2014-2015学年八年级上期期中考试数学试卷及答案

合集下载

2014-2015学年苏科版八年级上期中考试数学试题及答案

2014-2015学年苏科版八年级上期中考试数学试题及答案

(第7题)A. B. C. D.A A 1A AA(说明:本试卷满分120分,考试时间:100分钟)一、选择题(本大题共有10小题,每小题3分,满分30分)1.9的平方根是……………………………………………………………………( )A .3B .-3C .±3D .32.在数0、2.0 、π3 、227、0.1010010001、7中,无理数有 ………………( ) A .1个 B .2个 C .3个 D .4个3.下列各式中,正确的是……………………………………………………………( )A .3-9=-3 B .(-3)2=9 C . ±9=±3 D .(-2)2=-2 4.下面的图形都是常见的安全标记,其中是轴对称图形的是……………………( )5.如果等腰三角形的一个角是80°,则它的顶角度数是………………………( ) A .80° B .80°或20° C .80°或50° D .20°6.有下列说法: ①有理数与数轴上的点一一对应;②直角三角形的两边长是5和12,则第三边长是13;③近似数 1.5万精确到十分位;④无理数是无限小数.其中错误..说法的个数有………………………………………………………………………( ) A .4个 B .3个 C .2个 D .1个7. 如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有……………( )A .1个B .2个C .3个D .4个8.如图,△ABD ≌△ACE ,∠AEC =110°,则∠DAE 的度数为………………( )A .30°B .40°C .50°D .60°9.如图,在△ABC 中,AB =AC ,AD =AE ,∠BAD =30°,∠EDC 的度数是……………( ) A .10° B .15° C .20° D .25°10.如图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n +1B n B n +1=θn ,则θ2015-θ2014的值为……………………( )A .180°+α22014B .180°-α22014C .180°+α22015 D .180°-α22015(第16题) (第18题)(第17题) DBQPEA CO乙甲ACE 1BD 1EDCBANM BDCA二、填空题(本大题共有8小题,每空2分,满分22分) 11.16的算术平方根是 ,-8的立方根是 .12.地球七大洲的总面积约为149480000km 2,若要把这个数据精确到百万位,用科学记数法可表示为km 2.13.若x 与2x -6是同一个正数m 的两个不同的平方根,则x = , m = . 14. (25)2 ,32 53(用“>、=、<”号连结). 15.若实数x 、y 满足x -2+(y +3)2=0,则y x = .16.如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm/s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当△BPE 与△CQP 全等时,时间t 为 s.17.如图,在等边△ABC 中,AB =6,N 为线段AB 上的任意一点,∠BAC 的平分线交BC 于点D ,M 是AD18. 把一副三角板如图甲放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =18,CD =21,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为________.三、解答题:(本大题共9小题,满分68分) 19.计算题.(每题4分,共8分)(1)计算:25-(12)-2+(5-1)0; (2)3-8+(-5)2 + ||3-11.20.求出下列x 的值.(每小题4分,共8分))(1)4x 2-49=0 ; (2) 27 (x +1)3=-6421.(本题满分6分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数.因此,2的小数部分不可能全部地写出来,但可以用2-1来表示2的小数部分.理由:因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答,已知:3+6=x+y,其中x是整数,且0<y<1,求x-y的值.EBCA23.(本题满分5分)已知,如图,直线AB 与直线BC 相交于点B ,点D 是直线BC 上一点,求作:点E ,使直线DE ∥AB ,且点E 到B 、D 两点的距离相等.(要求:尺规作图,不写作法,保留作图痕迹)(1)求DE 的长;(2)若AC =6,BC =8,求△ADB 的面积.25.(本题满分5分)小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?如果同意,请你给出证明,如果不同意,请说明理由.OF EA B C DD C B A图① 图 26.(本题满分12分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 为△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA . (1)求证:DE 平分∠BDC ;(2)若点M 在DE 上,且DC =DM ,请判断ME 、BD 的数量关系,并给出证明.27.(本题满分12分)数学活动——“关于三角形全等的条件”1.【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、 “AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.2.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.3.【逐步探究】(1)第一种情况:当∠B 是直角时,如图①,根据______定理,可得△ABC ≌△DEF .(2)第二种情况:当∠B 是钝角时,△ABC ≌△DEF 仍成立.请你完成证明.已知:如图②,△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:△ABC ≌△DEF .证明:EA ①FEB CA②FBEDCA③BCA(3)第三种情况:当∠B 是锐角时,△ABC 和△DEF 不一定全等.在△ABC 和△DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③中作出△DEF ,使△DEF 和△ABC 不全等.(不写作法,保留作图痕迹)4.【深入思考】∠B 还要满足什么条件,就可以使△ABC ≌△DEF ?(请直接写出结论.)在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若∠B _________,则△ABC ≌△DEF .二、选择题(本大题共有10小题,每小题3分,满分30分)1. C 2. B 3. C 4. A 5. B 6. B 7. C 8. B 9. B 10.D 二、填空题(本大题共有8小题,每空2分,满分22分)11.4,-2 12.1.49×108 13. 2,4 14.= ,> 15. 1816.1或4 (少一个答案扣一分) 17. 3 3 (27也算对) 18.15三、解答题:(本大题共9小题,满分68分)20.求出下列x 的值.(每小题4分,共8分)) (1)4x 2-49=0x 2=494…………………………………………………………2分x =±72…………………………………………………………4分(2) 27 (x +1)3=﹣64(x +1)3 =﹣6427………………………………………………1分(x +1)=﹣43 …………………………………………………3分x =﹣73………………………………………………………4分21.(本题满分6分)由题知:x =5, ……………………………1分y =6—2, ……………………………………………………3分x -y =5-(6-2) ………………………………………5分 x -y =7-6… ………………………………………………6分 22.(本题满分6分)由题知:a —3≥0且3—a ≥0,…………………………………1分 解得a ≥3且a ≤3,所以,a =3,………………………………………………………2分所以,b=5,………………………………………………………3分①当腰为3,底为5时,周长3+3+5=11;…………………4分②当腰为5,底为3时,周长为5+5+3=13.…………………5分∴这个等腰三角形的周长为11或13……………………………6分23.(本题满分5分)(1)以D为顶点,DC为边作一个角等于∠ABC(也可画∠ABC的内错角)……………………………………………………………………2分(2)作出BD中垂线………………………………………………4分(3)标出点E ………………………………………………………5分∴点E为所求作的点.25.(本题满分5分)答:同意………………………………………………………1分理由:由第一次折叠得∠BAD=∠CAD………………………2分由第二次折叠得EF⊥AD ……………………………3分由ASA证得三角形△AEO≌△AFO…………………4分得AE=AF………………………………………………5分(此参考答案为简要思路,方法不唯一,请酌情给分)26.(本题12分)(1)证明:∵AC=BC∴∠CBA=∠CAB又∵∠ACB=90°∴∠CBA=∠CAB=45°……………………………………1分又∵∠CAD=∠CBD=15°∴∠DBA=∠DAB=30°……………………………………2分∴∠BDE=30°+30°=60°………………………………3分又易证得△ADC≌△BDC ………………………………4分得∠ACD=∠BCD=45°由外角得∠CDE=60°………………………………………5分得∠CDE=∠BDE=60°所以DE平分∠BDC ………………………………………6分(此小题证明方法不唯一,请参照给分)(2)答:ME=BD …………………………………………7分证明:连结MC ………………………………………8分证得△MCD为等边三角形……………………………9分证得△BDC≌△EMC…………………………………11分得ME=BD ……………………………………………12分27.(本题12分)3.【逐步探究】(1)HL ………………………………………………………2分(2)证明:分别作CG⊥AB,FH⊥DE ……………………3分由∠ABC=∠DEF得∠CBG=∠FEH…………………………………………4分证明△ACG≌△DFH(AAS)……………………………6分得CG=FH得Rt△ACG≌Rt△DFH(HL)…………………………7分得△ABC≌△DEF(AAS)…………………………………8分(3)如图,……………………………10分4.【深入思考】∠B≥∠A.……………………………………12分。

2014-2015学年度上学期八年级数学期中考试

2014-2015学年度上学期八年级数学期中考试

2014-2015学年度上学期期中考试数学试题(满分120分 时间100分钟)一、认真选一选(每小题3分,共30分)1.等腰三角形的一边为4,另一边为9,则这个三角形的周长为 ( )A. 17B. 22C. 17或22D. 132.下列四组线段中,可以构成直角三角形的是( )A.2,4,5B.4,5,6C.5,6,7D.5,12,133.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含︒30角的直角三角板的斜边与纸条一边重合,含︒45角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .︒30B .︒20C .︒15D .︒144.下列说法中错误..的是 ( ) A. 斜边对应相等的两个直角三角形全等; B.三边长为3、4、5的三角形为直角三角形;C.一条直角边对应相等的两个等腰直角三角形全等;D. 有一个角为60º的等腰三角形是等边三角形.5.如图,∠AOP =∠BOP =15º,PC ∥OA ,交BC 于点C ,PD ⊥OA ,若PC =4,则PD 等于( )A .4B .3C .2D .16.如图,在△ABC 中,∠C =90°,AB 的垂直平分线DE ,交AB 于点D ,交AC 于点E ,若BC :AE =1:2, 则∠A 的度数是( )A.10°B.15°C.18°D.21°7.已知,在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,下列说法中错误的是( )A.如果∠C —∠B =∠A ,那么△ABC 是直角三角形B.如果角∠C =90°,那么222b a c =-C.如果2))((c b a b a =-+,那么∠A =90°D.如果∠A :∠B :∠C =2:3:4,那么△ABC 是直角三角形8.如图所示,在△ABC 中,分别以△ABC 各边向外作等边三角形,1S ,2S ,3S 分别表示这三个等边三角形的面积,已知3251=S ,31442=S ,31693=S ,则△ABC 是( )A.锐角三角形B.钝角三角形C.直角三角形 D 无法确定第3题图 第5题图第6题图第8题图9.如图,在边长为4的等边三角形ABC 中,P 为边BC 上的一个动点,PE ⊥AB ,PD ⊥AC ,垂足分别为点D ,E .则PE +PD =( )A.4B.32C. 32D.5210.如图,在中△ABC 中AC =7,BC =24,AB =25.点P 是∠BAC 和∠ABC 的平分线的交点,则点P 到AB 的距离为( )A. 5B.1.5C. 3D.6二、精心填一填(每小题4分,共24分) 11.在Rt △ABC 中,∠C =90°,∠B =25°,则∠A = °.12.直角三角形两条边分别是5cm 、12cm ,斜边上的中线长是 .13.如图,在△ABC 中,AB =AC ,D 是AC 上一点,且AD =BD =BC ,则∠BAC 的度数是 .14.如图,O 是△ABC 的∠ABC 与∠ACB 的平分线的交点,DE ∥BC 交AB 于点D ,交AC 于点E .若AB =12cm ,AC =10cm ,则△ADE 的周长是 cm.15.如图,在R t △ABC 中,∠C =90°,BC =6cm ,AC =8 cm ,按图中所示方法将△BCD 沿BD 折叠,使点C落AB 边上的C '点,那么C AD '∆的面积是 .16.在Rt △ABC 中,∠C =Rt ∠,CD 、CE 分别是AB 边上的高和中线,若AC =6,BC =8,则DE = .三、细心解一解(共9题,共66分)17.(6分)如图,在△ABC 中,∠B =45°,∠C =30°,AD ⊥BC ,且AD =2,求AC 和BC 的长.18.(6分)(已知△ABC 的三条边长分别为a 、b 、c ,且满足关系: ac c a b a b a c a c 4)(3)2)(2()2(22-+=-+++ 试判断△ABC 的形状,并说明理由.第15题第13题第9题图第10题图第14题图 第17题图19.(6分)如图,已知AB=12,AC=13,BD⊥CD垂足为点D,BD=3,DC=4,求四边形ABCD的面积.第19题图20.(8分)如图,AD∥BC,∠A=90º,AD=BE,∠EDC=∠ECD,求证:(1)△AED≌△BCE;(2)AB=AD+BC第20题图21.(6分)如图,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画多少个?(并用直尺与圆规找出相应的等腰三角形,要求保留痕迹,不写作法).第21题图22.(6分)如图,牧童在A处放牛,其家在B处,A、B到河岸l的距离分别为AC=1km,BD=3km,且CD=3km.(1)牧童从A处将牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短请在图中画出饮水的位置(保留作图痕迹),并说明理由.(2)求出(1)中的最短路程.第22题图23.(6分)如图,在△ABC ,AE 是BC 边上的高,AD 是角平分线,∠B =42º,∠C =68º.(1)求∠DAE 的度数;(2)若α=∠B ,β=∠C (β<α),用含有α,β的代数式表示∠DAE(直接写出结果,不要证明).24.(6分)如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F CD .(1)证明:Rt △BCE ≌Rt △DCF ; (2)若AB =21,AD =9,BC =CD =10,求AC 的长.25.(6分)如图,已知:如图,在△ABC 中,AD 是BC 边上的高线,CE 是AB 边上的中线,DG ⊥CE 于G ,CD =AE .求证:CG =EG .26.(10分)如图,已知在等腰直角三角形△DBC 中,90BDC ∠=°, BF 平分DBC ∠,与CD 相交于点F ,延长BD 到A ,使DA DF =.(1)如图1,求证:△FBD ≌△ACD .(2)如图2,延长BF 交AC 于E ,求证:BE AC ⊥.(3)如图3,在⑵的条件下,H 是BC 边的中点,连结DH 与BE 相交于点G .试探索CE ,GE ,BG 之间的等量关系,并证明你的结论.第23题图 第25题图 第26题图。

2014-2015八上期中数学答案

2014-2015八上期中数学答案

2014-2015学年度第一学期淮北市“五校”联考八年级数学期中考试试卷参考答案及评分标准一、选择题(本题共10小题,每小题4分,满分40分)1-5 ADADC 6-10 BBDAD二、填空题(本题共5小题,每小题4分,满分20分)11、(3,-2)或(3,2)12、答案不唯一,正确即可。

13、x ≥-1且x ≠2 14、一 15、5三、解答题(共60分)16、解:(1)由题意得,2x=3x ﹣1,解得x=1; ………………4分(2)由题意得,﹣2x+[﹣(3x ﹣1)]=16,则﹣5x=15,解得x=﹣3. ………………8分17、解:设腰长为2xcm ,底长为ycm ,依题意得⎩⎨⎧=+=+⎩⎨⎧=+=+12182,18122y x x x y x x x 或………3分 解得⎩⎨⎧==⎩⎨⎧==66144y x y x 或,2x=8或2x=12,且两种情况的边长均满足三边关系, 所以等腰ΔABC 的底和腰分别为14 、8 cm 或6 cm 、12 cm 。

………………8分 (其他方法正确即可)18、解:(1)填空:A ,B 两地相距420千米;………………2分(2)由图可知货车的速度为60÷2=30千米/小时,货车到达A 地一共需要2+360÷30=14小时,设y 2=kx +b ,代入点(2,0)、(14,360)得, 解得,所以y 2=30x ﹣60; ………………5分(3)设y 1=mx +n ,代入点(6,0)、(0,360)得 解得,所以y 1=﹣60x +360由y 1=y 2得30x ﹣60=﹣60x +360解得x =答:客、货两车经过小 小时相遇.………………8分19、解:(1)设A 、B 两种奖品单价分别为x 元、y 元,由题意,得⎩⎨⎧=+=+95356023y x y x 解得:⎩⎨⎧==1510y x 答:A 、B 两种奖品单价分别为10元、15元.………………4分(2)由题意,得)100(1510m m W -+=m m 15150010-+=m 51500-= ………………6分由⎩⎨⎧-≤≤-)100(3115051500m m m ,解得:7570≤≤m .………………8分由一次函数m W 51500-=可知,W 随m 增大而减小∴当75=m 时,W 最小,最小为11257551500=⨯-=W (元)答:当购买A 种奖品75件,B 种奖品25件时,费用W 最小,最小为1125元.……10分20、解:(1)如果一个三角形的一边上的中线的长等于这条边长的一半,那么这个三角形是直角三角形。

2014-2015学年度第一学期期中八年级数学

2014-2015学年度第一学期期中八年级数学

2014-2015学年度第一学期八年级数学期中试卷(本试卷满分100分,时间100分钟)题号 一 1--10 二11-15三总分 16 17 18 19 20 21 得分一、选择题(每题3分,共30分)题号 12345678910 答案1.点)4,5(-P 到y 轴的距离是【 ▲ 】A.5B.4C.5-D.4-2.当0,0><y x 时,点(,)A x y 在平面直角坐标系中的位置是在【 ▲ 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若正比例函数y kx =的图象经过点(1,2),则k 的值为【 ▲ 】 A.1- B.2- C.1 D.24.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是【 ▲ 】5.已知三角形的两边长分别为cm 3和cm 8,则第三边长可以是【 ▲ 】 A.cm 13 B.cm 6 C.cm 5D.cm 46.函数3x y +=中自变量x 的取值范围是【 ▲ 】 A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠7.在同一平面直角坐标系中,若一次函数3y x =-+与35y x =-的图象交于点P ,则点P 的坐得分学校 班级 姓名 考号密封 线 内 不 要 答 题标为【 ▲ 】A.(1,4)-B.(1,2)-C.(2,1)-D.(2,1) 8.一次函数b kx y +=的图象如图所示,则不等式2>+b kx 的 解集为【 ▲ 】A.0>xB.0<xC.1-<xD.1->x9.一个三角形的两个内角分别是ο55和ο72,这个三角形的外角不可能是【 ▲ 】 A. 125° B.108° C.127° D.137°10.甲、乙两个同学从m 400环形跑道上的同一点出发,同时同向而行,甲的速度为s m /6,乙的速度为s m /4.设经过x (s )后,跑道上此两人间的较短部分的长度为y (m ),则y 与x (0≤x ≤300)之间函数关系可用图象表示为【 ▲ 】A. B. C. D.二、填空题(每题4分,共20分)11.如图,是某风景区几个主要景点示意图,根据图中信息可确定 九疑山的中心位置C 点的坐标为 .12.已知直线3-=x y 与22+=x y 的交点为)8,5(--,则方程组 的⎩⎨⎧=+-=--02203y x y x 解是 .13.直线a x y +-=2经过点),3(1y 和点),2(2y -,则1y 2y (填“>”、 “<”或“=”). 14.如果将函数x y 2=的图象向左平移m (0>m )个单位,正好等于将它向上平移n (0>n )个单位,则m 和n 之间的关系为 .15.某人用80元充值卡坐某种刷卡出租车,按行驶里程收费.km 3内收费8元,以后每超过km1得分第8题图第11题图加收5.1元.若此人第一次坐出租车(331)xkm x ≤≤,则充值卡中所余的费用y (元)与x ()km 之间的关系式是 . 三、解答题(共55分)16.(本小题7分)如图,A B C 、、三点的坐标分别为3,4()、1,2()、5,0(),将ABC ∆先向下平移四个单位得到'''A B C ∆,再将'''A B C ∆向左平移五个单位得到111A B C ∆.(1)请你在图上画出'''A B C ∆和111A B C ∆; (2)观察所画的图形写出'A 和1A 的坐标;(3)计算ABC ∆的面积.17.(本小题8分)综合与实践世界上大部分国家都使用摄氏温度()C o,但美国、英国等国家的天气预报仍然使用华氏温度()F o.两种计量之间有如下对应:(1(2)求出华氏0度时摄氏是多少度?(3)华氏温度的值与对应摄氏温度的值有相等的可能吗?如果有,请求出该值.xy –1–2–3–4–512345–1–2–3–4–512345O18.(本小题8分)如图,在ABC ∆中,AC AB =,AC 上的中线把三角形的周长分为cm 24和cm 30的两个部分,求三角形各边的长.19.(本小题10分) 已知2+y 与x 成正比例,且2-=x 时,0=y . (1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于B A 、两点,且4=∆ABP S ,求P 点的坐标.20.(本小题10分) 已知,如图,在ABC ∆中,角平分线BD 、CD 相交于点D , (1)若ο80=∠A ,求BDC ∠的度数; (2)若ο120=∠BDC ,求A ∠的度数;(3)若βα=∠=∠BDC A ,,试求α、β之间的数量关系.第20题图21. (本小题12分) 我市某企业利用机器生产一种科技产品,机器从早上八点开始工作,中午十二点停止.产品生产出来后,需要包装入库.通常的办法是,机器先工作一段时间,包装工人再开始包装.某次包装工人工作了一段时间后,因临近下班,又抽掉了一部分工人来帮忙,使包装入库的速度提高了一倍.如图是生产出来后待包装入库的产品数量y(件)与时间t(h)的函数关系的图象.根据图象解决以下问题:(1)机器每小时生产件产品;工人包装入库的速度是件/h;(2)求线段BC的解析式;(3)如果要保证生产的产品恰好在半天(4h)时全部包装入库,原有包装工人应该在机器开始工作后多长时间时开始包装?2014-2015学年度第一学期八年级数学期中测试参考答案一、选择题1---5:ABDCB 6----10:BDADC 二、填空题 11.(3,1) 12.⎩⎨⎧-=-=85y x 13.< 14.2m=n 15.5.765.1+-=x y三、解答题16.(1)图略………………2分(2)'A (3,0);1A (-2,0)………………4分 (3)42214221222144⨯⨯-⨯⨯-⨯⨯-⨯=∆ABC S ………………6分 6=………………7分 17.解:(1)是一次函数.………………1分设摄氏温度值为x ,华氏温度值为y ,令y=kx+b321050b k b =⎧⎨+=⎩解得9,325k b == 9325y x =+………………4分 (2)当y=0时,93205x +=,解得1609x =-,即华氏0度时,摄氏是1609-.…………6分 (3)依题意得9325y x y x⎧=+⎪⎨⎪=⎩ 解得40y x ==-即华氏温度的值与摄氏温度的值在-40时相等.………………8分 18.解:设AB=AC=2x ,则AD=CD=x ,(1)当AB +AD=30,BC +CD=24时,有2x +x=30, ∴x=10,………………2分 2x=20,BC=24-10=14,三边分别为:20cm ,20cm ,14cm .………………4分(2)当AB +AD=24,BC +CD=30,有2x +x=24∴x=8,………………6分BC=30-8=22,三边分别为:16cm ,16cm ,22cm .………………8分19.解:(1)∵y+2与x 成正比例,∴设y+2=kx (k 是常数,且k ≠0)∵当x=-2时,y=0. ∴0+2=k ·(-2),∴k =-1. ∴函数关系式为x+2=-x , 即y=-x-2.………………3分 (2)列表;x 0 -2 y-2描点、连线,图象如图所示.………………6分 (3)函数y=-x-2分别交x 轴、y 轴于A ,B 两点, ∴A (-2,0),B (0,-2). ∵S △ABP =21·|BP|·|OA|=4, ∴|BP|=428||8==OA . ∴点P 与点B 的距离为4. 又∵B 点坐标为(0,-2),且P 在y 轴负半轴上, ∴P 点坐标为(0,-6).………………10分 20.(1)∵∠A=80°,∴∠ABC+∠ACD=180°-80°=100° ∵BD 、CD 是角平分线 ∴∠DBC+∠DCB=οο5010021)(21=⨯=∠+∠ACB ABC ∴∠BDC=180°-∠DBC-∠DCB=180°-50°=130°;………………3分 (2)当∠BDC=120°,∴∠DBC+∠DCB=180°-120°=60° ∵BD 、CD 是角平分线∴οο120602)(2=⨯=∠+∠=∠+∠DCB DBC ACB ABC∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°;………………6分 (3)∵∠A=α,∴∠ABC+∠ACB=180°-α ∵BD 、CD 是角平分线 ∴∠DBC+∠DCB=)180(21)(21α-⨯=∠+∠οACB ABC ∴∠BDC=180°-(∠DBC+∠DCB)=180°-αα2190)180(21+=-οο ∴︒+=9021αβ………………10分 21.(1)150,250………………4分(2)由包装速度提高一倍可知,最后阶段包装速度为500件/时,100÷500=0.2,所以点C 的坐标为(4.2,0),………………6分设y=kt+b ,则41004.20k b k b +=⎧⎨+=⎩,解得500,2100k b =-= 5002100y t =-+………………8分(3)设机器开始工作后t 小时,包装工人开始包装,则 150×4=250(4-t ) 解得t=1.6即原有工人应该在机器开始工作1.6小时后开始包装.………………12分。

2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。

初中数学八年级2014—2015第一学期期中学业水平测试卷附参考答案

初中数学八年级2014—2015第一学期期中学业水平测试卷附参考答案

2014—2015 第一学期初二数学期中学业水平测试、选一选,牛刀初试露锋芒!(每小题3分,共42分)1.下列图形中,轴对称图形的个数是()A. 4个2 .下列说法正确的是()A .三角形的角平分线是射线。

B.三角形三条高都在三角形内。

C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。

D. 三角形三条中线相交于一点。

3 .两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,?如果第三根木棒长为偶数, 则组成方法有b5E2RGbCAPA. 3种B. 4种C. 5种D. 6种4. 下列各组条件中,不能判定△AB4A A/B/C/的一组是()/ / / / / //—”//A、/ A=Z A,/B=Z B ,AB= A BB、/ A=Z A , AB= A B , AC=A C/ / / J / / / / / / /C、/ A=/ A , AB= A B , BC= B CD、AB= A B , AC=A C ,BC= B C5. 如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和△ ABC全等的图形是(D.只有丙6.如图1,将长方形ABCD纸片沿对角线BD折叠,使点C落在C •处,BC交AD于丘,若• DBC =22.5 °,贝恠不添加任何辅助线的情况下, 则图中45的角(虚线也视为角的边)的个数是()A. 5个E 22.12.如图5,△ ABC 的三边 AB 、BC CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO:CAO 等于( )A . 1 : 1 : 1B . 1 : 2 : 3C . 2 : 3 : 4D . 3 : 4 : 513.如图6, 一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 (二 取 3)是() DXDiTa9E3dA.20cm;B.10cm;C.14cm;D. 无法确定.7•如图2,有一张直角三角形纸片,两直角边 △ ABC 折叠,使点B 与点A 重合,折痕为DE 为( )A. 10 cm B . 12cmC8、若等腰三角形的腰长为10,底边长为12,A 、6B 、7C 、8AC=5cm BC=10cm则厶ACD 的周长盒命 图2 E.15cmD . 20cm则底边上的高为()D 、99.如图3,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事 的办法是()p1EanqFDPwA.带①去B.带②去C.带③去D.带①和②去10、下列条件中,不能确定三角形是直角三角形的是(A.三角形中有两个角是互为余角; B.三角形三个内角之比为3 : 2 : 1; C.三角形的三边之比为3 : 2 : 1 ; D.三角形中有两个内角的差等于第三个内角 11.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 4所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A. 1个B . 2个C.3 个D.4 个F C D图4图5A图614.如图7所示,已知△ ABC和厶BDE都是等边三角形。

2014——2015学年度第一学期八年级数学期中考试卷(含答案)

2014——2015学年度第一学期八年级数学期中考试卷(含答案)

2014——2015学年度第一学期 八年级数学期中考试卷(含答案)(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确1、4的算术平方根是A . 2B . 2-C . 2±D . 2±2、与数轴上的点成一一对应关系的数是A . 有理数B . 无理数C . 实数D . 整数 3、下列从左边到右边的变形,属于因式分解的是A . 1)1)(1(2-=-+x x x B . 1)2(122+-=+-x x x xC . )4)(4(422y x y x y x -+=-D . 22)3(96-=+-x x x4、下列命题中是真命题的是A .三角形的内角和为180°B .同位角相等C .三角形的外角和为180°D .内错角相等 5、使式子32+x 有意义的实数x 的取值范围是A .32>x B . 23>x C . 23-≥x D . 32-≥x6、在实数73,1+π,4,3.14,38,8,0, 11.21211211中,无理数有A . 2个B . 3个C . 4个D . 5个7、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为 A . 6cm B . 5cm C . 8cm D . 7cm8、计算:()20132013125.08-⨯等于A . 1-B . 1C . 2013D . 2013- 9、下列条件中,不能证明△ABC ≌△'''C B A 的是 A .''''C A AC B B A A =∠=∠∠=∠,,学校:班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分 B'C BB .''''B A AB B B A A =∠=∠∠=∠,,C .'''''C A AC A A B A AB =∠=∠=,,D .'''''C B BC B A AB A A ==∠=∠,, 10、下列算式计算正确的是A .523a a a =+B .623a a a =⋅C .923)(a a =D . a a a =÷2311、估计15的大小在A . 2和3之间B . 3和4之间C . 4和5之间D . 5和6之间12、若(x+a)(x-5)展开式中不含有x 的一次项,则a 的值为A . 5-B . 5C . 0D . 5± 13、如右图,△ABC ≌△EDF ,DF =BC ,AB=ED ,AF =20,EC =10,则AE 等于 A . 5 B . 8 C .10 D . 15 14、如果则的值分别是A . 2 和 3B . 2和-3C . 2和D .二、填空题:(每小题4分,共16分) 15、计算:=⨯-2016201020132________。

2014-2015学年新人教版八年级上期中数学试卷及答案解析

2014-2015学年新人教版八年级上期中数学试卷及答案解析

2014-2015学年新人教版八年级上期中数学试卷及答案解析一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C.D.2.三角形的一个外角小于和它相邻的内角,那个三角形为( )A.锐角三角形 B.直角三角形C.钝角三角形 D.以上三种都有可能3.已知图中的两个三角形全等,则∠1等于( )A.72° B.60°C.50°D.58°4.已知三角形的两边长分不为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6 D.(﹣2m)2÷2m3=6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是()A.4 B.8 C.±4 D.±87.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣38.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BC D=160°,那么△ABC是( )A.直角三角形 B.等腰三角形C.钝角三角形D.锐角三角形9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD的长为( )A.6cm B.8cm C.3cm D.4cm10.随着生活水平的提升,小林家购置了私家车,如此他乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,按照题意可列方程为( )A.B.C. D.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则那个最小值为( )A.B.3 C.4 D.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发觉某种植物的细胞直径约为0.000000102 mm,用科学记数法表示那个数为__________.14.分解因式:ab2﹣4ab+4a=__________.15.若3x=4,9y=7,则3x﹣2y的值为__________.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=__________.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=18 0°;④∠AFB>∠ACB其中正确命题的代号是__________.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试讲明∠BPD与∠CPG的大小关系,并讲明理由.22.用电脑程序操纵小型赛车进行50m竞赛,“畅想号”和“和谐号”两辆赛车进入了决赛.竞赛前的练习中,两辆车从起点同时动身,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2. 5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始竞赛,“畅想号”从起点向后退3m,两车同时动身,两车能否同时到达终点?若能,求出两车到达终点的时刻;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.23.如图③,点E,D分不是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为__________,图③中,∠AFB的度数为__________;(3)连续探究,可将本题推广到一样的正n边形情形,用含n的式子表示∠AFB的度数.2014-2015学年四川省绵阳中学八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】按照轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是查找对称轴,图形两部分沿对称轴折叠后可重合.2.三角形的一个外角小于和它相邻的内角,那个三角形为( )A.锐角三角形 B.直角三角形C.钝角三角形 D.以上三种都有可能【考点】三角形的外角性质.【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判定出此三角形有一内角为钝角,从而得出那个三角形是钝角三角形的结论.【解答】解:∵三角形的一个外角与它相邻的内角和为180°,而题中讲那个外角小于它相邻的内角,∴与它相邻的那个内角是一个大于90°的角即钝角,∴那个三角形确实是一个钝角三角形.故选C.【点评】本题考查的是三角形的外角性质,解题的关键是熟练把握三角形的外角与它相邻的内角互为邻补角.3.已知图中的两个三角形全等,则∠1等于( )A.72° B.60°C.50°D.58°【考点】全等三角形的性质.【分析】按照三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.4.已知三角形的两边长分不为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题第一按照三角形的三边关系,求得第三边的取值范畴,再进一步找到符合条件的数值.【解答】解:按照三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范畴应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6 D.(﹣2m)2÷2m3=【考点】负整数指数幂;整式的除法.【分析】按照负整数指数幂、同底数幂的乘法以及整式的除法运算法则进行运算.【解答】解:A、原式=9,故本选项错误;B、原式=m(1﹣2+3)=m2,故本选项错误;C、原式=(﹣1)﹣2•a﹣1×(﹣2)•b(﹣3)×(﹣2)=a2b6,故本选项错误;D、原式==,故本选项正确.‘故选:D.【点评】本题考查了负整数指数幂、整式的除法.把握运算法则的解题的关键.6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是()A.4 B.8 C.±4 D.±8【考点】完全平方式.【专题】常规题型.【分析】先按照两平方项确定出这两个数,再按照完全平方公式的乘积二倍项即可确定b的值.【解答】解:16x2+bx+1=(4x)2+bx+1,∴bx=±2×4x×1,解得b=±8.故选D.【点评】本题要紧考查了完全平方式,按照平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题专门重要.7.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣3【考点】分式的值为零的条件.【专题】运算题.【分析】按照分式的值为零的条件得到当x2﹣9=0且x+3≠0时,分式的值为零,然后解方程和不等式即可得到x的值.【解答】解:∵分式的值为零,∴x2﹣9=0且x+3≠0,∴x=3.故选C.【点评】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.也考查了解方程与不等式.8.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BC D=160°,那么△ABC是( )A.直角三角形 B.等腰三角形C.钝角三角形D.锐角三角形【考点】轴对称的性质.【分析】作出图形,按照轴对称的性质可得∠BAC=∠DAC,∠ACB=∠ACD,然后求出∠BAC+∠ACB,再按照三角形的内角和定理求出∠B,然后判定三角形的形状即可.【解答】解:如图,∵△ABC和△ADC关于直线AC轴对称,∴∠BAC=∠DAC,∠ACB=∠ACD,∴∠BAC+∠ACB=(∠BAD+∠BCD)=×160°=80°,在△ABC中,∠B=180°﹣(∠BAC+∠ACB)=180°﹣80°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查了轴对称的性质,按照成轴对称的两个图形能够完全重合得到相等的角是解题的关键,作出图形更形象直观.9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD的长为( )A.6cm B.8cm C.3cm D.4cm【考点】线段垂直平分线的性质;含30度角的直角三角形;三角形中位线定理.【专题】运算题.【分析】过A作AF∥DE交BD于F,则DE是△CAF的中位线,按照线段垂直平分线的性质,即可解答.【解答】解:过A作AF∥DE交BD于F,则DE是△CAF的中位线,∴AF=2DE=2,又∵DE⊥AC,∠C=30°,∴FD=CD=2DE=2,在△AFB中,∠1=∠B=30°,∴BF=AF=2,∴BD=4.故选D.【点评】此题要紧考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段两个端点的距离相等.10.随着生活水平的提升,小林家购置了私家车,如此他乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,按照题意可列方程为( )A.B.C. D.【考点】由实际咨询题抽象出分式方程.【分析】按照乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车内学比乘坐公交车内学所需的时刻少用了15分钟,利用时刻得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,按照题意可列方程为:=+,故选:D.【点评】此题要紧考查了由实际咨询题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的咨询题转化为列代数式的咨询题.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】运算题.【分析】分不运算出甲图中阴影部分面积及乙图中阴影部分面积,然后运算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会运算矩形的面积及熟悉分式的运确实是解题的关键.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E 在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则那个最小值为( )A.B.3 C.4 D.【考点】轴对称-最短路线咨询题;正方形的性质.【分析】由于点B与D关于AC对称,因此连接BE,与AC的交点即为P点.现在PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选C.【点评】本题考查的是正方形的性质和轴对称﹣最短路线咨询题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发觉某种植物的细胞直径约为0.000000102 mm,用科学记数法表示那个数为1.02×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一样形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再按照完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要完全.15.若3x=4,9y=7,则3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】按照3x﹣2y=3x÷32y=3x÷9 y即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.【点评】本题考查了同底数的幂的除法运算,正确明白得3x﹣2y=3x ÷32y=3x÷9 y是关键.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=70°或20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情形进行讨论.【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠A DE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE= 50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故答案为:70°或20°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=18 0°;④∠AFB>∠ACB其中正确命题的代号是①③④.【考点】矩形的性质;全等三角形的判定与性质.【分析】由矩形的性质得出∠ABC=∠D=∠BCD=∠BAD=90°,BC= DA,AB=CD,由SAS证明△ABC≌△CDA,①正确;由△ABF的面积=△ABC的面积,得出△AEF的面积=△BCE的面积,②不正确;证明A、E、F、D四点共圆,得出∠DAE+∠DFE=180°,③正确;延长AF交矩形ABCD的外接圆于G,连接BG,由圆周角定理得出∠AGB=∠ACB,由三角形的外角性质得出∠AFB>∠AGB,得出∠AFB>∠ACB,④正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴①正确;∵△ABF的面积=△ABC的面积=AB•BC,∴△AEF的面积=△BCE的面积,∴②不正确;∵BE⊥AC,∴∠AEF=90°,∴∠AEF+∠D=180°,∴A、E、F、D四点共圆,∴∠DAE+∠DFE=180°,∴③正确;∵A、B、C、D四点共圆,如图所示:延长AF交矩形ABCD的外接圆于G,连接BG,则∠AGB=∠ACB,∵∠AFB>∠AGB,∴∠AFB>∠ACB,∴④正确;正确的代号是①③④;故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、四点共圆、圆周角定理、圆内接四边形的性质;熟练把握矩形的性质,并能进行推理论证是解决咨询题的关键.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.【考点】整式的混合运算;解分式方程;解一元一次不等式.【分析】(1)直截了当利用完全平方公式化简求出即可;(2)第一去分母进而合并同类项求出即可.【解答】解:(1)(2x﹣5)2+(3x+1)2>13(x2﹣10)去括号得:4x2+25﹣20x+9x2+1+6x>13x2﹣130整理得:﹣14x>﹣156解得:x<11;(2)去分母得:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),x2+2x﹣(x2+2x﹣x﹣2)=3x﹣3,则﹣2x=﹣5,解得:x=,检验:当x=时,(x﹣1)(x+2)≠0,则x=是原方程的根.【点评】此题要紧考查了整式的混合运算以及分式方程的解法,正确利用乘法公式是解题关键.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【考点】分式的化简求值.【专题】开放型.【分析】要紧考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意化简后,代入的数不能使分母的值为0.【解答】解:原式=÷==,∵a≠0、a≠±1,∴答案不唯独.当a=2时,原式=1.【点评】本题要紧考查分式的化简求值,式子化到最简是解题的关键.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练把握全等三角形的判定方法,证明三角形全等是解决咨询题的关键.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试讲明∠BPD与∠CPG的大小关系,并讲明理由.【考点】三角形内角和定理.【分析】利用AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,得出∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,再利用三角形的外角意义得出∠BPD=∠BAD+∠ABE等量代换得出∠BPD=90°﹣∠AC B;再利用PG⊥BC,得出三角形CPG是直角三角形,利用三角形的内角和表示出∠CPG=90°﹣∠ACB,证明结论成立.【解答】∠BPD=∠CPG证明:∵AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,∴∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,∴∠BPD=∠BAD+∠ABE=(∠BAC+∠ABC),∵∠BAC+∠ABC=180﹣∠ACB,∴∠BPD=(180﹣∠ACB)=90°﹣∠ACB;∵PG⊥BC,∴∠PGC=90°,∴∠BCP+∠CPG=180°﹣∠PGC=90°,∴∠CPG=90°﹣∠BCP=90°﹣∠ACB,∴∠BPD=∠CPG.【点评】此题考查角平分线的性质,三角形内角和定理,三角形外角的意义,垂直的性质等知识点.22.用电脑程序操纵小型赛车进行50m竞赛,“畅想号”和“和谐号”两辆赛车进入了决赛.竞赛前的练习中,两辆车从起点同时动身,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2. 5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始竞赛,“畅想号”从起点向后退3m,两车同时动身,两车能否同时到达终点?若能,求出两车到达终点的时刻;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,按照,“畅想号”运动50 m与“和谐号”运动47m所用时刻相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,按照时刻相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x,由题意得,=,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是认真审题,找到等量关系,建立方程,难度一样.23.如图③,点E,D分不是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为90°,图③中,∠AFB的度数为10 8°;(3)连续探究,可将本题推广到一样的正n边形情形,用含n的式子表示∠AFB的度数.【考点】正多边形和圆;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先按照等边三角形的性质得出∠AC=60°,再由补角的定义可得出∠ABE与∠BCD的度数,按照△ABE与△BCD能相互重合可得出∠E=∠D,∠DBC=∠BAE,由三角形外角的性质可得出结论;(2)按照(1)中的方法可得出△BEF∽△BDC,进而可得出结论;(3)按照(1)(2)的结论找出规律即可.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABE=∠BCD=120°.∵△ABE与△BCD能相互重合,∴∠E=∠D,∠DBC=∠BAE.∵∠FBE=∠CBD,∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°;(2)图②中,∵△ABE与△BCD能相互重合,∴∠E=∠D.∵∠FBE=∠CBD,∠D+∠CBD=90°,∴∠AFB=∠E+∠FBE=∠D+∠CBD=90°;同理可得,图③中∠AFB=108°.故答案为:90°,108°;(3)由(1)(2)可知,在正n边形中,∠AFB=.【点评】本题考查的是正多边形和圆,在解答此题时要注意正三角形、正四边形及正五边形的性质的应用,按照题意找出规律是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档