( )A. B. C. D.7. (1)将个小球随机地投入编号为1,2…,的个盒子中(每个盒子容纳的小球个数没有限制),记1号盒子中小球的个数为;(2)将个小球随机地投入编号为1,2…,的个盒子中(每个盒子容纳的小球个数没有限制),记号盒子中小球的个数为, 则( )A. B. C.D.②④①②③③④②③④8. 开学后,某学校食堂为了减少师生就餐排队时间,特推出即点即取的米饭套餐和面食套餐两种,已知小明同学每天中午都会在食堂提供的米饭套餐和面食套餐中选择一种,米饭套餐的价格是每份15元,面食套餐的价格是每份10元,如果小明当天选择了某种套餐,她第二天会有 的可能性换另一种类型的套餐,假如第1天小明选择了米饭套餐,第n 天选择米饭套餐的概率,给出以下论述:①小明同学第二天一定选择面食套餐;②;③;④前n 天小明同学午餐花费的总费用数学期望为 .其中正确的是( )A. B. C. D. 9. 有 名学生,其中有 名男生.从中选出 名代表,选出的代表中男生人数为,则其数学期望为( )A. B. C. D.①④①③②③②④10. 某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是 ;③他至少击中目标1次的概率是 ;④他恰好有连续2次击中目标的概率为 ;其中正确结论的序号是( )A. B. C. D. 11. 已知事件A ,B ,若 , , 则( )A. B. C. D.0.20.30.50.812. 已知随机变量服从正态分布, , 则( )A. B. C. D. 13. 设随机变量X 满足正态分布X ~N (﹣1,σ2),若P (﹣3≤x≤﹣1)=0.4,则P (﹣3≤x≤1)= .14. 已知随机变量X ~N (2,σ2),若P (X <a )=0.3,则P (a≤X <4﹣a )= .15. 现有A、B、C、D、E、F6个不同的货柜,准备用甲、乙、丙三辆卡车一次运送出去,每台卡车至少运一个货柜,则不同的分配方案的种数为 .设卡车甲运送货柜的数量为随机变量X,则期望 .16. 设甲袋中有3个白球和4个红球,乙袋中有2个白球和3个红球,现从甲袋中任取2个球,记取出的红球个数为X,则=,将取出的球放入乙袋,再从乙袋中任取2个球,则从乙袋中取出的是2个红球的概率为.17. 近日,国家卫健委公布了2020年9月到12月开展的全国性近视专项调查结果:2020年,我国儿童青少年总体近视率为.为掌握某校学生近视情况,从该校高三(1)班随机抽取7名学生,其中4人近视、3人不近视.现从这7人中随机抽取球3人做进一步医学检查.(1) 用表示抽取的3人中近视的学生人数,求随机变量的分布列与数学期望;(2) 设为事件“抽取的3人,既有近视的学生,又有不近视的学生”,求事件发生的概率.18. 某市教育部门规定,高中学生三年在校期间必须参加不少于80小时的社区服务.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示.(1) 求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2) 从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.19. 2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在之间,根据统计结果,做出频率分布直方图如下:(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平均数,近似为样本方差.(i)利用该正态分布,求;(ii)央视媒体平台从年龄在和的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则,20. 最近几年,新型冠状病毒肺炎席卷全球,在病毒爆发之初,我国迅速建立防疫机制,通过将与新冠肺炎确诊患者接触过的人员分为“密接”和“次密接”两类人群,并对两类人群分别加以不同程度的隔离措施,有效地预防了新冠肺炎病毒的传播.已知某确诊阳性患者确诊当天的“密接”人员有2人,“次密接”人员有3人,且每个“密接”人员被感染的概率为,每个“次密接"人员被感染的概率为(1) 求在这五人中,恰好有两人感染新冠肺炎的概率;(2) 设这五人中,感染新冠肺炎的人数为随机变量,求的数学期望.21. 北方某市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核,记考核成绩不小于80分的为优秀,为了了解本次培训活动的效果,在参加培训的学生中随机抽取了60名学生的考核成绩,如下表成绩[50,60)[60,70)[70,80)[80,90)[90,100]人数55152510(1) 从参加接训的学生中随机选取1人,请根据表中数据,估计这名学生考核优秀的概率,(2) 用分层抽样的方法,在考核成绩为[70,90)的学生中任取8人,再从这8人中随机选取4人,记取到考核成绩在[80,90)的学生为X,求X的分布列和数学期望,答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.20.(1)(2)21.(1)(2)。

2020学年新教材高中数学第九章统计章末综合检测(九)新人教A版必修第二册(最新整理)

2020学年新教材高中数学第九章统计章末综合检测(九)新人教A版必修第二册(最新整理)

2019-2020学年新教材高中数学第九章统计章末综合检测(九)新人教A 版必修第二册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年新教材高中数学第九章统计章末综合检测(九)新人教A版必修第二册)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年新教材高中数学第九章统计章末综合检测(九)新人教A版必修第二册的全部内容。

章末综合检测(九)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.某公司生产A,B,C三种不同型号的轿车,其产量之比为2∶3∶4,为检验该公司的产品质量,用分层随机抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=()A.96 B.72C.48 D.36解析:选B。

由题意得错误!n-错误!n=8,所以n=72。

故选B.2.从某一总体中抽取一个个体数为200的样本,得到分组与频数如下:[10,15),6;[15,20),8;[20,25),13;[25,30),35;[30,35),46;[35,40),34;[40,45),28;[45,50),15;[50,55),10;[55,60],5。

则样本在[35,60]上的频率是( )A.0。

69 B.0.46C.1 D.不存在解析:选B.由题可知,样本在[35,60]上的频率应为(34+28+15+10+5)÷200=0。

46.3.2019年高考某题的得分情况如下:得分(分)01234百分率(%)37.08。

2022-2023学年全国高中高考专题数学人教A版高考模拟(含解析)

2022-2023学年全国高中高考专题数学人教A版高考模拟(含解析)

2022-2023学年全国高考专题数学高考模拟考试总分:136 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 如图.集合 ,则图中阴影部分表示A. B. C. D.2. A.B.C.D.3. 已知函数是偶函数,当时,,则在上,下列函数中与的单调性相同的是( )A.=A ={2,3,4.5,6,8}B ={1,3.4,5,7}C ={2.4,5.7,8.9}{2.4.5.8}{2,8}{2.6,8}{1.3,6}=(1+3i 1−i)−2−4i−2+4i−1+2i−1−2if(x)x >0f(x)=x 13(−2,0)f(x)y −+1x 2|x +1|B.=C.=D.4. 已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为( )A.B.C.D.5. 在矩形中,=,=,点为的中点,点在线段上.若,且点在直线上,则 A.B.C.D.6. 若,且,则 A.B.C.D.7. 在三棱锥中,侧棱,,两两垂直,,,的面积分别为,,,则三棱锥外接球的表面积为( )A.B.y |x +1|y e |x|y ={ 2x −1,x ≥0+1,x <0x 36π+12–√23–√2–√ABCD AB 2BC 1E BC F DC +=AE →AF →AP →P AC ⋅=(EF →AP →)32−94−52−3α∈(0,π)sin α+2cos α=23–√tan =(α2)3–√23–√423–√343–√3A −BCD AB AC AD △ABC △ACD △ADB 112A −BCD 6π9πC.D.8. 五经是指:《诗经》《尚书》《礼记》《周易》《春秋》,记载了我国古代早期思想文化发展史上政治、军事、外交、文化等各个方面的史实资料,在中国传统文化的诸多文学作品中,占据相当重要的位置.学校古典研读社的三名社团学生,到学校图书馆借了一套五经书籍共本进行研读,若每人至少分一本,则本书的分配方案种数是( )A.B.C.D.二、 多选题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )9. 如图是函数的部分图像,则函数解析式可为( )A.B.C.D.10. 如图所示,在正方体中,是棱的中点,是侧面(包含边界)内的动点,且平面,下列说法正确的是8π12π5536024015090y =sin(ωx +φ)y =sin(x +)π3y =sin(−2x)π3y =cos(2x +)π6y =cos(−2x)5π6AC 1E CC 1F BCC 1B 1F//A 1AE D 1( )F AA.与是异面直线B.不可能与平行C.不可能与平面垂直D.与平面所成角的正切值为卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 已知展开式中二项式系数的和为,则该展开式中常数项为________.12. 过原点且倾斜角为的直线被圆所截得的弦长为________.13. 某电商年的产值为 万元,预计产值每年以 递增,则该厂到年的产值(单位:万元)是_________.14. 函数的极大值是________.四、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 ) 15. 已如,,且.求的值;若,求的值. 16. 在等差数列中,=,再从条件①=、条件②设数列的前项和为,=这两个条件中选择一个作为已知,求:(1)求的通项公式;(2)求数列的前项和. 17. 如图,在直角梯形中,,,===,点是的中点,现沿将平面折起,设=.(1)当为直角时,求直线与平面所成角的大小;F A 1BE F A 1E D 1DF A E D 1E D 1AC 2(2x −(n ∈)1x−√)n N ∗51260∘+−4y =0x 2y 22000a p%2012f(x)=1+x e xαβ∈[,π]π2cos α=−35(1)tan(−α)π4(2)sin(α−β)=35sin β{}a n a 57+a 2a 612{}a n n S n S 312{}a n n T n PBCD PB //DC DC ⊥BC PB BC 2CD 2A PB AD PAD ∠PAB θθPC PAD –√(2)当为多少时,三棱锥的体积为;(3)在(2)的条件下,求此时二面角的大小.18. 某设备在正常运行时,产品的质量服从正态分布,其参数为,,为了检验设备动行是否正常,质量检查员需要随机地抽取产品,测量其质量.当检验员随机地抽取一个产品,测得其质量为时,他立即要求停止生产,检查设备.他的决定是否有道理呢?19.已知动点到定点 和 的距离之和为(1)求动点轨迹的方程;(2)若直线 交椭圆于两个不同的点,,是坐标原点,求 的面积。

全国高中数学联赛模拟试题第九卷附答案

全国高中数学联赛模拟试题第九卷附答案

全国高中数学联赛模拟试题(九)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x 2-8nx +7s =0没有整数解,则所有这样的数s 的集合是 (A )奇数集 (B )所有形如6k +1的数集 (C )偶数集 (D )所有形如4k +3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是(A )16966 (B )16975 (C )16984 (D )17009 3、非常数数列{a i }满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i =0,1,2,…,n .对于给定的自然数n ,a 1=a n +1=1,则∑-=10n i i a 等于(A )2 (B )-1(C )1 (D )04、已知α、β是方程ax 2+bx +c =0(a 、b 、c 为实数)的两根,且α是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2(C )0(D )3i5、已知a +b +c =abc ,()()()()()()abb a acc a bcc b A 222222111111--+--+--=,则A的值是 (A )3(B )-3(C )4 (D )-46、对x i ∈{1,2,…,n },i =1,2,…,n ,有()211+=∑=n n x ni i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8(D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A 1A 2…A n 内一点,点P 到直线A 1A 2的距离为h 1,到直线A 2A 3的距离为h 2,…,到直线A n -1A n 的距离为h n -1,到直线A n A 1的距离为h n .若存在点P 使nn h a h a h a +++ 2211(a i =A i A i +1,i =1,2,…,n -1,a n =A n A 1)取得最小值,则此凸多边形一定符合条件 .2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是 .3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、θ∈R ,a ≠0.那么,对于任意的a 、θ,F (a ,θ)的最大值和最小值分别是 .4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是 .5、已知集合{1,2,3,…,3n -1,3n },可以分为n 个互不相交的三元组{x ,y ,z },其中x +y =3z ,则满足上述要求的两个最小的正整数n 是 . 6、任给一个自然数k ,一定存在整数n ,使得x n +x +1被x k +x +1整除,则这样的有序实数对(n ,k )是(对于给定的k ) .三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{a n }定义如下:a 1=3,a n =13-n a (n ≥2).试求a n (n ≥2)的末位数.五、(20分)已知a 、b 、c ∈R +,且a +b +c =1.证明:2713≤a 2+b 2+c 2+4abc <1.第二试一、(50分)已知△ABC中,内心为I,外接圆为⊙O,点B关于⊙O的对径点为K,在AB的延长线上取点N,CB的延长线上取M,使得MC=NA=s,s为△ABC的半周长.证明:IK⊥MN.二、(50分)M是平面上所有点(x,y)的集合,其中x、y均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c满足b<0,ab=9c.试判别此多项式是否有三个不同的实根,说明理由.参考答案第一试二、填空题:1、该凸多边形存在内切圆;2、5;3、32+,32-;4、9;5、5,8;6、(k,k)或(3m+2,2)(m∈N+).三、332.四、7.五、证略.第二试一、证略;二、证略.三、有.。

2022年全国高中数学联赛加试A卷参考答案

2022年全国高中数学联赛加试A卷参考答案

2022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛 加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,在凸四边形ABCD 中,90ABC ADC ,对角线BD 上一点P 满足2APB CPD ,线段AP 上两点,X Y 满足2AXB ADB ,2AYD ABD .证明:2BD XY .Y XDBCPA证明:注意90ABC ADC ,取AC 的中点O ,则O 为凸四边形ABCD 的外心.显然,P B 在AC 的同侧(否则2APB CPD CPD ,不合题意).根据条件,可知2,2AXB ADB AOB AYD ABD AOD ,分别得到,,,A O X B 四点共圆,,,,A Y O D 四点共圆. ………………10分因此OXA OBA CAB CDB ,OYP ODA CAD CBD ,所以OXY CDB ∽. ………………20分M LK Y X DBCP AO设OM AP 于点M ,CK AP 于点K ,CL BD 于点L . 由O 为AC 的中点,得2CK OM .由于2KPL APB CPD ,即有PC 平分KPL ,故CK CL .………………30分考虑到,OM CL 是相似三角形,OXY CDB 的对应边,XY DB 上的高,从而12XY OM OM BD CL CK , 即有2BD XY . ………………40分二.(本题满分40分)设整数(1)n n 恰有k 个互不相同的素因子,记n 的所有正约数之和为()n .证明:()(2)!n n k .证法1:设1i ki i n p 为n 的标准分解.记1(1,2,,)i i i im p p i k ,则1()ki i n m .我们证明2(1,2,,)i n k km i k .①事实上,111i i i ii i m p p p 11122i i i p 12212i i i i i p p (1,2,,)i k . ………………10分所以11,222122i ji i kk j j j inn nm p kp, 最后一步是因为11121C (2)k k k k 以及021 .故①成立.………………20分由①可知,对每个1,2,,i k ,在1,2,,2n k 中至少有k 个i m 的倍数.从而1,2,,2n k 中可找到两两不同的正整数12,,,k t t t ,它们分别是12,,,k m m m 的倍数.因此1()ki i n m 整除(2)!n k . ………………40分证法2:设1i ki i n p 为n 的标准分解.记1(1,2,,)ii i im p p i k ,则1()ki i n m .令1(1,2,,)jj i i S m j k ,00S .我们证明以下两个结论:(1)()!k n S ;(2)2k S n k .结论(1)的证明:对1,2,,i k ,连续i m 个整数111,2,,i i i S S S 中必存在i m 的倍数,故11(1)(2)Z i i iiS S S m .从而111(1)(2)Z ki i ii i S S S m ,这等价于()!k n S .………………10分结论(2)的证明:对1,2,,i k ,有111ii i ii i m p p p 11122i i i p 12212i ii i i p p. ②………………20分记(1,2,,)i i i p i k ,则2i .反复利用“若,2a b ≥,则ab a b ≥+”,可得11kki i i i n ,结合②得111(21)22kkkk i i i i i i S m k n k .由结论(1)、(2),原题得证. ………………40分三.(本题满分50分)设12100,,,a a a 是非负整数,同时满足以下条件: (1)存在正整数100k ,使得 12k a a a ,而当i k 时0i a ; (2)123100100a a a a ; (3)123100*********a a a a . 求22212310023100a a a a 的最小可能值.解法1:当121819202122231000,19,40,41,0a a a a a a a a a ===========,21k =时,符合题设三个条件,此时10023221192040214140940ii i a==+×+×=∑. ………………10分下面证明这是最小可能值.首先注意21k ≥.否则,若20k ≤,则100111202000kki i i i i i ia ia a ===≤≤∑∑∑,这与条件(3)矛盾. 根据条件(2)、(3),有100100100100221111(20)40400iiiii i i i i a i a ia a ====−+−∑∑∑∑10021(20)40880ii i a ==−+∑. 当2040a ≤时,100100100222011,1,2020(20)(20)10060i iii i i i i i a i a aa ==≠≠−=−≥=−≥∑∑∑,故1002140940ii i a=≥∑. ………………30分当2041a ≥时,由21k ≥及条件(1)可知2141a ≥,故10010010010021111(19)(20)39380iiiii i i i i a i i a ia a ====−−+−∑∑∑∑1001(19)(20)40858i i i i a ==−−+∑21(2119)(2120)4085840940a ≥−−+≥.综上,所求最小值为40940. ………………50分 解法2:对于满足题目条件的非负整数12100,,,a a a ,可对应地取100个正整数12100,,,{1,2,,100}x x x ∈ ,其中恰有1a 个1,2a 个2,……,100a 个100(条件(2)保证恰好是100个数).条件(1)、(3)分别转化为以下条件(A )、(B ):(A ) 存在正整数100k ≤,12100,,,x x x 中不含大于k 的数,且1的个数,2的个数,……,k 的个数依次(非严格地)递增;(B ) 100100112022j i j i x ia ===∑∑,即12100,,,x x x 的平均值为20.22µ=.注意到1001002211i j i j i a x ==∑∑,故题目转化为:100个数12100,,,{1,2,,100}x x x ∈ 满足条件(A )和(B ),求10021j j x =∑的最小值.当12100,,,x x x 取19个19,40个20,41个21时,1002140940j j x ==∑.………………10分下面证明10021j j x =∑的值至少为40940.由于100100100100222221111()1002100()jjj j j j j j x xx x µµµµµ====−−+=+−∑∑∑∑,故转化为考虑10021()j j x µ=−∑的最小值.由20.22µ=知存在21j x ≥,也存在20j x ≤.设12100,,,x x x 中有a 个21j x ≥,b 个20j x =及c 个19j x ≤.由条件(A )可知a b ≥.我们放宽条件(A )至条件(A ′):a b ≥.在条件(A ′)、(B )下,证明最小值仍是在19个19,40个20,41个21时取到. ………………20分由于满足(A ′)、(B )的12100,,,x x x 的取法只有有限种,选取平方和最小的一组12100,,,x x x .若19c ≥,注意到100a b c ++=及a b ≥,有10022221()0.780.22 1.22jj xa b c µ=−≥++∑ 2221001000.780.22 1.2222c c c −− ≥⋅+⋅+2220.78410.2240 1.2219≥×+×+×.………………30分若18c ≤,则82a b +≥.此时有0c >,因为若0c =,则j x 的平均值不小于20.5,与条件(B )不符.亦有0b >.否则,假如0b =,则由82a ≥及0c >知,可取一个20i x <和一个20j x >,替换为1i x +和1j x −,平均值不变,但2222(1)(1)i j i j x x x x ++−<+,平方和变小,a 至多减少1,b 至多增加2,条件(A ′)、(B )仍满足,与12100,,,x x x 使得平方和最小矛盾.又假如存在一个18i x ≤,则由0b >知可取一个20j x =,将,i j x x 替换为1i x +和1j x −,类似可知平均值不变,平方和减小,且b 减少1,条件(A ′)、(B )仍满足,与12100,,,x x x 使得平方和最小矛盾.所以c 个19j x ≤都等于19.但此时1001()0.780.22 1.22jj xa b c µ=−≥−−∑1001000.780.22 1.2222c c c −−≥⋅−⋅− 0.78410.2241 1.22180≥×−×−×>,与条件(B )矛盾.所以当且仅当12100,,,x x x 取19个19,40个20,41个21时,10021()j j x µ=−∑取得最小值,相应地,1001002211i j i j i a x ==∑∑取到最小值40940. ………………50分四.(本题满分50分)求具有下述性质的最小正整数t :将100100 的方格纸的每个小方格染为某一种颜色,若每一种颜色的小方格数目均不超过104,则存在一个1t 或1t 的矩形,其中t 个小方格含有至少三种不同颜色.解:答案是12.将方格纸划分成100个1010×的正方形,每个正方形中100个小方格染同一种颜色,不同的正方形染不同的颜色,这样的染色方法满足题目条件,且易知任意111×或111×的矩形中至多含有两种颜色的小方格.因此12t ≥.………………10分下面证明12t =时具有题述性质.我们需要下面的引理.引理:将1100×的方格表X 的每个小方格染某一种颜色,如果以下两个条件之一成立,那么存在一个112×的矩形,其中含有至少三种颜色.(1)X 中至少有11种颜色.(2)X 中恰有10种颜色,且每种颜色恰染了10个小方格. 引理的证明:用反证法,假设结论不成立.取每种颜色小方格的最右边方格,设分别在(从左往右)第12kx x x <<< 格,分别为12,,,k c c c 色,则对2i k ≤<,有111i i x x −−≥.这是因为若110i i x x −−≤,则从第1i x −格至第1i x +格(不超过12格)中至少含有三种不同颜色(第1i x −格为1i c −色,第i x 格为i c 色,第1i x +格一定不同于1,i i c c −色),与假设不符.若条件(1)成立,则11k ≥,于是10111911100,100x x x ≥+×≥>,矛盾.因此在条件(1)下结论成立.若条件(2)成立,考虑第11x +格至第111x +格,因每种颜色的方格至多10个,故这11个方格至少含有两种颜色,且均不同于1c 色,则从第1x 至第111x +格中至少含有三种颜色,与条件(2)不符.因此在条件(2)下结论也成立.引理得证. ………………20分 回到原问题,设12,,,k c c c 为出现的所有颜色.对1i k ≤≤,记i s 为含有i c 色小方格的个数,i u 为含有i c 色小方格的行的个数,i v 为含有i c 色小方格的列的个数.由条件知104i s ≤.又显然i i i u v s ≥,等号成立当且仅当含有i c 色小方格的所有行与列的交叉位置上都是i c 色小方格.下面证明:15i i i u v s +≥,等号成立当且仅当10,100i i iu v s ===. 若21i i u v +≥,则由104i s ≤知15i i i u v s +>;若20i i u v +≤,则2()2055i i i i ii i u v u v s u v ++≥≥≥,等号成立当且仅当10,100i i iu v s ===. ………………30分 于是111()20005k ki i i i i u v s =+≥=∑∑.若1()2000ki i i u v =+>∑,由抽屉原理知,存在一行或者一列至少含有11种颜色的小方格.若1()2000ki i i u v =+=∑,则由等号成立的条件,可知每种颜色恰染100格,且是10行与10列交叉位置,因此每一行每一列中恰有10种颜色的方格,每种颜色的方格恰有10个.由引理可知这两种情况都导致存在112×或121×的矩形含有至少三种颜色的小方格.综上所述,所求最小的t 为12. ………………50分。

2019年全国高中数学联赛A卷加试试题与解答

2019年全国高中数学联赛A卷加试试题与解答

2019 年全国高中数学联合竞赛加试试题(A 卷)一、(本题满分40 分)如图,在锐角D ABC 中,M 是BC 边的中点.点P 在D ABC 内,使得AP 平分ÐBAC .直线MP 与ABP ,D D ACP 的外接圆分别相交于不同于点P 的两点D , E .证明:若DE = MP ,则B = 2C BP .二、(本题满分40分)设整数122019,,,a a a 满足122019199a a a =£££=.记22212201913243520172019()()f a a a a a a a a a a a =+++-++++.0f f =成立的数组122019(,,,)a a a 的个数. 求 f 的最小值 f 0 .并确定使三、(本题满分50分)设m 为整数,2m ||³.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s (2)r s >³使得1r s a a a ==,则r s m ||-³.四、(本题满分50分)设V 是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若E 至少有n 个元素,则E 一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.2019年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)如图,在锐角ABC D 中,M 是BC 边的中点.点P 在ABC D 内,使得AP 平分BAC .直线MP 与,ABP ACP D D 的外接圆分别相交于不同于点P 的两点,D E .证明:若DE MP =,则2BC BP =.证明:延长PM 到点F ,使得MF ME =.连接,,BF BD CE .由条件可知BDP BAP CAP CEP CEM = = = = . ………………10分 因为BM CM =且EM FM =,所以BF CE =且//BF CE .于是F CEM BDP = = ,进而BD BF =. ………………20分 又DE MP =,故DP EM FM ==.于是在等腰BDF D 中,由对称性得BP BM =.从而22BC BM BP ==.………………40分二、(本题满分40分)设整数122019,,,a a a 满足122019199a a a =£££=.记22212201913243520172019()()f a a a a a a a a a a a =+++-++++. 求f 的最小值0f .并确定使0f f =成立的数组122019(,,,)a a a 的个数. 解:由条件知2017222221220182019212()i i i f a a a a a a +==++++-å.①由于12,a a 及2(1,2,,2016)i i a a i +-=均为非负整数,故有221122,a a a a ³³,且222()(1,2,,2016)i i i i a a a a i ++-³-=.于是201620162221221222017201811()()i i i i i i a a a a a a a a a a ++==++-³++-=+åå. ②………………10分由①、②得2222017201820192017201820192()f a a a a a a ³++-++,结合201999a =及201820170a a ³>,可知()22220172017201712(99)992f a a a ³+-++ 22017(49)74007400a =-+³. ③………………20分另一方面,令1219201920211920220191,(1,2,,49),99k k a a a a a k k a +-+========, 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30分以下考虑③的取等条件.此时2017201849a a ==,且②中的不等式均取等,即121a a ==,2{0,1}(1,2,,2016)i i a a i +-Î=.因此122018149a a a =£££=,且对每个(149)k k ££,122018,,,a a a 中至少有两项等于k .易验证知这也是③取等的充分条件.对每个(149)k k ££,设122018,,,a a a 中等于k 的项数为1k n +,则k n 为正整数,且1249(1)(1)(1)2018n n n ++++++=,即12491969n n n +++=.该方程的正整数解1249(,,,)n n n 的组数为481968C ,且每组解唯一对应一个使④取等的数组122019(,,,)a a a ,故使0f f =成立的数组122019(,,,)a a a 有481968C 个.………………40分三、(本题满分50分)设m 为整数,2m ||³.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s (2)r s >³使得1r s a a a ==,则r s m ||-³.证明:不妨设12,a a 互素(否则,若12(,)1a a d =>,则1a d 与2a d互素,并且用123,,,a a a d d d代替123,,,a a a ,条件与结论均不改变). 由数列递推关系知234(mod )a a a m || ººº.① 以下证明:对任意整数3n ³,有 2212((3))(mod )n a a a n a m m º-+-.② ………………10分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有212(mod )k ma ma m -º,结合归纳假设知112122((3))k k k a a ma a a k a m ma +-=-º-+--2212((2))(mod )a a k a m º-+-,即1n k =+时②也成立.因此②对任意整数3n ³均成立. ………………20分注意,当12a a =时,②对2n =也成立.设整数,(2)r s r s >³,满足1r s a a a ==.若12a a =,由②对2n ³均成立,可知2212212((3))((3))(mod )r s a a r a m a a a a s a m m -+-º=º-+-,即1212(3)(3)(mod )a r a a s a m ||+-º+-,即2()0(mod )r s a m ||-º. ③若12a a ¹,则12r s a a a a ==¹,故3r s >³.此时由于②对3n ³均成立,故类似可知③仍成立. ………………30分我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为234,,,a a a 的公因子,而12,a a 互素,故p 1a ,这与1r s a a a ==矛盾.因此,由③得0(mod )r s m ||-º.又r s >,所以r s m ||-³.………………50分四、(本题满分50分)设V 是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若E 至少有n 个元素,则E 一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.解:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(,)G V E =是一个简单图,且G 是连通的,则G 含有||2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分). 引理的证明:对E 的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设4E ≥,并且结论在E 较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含||2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v ,其中21,,,k v v v 是互不相同的顶点.因为G 连通,故3k ≥.情形1:1deg()2v ≥.由于P 是最长路,1v 的邻点均在2,,k v v 中,设1i v v E ∈,其中3i k ≤≤.则121{,}i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形2:1deg()1v =,2deg()2v =.则1223{,}v v v v 是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形3:1deg()1v =,2deg()3v ≥,且2v 与4,,k v v 中某个点相邻.则1223{,}v v v v是一个角,在G 中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有2E -条边.情形4:1deg()1v =,2deg()3v ≥,且2v 与某个13{,,,}k u v v v ∈/ 相邻.由于P 是最长路,故u 的邻点均在2,,k v v 之中.因122{,}v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u 处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -条边.引理获证. ………………20分 回到原题,题中的V 和E 可看作一个图(,)G V E =.首先证明2795n ≥.设122019{,,,}V v v v = .在1261,,,v v v 中,首先两两连边,再删去其中15条边(例如1311216,,,v v v v v v ),共连了26115C 1815-=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v 相连的边,因此至多有18159072⎡⎤⎢=⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795. ………………30分 另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形. 设G 有k 个连通分支,分别有1,,k m m 个点,及1,,k e e 条边.下面证明1,,k e e 中至多有979个奇数.反证法,假设1,,k e e 中有至少980个奇数,由于12795k e e ++= 是奇数,故1,,k e e 中至少有981个奇数,故981k ≥.不妨设12981,,,e e e 都是奇数,显然12981,,,2m m m ≥ .令9812k m m m =++≥ ,则有2C 1980)(i m i e i ≥≤≤,2981C m k e e ≥++ ,故98022112795C C i mk i i i m e ===≤+∑∑. ① 利用组合数的凸性,即对3x y ≥≥,有222211C C C C x y x y +-+≤+,可知当1980,,,m m m 由980个2以及一个59构成时,980221C C i mm i =+∑取得最大值.于是 98022225921C C C 980C 26912795i mm i =≤=<++∑, 这与①矛盾.从而1,,k e e 中至多有979个奇数. ………………40分 对每个连通分支应用引理,可知G 中含有N 个两两无公共边的角,其中1111979(2795979)908222k ki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑. 综上,所求最小的n 是2795. ………………50分。

高考数学模拟题复习试卷全国高中数学联赛广西赛区预赛试卷9

高考数学模拟题复习试卷全国高中数学联赛广西赛区预赛试卷9

高考数学模拟题复习试卷全国高中数学联赛广西赛区预赛试卷一、选择题(每题6分,共36分)1、若点P (x ,y )在直线x+3y=3上移动,则函数f (x ,y )=yx93+的最小值等于( )(A )51)427(5 (B )71)927(7 (C )71)916(7 (D )31)25(32、满足20073+++=x x y 的正整数数对(x ,y )( )(A )只有一对 (B )恰有有两对 (C )至少有三对 (D )不存在3、设集合M={2,0,1},N={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是( )(A )45 (B )27 (C )15 (D )114、设方程1)19cos()19sin(2007220072=+y x 所表示的曲线是( ) (A )双曲线 (B )焦点在x 轴上的椭圆(C )焦点在y 轴上的椭圆 (D )以上答案都不正确5、将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。

那么,所有的三位数中,奇和数有( )个。

(A )100 (B )120 (C )160 (D )2006、设61=a ,)](24345[21++∈-+=N n a a a n n n ,其中[x]表示不超过x 的最大整数。

则200721a a a +⋅⋅⋅++的个位数字为( )(A )1 (B )2 (C )3 (D )4 二、填空题(每小题9分,共54分)1、已知三个正整数x ,y ,z 的最小公倍数是300,并且⎩⎨⎧=+-=-+032023222z y x z y x ,则方程组的解(x ,y ,z )=。

2、已知关于x 的实系数方程0222=+-x x 和0122=++mx x 的四个不同的根在复平面上对应的点共圆,则m 的取值范围是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国高中数学联赛模拟试题(九) 新人教A 版
第一试
一、选择题:(每小题6分,共36分)
1、已知n 、s 是整数.若不论n 是什么整数,方程x 2-8nx +7s =0没有整数解,则所有这样的数s 的集合是 (A )奇数集 (B )所有形如6k +1的数集 (C )偶数集
(D )所有形如4k +3的数集
2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是 (A )16966
(B )16975
(C )16984
(D )17009
3、非常数数列{a i }满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i =0,1,2,…,n .对于给定的自然数n ,a 1=a n +1=1,则∑-=1
0n i i a 等于
(A )2 (B )-1
(C )1 (D )0
4、已知、是方程ax 2
+bx +c =0(a 、b 、c 为实数)的两根,且是虚数,
β
α2
是实数,则∑=⎪⎪⎭

⎝⎛5985
1k k
βα的值是
(A )1 (B )2
(C )0
(D )3i
5、已知
a +
b +
c =abc ,()()()()()()ab
b a ac
c a bc
c b A 2
2
2
2
2
2
111111--+--+--=
,则A
的值是 (A )3
(B )-3
(C )4
(D )-4
6、对x i ∈{1,2,…,n },i =1,2,…,n ,有()2
11
+=
∑=n n x n
i i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4
(B )6
(C )8
(D )9
二、填空题:(每小题9分,共54分)
1、设点P 是凸多边形A 1A 2…A n 内一点,点P 到直线A 1A 2的距离为h 1,到直线
A 2A 3的距离为h 2,…,到直线A n -1A n 的距离为h n -1,到直线A n A 1的距离为h n .若存在点P 使
n
n h a h a h a +++ 22
11(a i =A i A i +1,i =1,2,…,n -1,a n =A n A 1)取得最小值,则此凸多边形一定符合条件 .
2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是 .
3、已知()2
cos 22
sin 2,22++++=θθθa a a a a F ,a 、
∈R ,a ≠0.那么,对于任意的a 、
,F (a ,)的最大值和最小值分别是 .
4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是 .
5、已知集合{1,2,3,…,3n -1,3n },可以分为n 个互不相交的三元组{x ,y ,z },其中x +y =3z ,则满足上述要求的两个最小的正整数n 是 .
6、任给一个自然数k ,一定存在整数n ,使得x n
+x +1被x k
+x +1整除,则这样的有序实数对(n ,k )是(对于给定的k ) .
三、(20分)
过正方体的某条对角线的截面面积为S ,试求
最小
最大S S 之值.
四、(20分)
数列{a n }定义如下:a 1=3,a n =13-n a (n ≥2).试求a n (n ≥2)的末位数.
五、(20分) 已知a 、b 、c ∈R +,且a +b +c =1.
证明:
27
13
≤a 2+b 2+c 2+4abc <1.
一、(50分)
已知△ABC中,内心为I,外接圆为⊙O,点B关于⊙O的对径点为K,在AB的延长线上取点N,CB的延长线上取M,使得MC=NA=s,s为△ABC
的半周长.证明:IK⊥MN.
二、(50分)
M是平面上所有点(x,y)的集合,其中x、y均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M的每一个子集,必包含一个矩形的4
个顶点,且此矩形的边平行于坐标轴.
三、(50分)
实系数多项式f(x)=x3+ax2+bx+c满足b<0,ab=9c.试判别此多项式是否有三个不同的实根,说明理由.
第一试
一、选择题:
二、填空题: 1、该凸多边形存在内切圆; 2、5; 3、32+,32-; 4、9;
5、5,8;
6、(k ,k )或(3m +2,2)(m ∈N +).
三、3
3
2. 四、7.
五、证略.
第二试
一、证略;
二、证略.
三、 有.。

相关文档
最新文档