人教版八年级(上)数学期中考试试题
人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是()A .1B .2C .3D .83.下面的多边形中,内角和与外角和相等的是()A .B .C .D .4.在ABC 中,若一个内角等于另外两个角的差,则()A .必有一个角等于30°B .必有一个角等于45︒C .必有一个角等于60︒D .必有一个角等于90︒5.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为()A .2a +2b -2cB .2a +2bC .2cD .06.如图,已知MB ND =,MBA NDC ∠=∠,添加下列条件仍不能判定ABM CDN ≌的是A .M N ∠=∠B .AM CN =C .AB CD =D .//AM CN7.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是()A .15°B .30°C .45°D .60°8.如图,2AB =,6BC AE ==,7CE CF ==,8BF =,则四边形ABDE 与CDF 面积的比值是()A .1B .34C .23D .129.如图所示,在ABC 中,5AB AC ==,F 是BC 边上任意一一点,过F 作FD AB ⊥于D ,FE AC ⊥于E ,若10ABC S =△,则FE FD +=()A .2B .4C .6D .810.如图,在ABC △中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;②BD DF AD +=;③CE DE ⊥;④BDE ACE S S =△△,其中正确的有()A .①②B .①③C .①②③D .①②③④11.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长是()A .13cmB .16cmC .19cmD .22cm12.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别是D ,E ,AD ,CE 交于点H .已知4EH EB ==,6AE =,则CH 的长为()A .1B .2C .35D .53二、填空题13.如图,ABC 与A B C '''V 关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.15.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19cm ,△ABD 的周长为13cm ,则AE 的长为______.16.设三角形的三个内角分别为α、β、γ,且a βγ≥≥,2αγ=,则β的最大值与最小值的和是___.三、解答题17.尺规作图,保留作图痕迹,不写作法.(1)作△ABC 中∠B 的平分线;(2)作△ABC 边BC 上的高.18.如图所示,在平面直角坐标系中,ABC △的三个顶点的坐标分别为()3,2A -,()1,3B -,()2,1C .(1)在图中作出与ABC △关于x 轴对称的111A B C △;(2)点1A 的坐标是______,ABC S =。
人教版八年级上册数学期中考试试卷带答案

人教版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.下列图形具有稳定性的是()A .六边形B .五边形C .平行四边形D .等腰三角形3.下列图形中,对称轴最多的是()A .等边三角形B .矩形C .正方形D .圆4.点M(3,-2)关于x 轴对称的对称点的坐标是()A .(-3,2)B .(3,2)C .(-3,-2)D .(2,3)5.能把一个三角形分成两个面积相等的三角形是三角形的()A .中线B .高线C .角平分线D .以上都不对6.如果三角形的两边长分别为3和5,则第三边L 的取值范围是()A .2<L<15B .L<8C .2<L<8D .10<L<167.已知:△ABC ≌△DEF ,AB=DE,∠A=70°,∠E=30°,则∠F 的度数为()A .80°B .70°C .30°D .100°8.点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是()A .PQ≤5B .PQ<5C .PQ≥5D .PQ>59.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为()A .72°B .36°C .60°D .82°10.在ABC ∆中,已知::1:2:3A B C ∠∠∠=,则三角形的形状是()A .钝角三角形B .直角三角形C .锐角三角形D .无法确定11.一个正多边形的每个外角都等于60°,那么它是()A .正十二边形B .正十边形C .正八边形D .正六边形12.如图,已知AB⊥BC,BC⊥CD,AB=DC,可以判定△ABC≌△DCB,判定的根据是()A.HL B.ASA C.SAS D.AAS二、填空题13.等边三角形的每个内角都是____°.14.已知点P(2,3),点A与点P关于y轴对称,则点A的坐标是______.15.已知一个三角形的三边长a、b、c,满足(a-b)2+|b-c|=0,则这个三角形是____三角形. 16.若n边形的内角和是它的外角和的2倍,则n=_______.17.如图,已知正方形ABCD的边长为4cm,则图中阴影部分的面积为__________2cm.18.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是____________.三、解答题19.求出图形中x的值.20.在△ABC中,已知∠A=30°,∠B=2∠C,求∠B和∠C的度数.21.尺规作图:如图,在直线MN 上求作一点P ,使点P 到∠AOB 两边的距离相等(不要求写出作法,但要保留作图痕迹,写出结论)22.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .23.已知,,a b c 为ABC ∆的三边长,且222222222a b c ab ac bc ++=++,试判断ABC ∆的形状,并说明理由.24.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.25.数学中的对称美、统一美、和谐美随处可见,在数的运算中就有一些有趣的对称形式.(1)我们发现:12=1,112=121,1112=12321,11112=1234321,…请你根据发现的规律,接下去再写两个等式;(2)对称的等式:12×231=132×21.仿照这一形式,完成下面的等式,并进行验算:12×462=_______,18×891=_______.26.如图,在△ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,①求证:△ADC ≌△CEB .②求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图2的位置时,判断ADC ∆和CEB ∆的关系,并说明理由.参考答案1.A 【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A 沿任意一条直线折叠直线两旁的部分都不能重合.故选A .考点:轴对称图形.2.D 【分析】根据三角形的稳定性判断即可.【详解】六边形、五边形、平行四边形都不具有稳定性;等腰三角形是三角形的一种,所以它具有稳定性.【点睛】本题考查了三角形的稳定性.在所有的图形里,只有三角形具有稳定性,也是三角形的特性,应牢牢掌握.3.D【解析】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.4.B【分析】根据平面直角坐标系内关于x轴对称:纵坐标互为相反数,横坐标不变可以直接写出答案.【详解】点M(3,-2)关于x轴对称的对称点的坐标是(3,2).故答案为:B.【点睛】本题主要考查了关于x轴对称点的坐标特点,关键是掌握点的变化规律.5.A【分析】根据等底等高的两个三角形的面积相等解答.【详解】解:三角形的中线把三角形分成两个等底等高的三角形,面积相等.故选A.【点睛】本题考查了三角形的面积,熟知等底等高的两个三角形的面积相等是解答此题的关键. 6.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,即可求得第三边的取值范围.由三角形三边关系定理及其推论得:5-3<L<5+3,即2<L<8.故答案为:C.【点睛】此题考查了三角形的三边关系,能正确运用三角形的三边关系是解此题的关键.7.A【分析】根据全等三角形对应角相等求出∠D=∠A,再利用三角形的内角和等于180°列式进行计算即可得解.【详解】∵△ABC≌△DEF,AB=DE,∠A=70°,∴∠D=∠A=70°,在△DEF中,∠F=180°-∠D-∠E=180°-70°-30°=80°,故选A.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.8.C【解析】【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB边的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解9.A【解析】试题分析:∵AB=AC,∠A=36°,∴∠ABC=∠C=1801803622A︒-∠︒-︒==72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选A.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.10.B【分析】设∠A=x,∠B=2x,∠C=3x,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【详解】解:∵::1:2:3A B C∠∠∠=设∠A=x,∠B=2x,∠C=3x.则x+2x+3x=180°,解得x=30°,∴∠A=30°,∠B=60°,∠C=90°,所以这个三角形是直角三角形.故选:B.【点睛】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.11.D【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出多边形的边数.【详解】该正多边形的边数为360°÷60°=6.【点睛】本题考查了多边形外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.12.C 【分析】根据垂直定义推出90ABC DCB ∠=∠=°,AB=DC ,CB BC =,根据SAS 推出ABC DCB ≌.【详解】∵AB ⊥BC ,BC ⊥CD ∴∠ABC=∠DCB=90°又∵AB=DC ,BC=CB ∴△ABC ≌△DCB (SAS )故答案为:C.【点睛】本题考查了对全等三角形的性质和判定的应用,注意:全等三角形的对应边相等,对应角相等,全等三角形的判定定理有SAS ASA AAS SSS ,,,.13.60°.【解析】试题分析:等边三角形三个角相等,而三角形内角和为180°,可得结果.试题解析:∵等边三角形三个角相等,又三角形内角和为180°,设等边三角形的每个内角的大小均是x ,则3x=180°,解得:x=60°.考点:1.三角形内角和定理;2.三角形.14.(-2,3)【解析】点P(2,3),点A 与点P 关于y 轴对称,则点A 的坐标是(−2,3),故答案为(−2,3).15.等边【分析】根据任意一个数的绝对值都是非负数和偶次方具有非负性可得:00a b b c -=-=,,再根据三角形的判断方法即可知道该三角形的形状.【详解】∵(a-b)2+|b-c|=0∴(a-b)2=0,|b-c|=0∴a=b ,b=c ∴a=b=c∴这个三角形是等边三角形.【点睛】本题考查了任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0、偶次方的非负性以及等边三角形的判定.16.6【详解】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2),外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=617.8【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S 阴影=12×4×4=8cm 2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.18.2【分析】根据题意,画出图形,由轴对称的性质即可解答.【详解】根据轴对称的性质可知,台球走过的路径为:∴该球最后将落入的球袋是2号袋.故答案为2.【点睛】本题主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.注意结合图形解题的思想;严格按轴对称画图是正确解答本题的关键.19.x=60.【解析】试题分析:根据三角形的外角和定理列出等式,即可求得x 的值.试题解析:解:x+70=x+10+x ,∴x=60.考点:三角形的外角和定理.20.∠B=100°,∠C=50°.【分析】根据三角形的内角和等于180°列式求出∠C ,再求解即可得到∠B .【详解】∵2B C ∠=∠,180A B C ∠+∠+∠=°,∴2180A C C ∠+∠+∠=°,即303180C ︒+∠=°,解得:50C ∠=°,∴2250100B C ∠=∠=⨯︒=°.答:∠B 等于100°,∠C 等于50°【点睛】本题考查了三角形的内角和定理,是基础题,熟记定理列出并整理成关于∠C的方程是解题的关键.21.答案见解析.【分析】作的平分线交直线MN于P点.【详解】解:根据题意,如图,作∠AOB的平分线,∠AOB的平分线与直线MN交于一点,则点P 即为所求.22.证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.△ABC是等边三角形,理由见解析【分析】先根据完全平方公式进行变形,求出a=b=c,即可得出答案.【详解】解:△ABC是等边三角形.证明如下:∵2a2+2b2+2c2=2ab+2ac+2bc,∴2a2+2b2+2c2-2ab-2ac-2bc=0,∴a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴(a-b)2=0,(a-c)2=0,(b-c)2=0,∴a=b且a=c且b=c,即a=b=c,∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和完全平方公式、因式分解,能根据完全平方公式得出(a-b)2+(a-c)2+(b-c)2=0是解此题的关键.24.DE=2cm【分析】利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.【详解】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,∴S△ABC =12AB•DE+12AC•DF=28,即12×20×DE+12×8×DF=28,解得DE=2cm.【点睛】全等三角形的判定与性质;三角形的面积;角平分线的性质.25.(1)111112=1234543211111112=12345654321;(2)264×21;198×81.【分析】(1)分别观察112,1112,11112,…,得出结果的一般规律,再根据一般规律求值.(2)根据给出的题例,即把每一个因数各个数位上的数字反过来写,乘积仍相等.【详解】(1)由12=1,112=121,1112=12321,11112=1234321,可知,这类数平方的结果为“回文数”,即从1开始按连续整数依次增大到最大,再逐渐减小到1,其中,最大的数字为等式左边1的个数,所以接下来的等式是:111112=123454321,1111112=12345654321.(2)124625544264215544⨯=⨯=, ,1246226421∴⨯=⨯1889116038⨯=,1988116038⨯=1889119881∴⨯=⨯【点睛】本题考查了有理数的概念与运算.关键是由易到难,由特殊到一般,找出这类数的平方的规律.26.(1)①见解析;②见解析;(2)△ADC ≌△CEB ;理由见解析【分析】(1)①要证△ADC ≌△CEB ,已知一直角∠ADC=∠CEB=90°和一边AC=CB 对应相等,由题意根据同角的余角相等,可得另一内角∠ECB=∠DAC ,再由AAS 即可判定;②由①得出AD=CE ,BE=CD ,而DE=CD+CE ,故DE=AD+BE ;(2)同理,根据上一小题的解题思路,易得△ADC ≌△CEB.【详解】(1)①∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DAC ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )②∵△ADC ≌△CEB∴AD=CE ,BE=CD又∵DE=CD+CE∴DE=AD+BE(2)△ADC ≌△CEB ;∵∠ACB=90°∴∠DCA+∠ECB=90°又∵AD ⊥MN∴∠DCA+∠DAC=90°∴∠ECB=∠DAC又∵AD ⊥MN ,BE ⊥MN∴∠ADC=∠CEB=90°在△ADC 和△CEB 中ECB DACADC CEB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS )【点睛】此题主要考查三角形全等的判定,熟练掌握,即可解题.。
人教版八年级上册数学期中考试试题带答案

人教版八年级上册数学期中考试试卷一、单选题1.在下列以线段a 、b 、c 的长为边,能构成三角形的是()A .a =3,b =4,c =8B .a =5,b =6,c =11C .a =6,b =8,c =9D .a =7.b =17,c =252.如果三角形的一个内角等于另两个内角之差,则这个三角形为()A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形3.如图,点D 是△ABC 边BC 延长线上的点,∠ACD =105°,∠A =70°,则∠B 等于A .35°B .40°C .45°D .50°4.如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S △ABC 的面积为()A .52B .3C .72D .45.如图,ABC A B C ''△≌△,30BCB '∠=︒,则ACA '∠的度数为()A .30°B .45︒C .60︒D .110︒6.从十二边形的一个顶点出发,可引出对角线()条A .9条B .10条C .11条D .12条7.一个多边形的内角和等于1080°,则这个多边形的每个外角都等于()A.30°B.45°C.60°D.90°8.如图,已知∠ABC,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP.他这样做的依据是()A.在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.测量垂直平分线上的点到这条线段的距离相等9.如图所示,在△ABC中P为BC上一点,PR⊥BC,垂足为R,PS⊥AC,垂足为S,AQ=PQ,PR=PS.下面三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP其中正确的是()A.①②B.②③C.①③D.①②③10.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°二、填空题11.已知三角形的两边长分别为1和4,第三边长为整数,则第三边长为______.12.一个六边形的内角和度数为_______.13.如图所示,△ABC≌△AED,∠E=55°,∠EAC=55°,∠C=45°,则∠DAC=______.14.如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD :CD =2:3,AD 、BE 交于点O ,若S △AOE ﹣S △BOD =1,则△ABC 的面积为_____.15.已知:如图,Rt ABC 中,AC BC =,D 为BC 上一点,CE AD ⊥于E ,若2CE =,则BEC S =△________.16.在Rt ABC △中,90A ∠=︒,3AB =,4AC =,ABC ∠,ACB ∠的平分线交于P 点,PE BC ⊥于E 点,则PE 的长是________.17.如图,在△ABC 中,∠B =30°,∠BAC =90°,AD ⊥BC ,CD =2,则BD =_.三、解答题18.已知一个正多边形的每个外角均为45°,则这个多边形的内角和是多少度.19.如图:111A B C △的面积为a ,分别延长111A B C △的三条边11B C 、11C A 、11A B 到点2B 、2C 、2A ,使得1211C B B C =,1211A C A C =,1211B A A B =,得到222A B C △:再分别延长222A B C △的三条边22B C 、22C A 、22A B 到点3B 、3C 、3A ,使得2322C B B C =,2322A C A C =,2322B A A B =,得到333A B C △:…….按照此规律作图得到n n n A B C ,求n n n A B C 的面积.20.如图,在ABC 中,AD 是高,AE 是角平分线,50BAC ∠=︒,60B ∠=︒.求DAC ∠和BEA ∠的度数.21.如图,已知AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,点E ,D 分别为垂足,CF CB =.求证:BE FD =.22.如图,△ABC为等边三角形,AE=CD,AD与BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:BE=AD;(2)求∠BPD的度数;(3)求AD的长.23.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,点E是BC的中点,DE⊥AB 于点F,且AB=DE.(1)求证:△ACB≌△EBD;(2)若DB=12,求AC的长.24.如图,在△ABC中,AB=AC,点D,E.,F分别在AB、BC、AC边上,且BE=CF,BD=CE(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DFE的度数.25.如图,在△ABC 中,AC=BC ,点D 在边AB 上,AB=4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC=∠AEC=180°-∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为.26.(1)模型探究:如图1所示的“镖形”图中,请探究ADB ∠与A ∠、B Ð、C ∠的数量关系并给出证明;(2)模型应用:如图2,DE 平分ADB ∠,CE 平分ACB ∠,24A ∠=︒,66B ∠=︒,请直接写出E ∠的度数.参考答案1.C2.C3.A4.C5.A6.A7.B8.A9.A10.C11.4【分析】三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,根据三边关系可得第三边的范围,从而可得答案.【详解】解:设三角形的第三边为,x则41-<x <41+,即3<x <5,第三边长为整数,4,x ∴=故答案为:4.【点睛】本题考查的是三角形的三边关系,熟悉三角形的三边关系得到第三边的取值范围是解题的关键.12.720︒【分析】根据多边形的内角和公式()2180n -⋅o,其中n 为多边形的边数,进行计算即可.【详解】解:一个六边形的内角和等于()62180720-⨯=;故答案为:720°.【点睛】本题考查了多边形的内角和公式,熟悉多边形内角和公式是解题的关键.13.25°.【解析】【分析】根据全等三角形的性质得到∠D =∠C ,根据三角形内角和定理求出∠EAD ,结合图形计算,得到答案.【详解】∵△ABC ≌△AED ,∠C =45°,∴∠D =∠C =45°,∵∠E =55°,∴∠EAD =180°﹣∠E ﹣∠D =80°,∴∠DAC =∠EAD ﹣∠EAC =80°﹣55°=25°,故答案为:25°.14.10【分析】根据E 为AC 的中点可知,S △ABE =12S △ABC ,再由BD :CD =2:3可知,S △ABD =25S △ABC ,进而可得出结论.【详解】解:∵点E 为AC 的中点,∴S △ABE =12S △ABC .∵BD :CD =2:3,∴S △ABD =25S △ABC ,∵S △AOE ﹣S △BOD =1,S △AOE ﹣S △BOD=ABE ABD S S - ,∴12S △ABC ﹣25S △ABC =1,解得S △ABC =10.故答案为:10.15.2【分析】延长CE ,过B 点作BM CE ⊥于点M ,先证明()BMC CEA AAS ≌,即可得出2BM CE ==,运用三角形面积计算公式计算即可.【详解】解:延长CE ,过B 点作BM CE ⊥于点M ,,∵90MCB ACE ACE CAD ∠+∠=∠+∠=︒,∴MCB CAD ∠=∠,∵90BMC AEC ∠=∠=︒,AC BC =,∴()BMC CEA AAS ≌,∴2BMCE ==,∴1122222BECS CE BM=⨯=⨯⨯=,故答案为:2.【点睛】本题主要考查全等三角形的判定与性质,寻找BEC△EC边上的高作辅助线证明()BMC CEA AAS≌全等是解题的关键.16.1【解析】【分析】连接AP,作PF⊥AB于F,PG⊥AC于G,根据角平分线的性质得到PE=PF=PG,根据三角形的面积公式计算即可.【详解】解:连接AP,作PF⊥AB于F,PG⊥AC于G,∵∠A=90°,AB=3,AC=4,∴BC=5,∵BP、CP是∠ABC和∠ACB的平分线,∴PE=PF=PG,∴12×BC×PE+12×AB×PF+12×AC×PG=12×AB×AC,解得,PE=1.故答案为:1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.6【解析】【分析】先在Rt ACD △中,利用直角三角形的性质、勾股定理求出AD 的长,再在Rt ABD △中,利用直角三角形的性质、勾股定理即可得.【详解】解: 在ABC 中,30,90B BAC ∠=︒∠=︒,9006B C ︒-∠∴=∠=︒,AD BC ⊥ ,9030CAD C ∴∠=︒-∠=︒,在Rt ACD △中,2CD =,24,AC CD AD ∴===,则在Rt ABD △中,26ABAD BD ====,故答案为:6.18.1080︒【分析】由已知,根据正多边形的外角和为360度可以得到正多边形的边数,再由正多边形内角和的计算方法可以得解.【详解】解:由360458︒÷︒=可以得知正多边形的边数为8,∴这个正多边形的内角和为()821801080-⨯︒=︒.19.17n a-【分析】连接A 1B 2,B 1C 2,C 1A 2,C 2A 3,B 2C 3,A 2B 3,根据中线的性质求出△A 1C 1B 2的面积,再求出B 2C 2C 1的面积,同理可求出△A 1A 2C 2、△B 1B 2A 2,故可得到222A B C △的面积,进而发现规律得到n n n A B C 的面积.【详解】如图,连接A 1B 2,C 1A 2,B 1C 2,C 2A 3,B 2C 3,A 2B 3,∵1211C B B C =,∴112A C B S =111A B C △S =a∴2212B C C S a= ∵1211A C A C =,1211B A A B =同理1222A A C S a = ,1222B B A S a = ∴2222227A B C S a a a a a =+++=△=7111A B C △S ∵2322C B B C =,∴223A C B S =222A B C S △=7a ∴33214B C C S a= ∵2322A C A C =,2322B A A B =同理23314A AC S a = ,23314B B A S a= 同理可得333222749A B C A B C S S a ==△△=72a ∴1111177n n n n n A B C A B C S S a --== .【点睛】此题主要考查三角形面积的规律探索,利用了底倍长,高相等,面积加倍,解题的关键是熟知中线的性质.20.20,95DAC BEA ∠=︒∠=︒【解析】【分析】因为AD 是高,所以90ADC ∠=︒,又因为50,60BAC B ∠=︒∠=︒,根据三角形内角和定理求出70C ∠=︒,即可求出DAC ∠度数;因为50BAC ∠=︒,且AE 是角平分线,所以25BAE ∠=︒,再利用三角形内角和定理即可求解.【详解】解:AD BC⊥ 90ADC ∴∠=︒50,60BAC B ∠=︒∠=︒ ,180506070C ∴∠=︒-︒-︒=︒;在Rt ADC 中,180180907020DAC ADC C ∴∠=︒-∠-∠=︒-︒-︒=︒,50BAC ∠=︒ 且AE 是角平分线,25BAE ∴∠=︒,180180602595BEA B BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,综上所述:20,95DAC BEA ∠=︒∠=︒.【点睛】本题考查了角平分线的性质、与高有关的角度计算、三角形内角和定理,解题的关键是找准角之间的等量关系,利用三角形内角和定理进行求解.21.见解析【解析】【分析】根据角平分线性质可得CD CE =,90CDF CEB ∠=∠=︒,然后证Rt CDF Rt CEB △≌△(HL )即可.【详解】证明:∵AC 平分BAD ∠,CE AB ⊥,CD AD ⊥,CD CE ∴=,90CDF CEB ∠=∠=︒,在Rt △DFC 和Rt △EBC 中,CD CE CF CB =⎧⎨=⎩,Rt CDF Rt CEB∴△≌△(HL),DF BE∴=.【点睛】本题考查角平分线的性质,三角形全等判定与性质,掌握角平分线的性质,三角形全等判定与性质,是解题关键.22.(1)详见解析;(2)60°;(3)7.【解析】【分析】(1)根据SAS证明△ABE与△CAD全等即可;(2)根据全等三角形的性质得出∠ABE=∠CAD,进而解答即可;(3)根据含30°的直角三角形的性质解答即可.【详解】(1)证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=∠C=60°,又∵AE=CD,在△ABE与△CAD中,AB AC=⎧⎪⎨⎪⎩∠BAC=∠CAE=CD,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:由(1)得∠ABE=∠CAD AD=BE,∴∠BPQ=∠BAD+∠ABE=∠BAD+∠CAD=60°;(3)解:∵BQ⊥AD,∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,又∵AD=BE,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查全等三角形的性质及含30度角的直角三角形,解题突破口是根据全等三角形的性质得出∠ABE =∠CAD .23.(1)证明见解析;(2)6.【解析】【分析】(1)先根据垂直的定义、直角三角形的性质可得A BED ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得,12AC BE BC DB ===,再根据线段中点的定义可得162BE BC ==,由此即可得出答案.【详解】证明:(1)90ACB DBC ∠=∠=︒ ,DE AB ⊥,9090,BED ABC A ABC ∴∠+∠=︒∠+∠=︒,A BED ∴∠=∠,在ACB △和EBD △中,90ACB EBD A BED AB ED ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB EBD AAS ≅∴ ;(2)由(1)已证:ACB EBD ≅ ,,12AC BE BC DB ∴===,点E 是BC 的中点,24.(1)证明见解析;(2)证明见解析;(3)55︒.【分析】(1)先根据等腰三角形的性质可得B C ∠=∠,再根据三角形全等的判定定理证出DBE ECF ≅△△,然后根据全等三角形的性质可得DE EF =,最后根据等腰三角形的定义即可得证;(2)先根据全等三角形的性质可得BDE CEF ∠=∠,再根据三角形的外角性质即可得证;(3)先根据三角形的内角和定理可得70B ∠=︒,从而可得70∠︒=DEF ,再根据等腰三角形的性质即可得.【详解】证明:(1)AB AC = ,B C ∴∠=∠,在DBE 和ECF △中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE ECF SAS ∴≅ ,DE EF ∴=,DEF ∴ 是等腰三角形;(2)由(1)已证:DBE ECF ≅△△,BDE CEF ∴∠=∠,DEF CEF DEC B BDE ∠+∠=∠=∠+∠ ,B DEF ∴∠=∠;(3) 在ABC 中,40,A B C ∠=︒∠=∠,()1180702B C A ∴∠=∠=︒-∠=︒,由(2)已证:B DEF ∠=∠,70DEF ∴∠=︒,由(1)已证:DEF 是等腰三角形,()1180552DFE EDF DEF ∴∠=∠=︒-∠=︒.25.(1)①见解析;②全等,理由见解析;(2)3;(3)48【分析】(1)①连接BC ,由已知及∠AEC=180°-∠AED ,可得到∠ACB=∠AED .再证明∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②利用“ASA”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC=S △ECA ,所以S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,根据AB=4BD ,可得到S △DBC=14S △ABC=12,从而可得△ABC 的面积.【详解】解:(1)①∠FBC=∠ECA ,理由如下:∵∠BFC=∠AEC=180°-∠ACB ,且∠AEC=180°-∠AED ,∴∠ACB=∠AED .由外角定理可得∠AED=∠ACD+∠CAE ,又∠ACB=∠ACD+∠BCF ,∴∠CAE=∠BCF ,由三角形内角和定理可得∠FBC=∠ECA ;②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,FBC ECA BC CA BCF CAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FBC ≌△ECA (ASA );(2)由(1)中②可知,FC=AE=11,BF=CE ,又EF=8,∴CE=FC-EF=11-8=3,∴BF=3,故答案为:3;(3)由(1)中结论可知S △FBC=S △ECA ,∴S △ECA+S △BDF=12=S △FBC+S △BDF=S △DBC ,又AB=4BD ,∴S △DBC=14S △ABC=12,∴S △ABC=48.故答案为:48.26.(1)ADB ∠=A ∠+B Ð+C ∠,理由见详解;(2)21°【分析】(1)连接CD 并延长到点E ,利用三角形的外角的性质求解即可;(2)由(1)可知:∠ADB-∠C=∠A+∠B=90°,从而得∠EDO-∠BCO=12×90°=45°,结合∠EDO+∠E=∠BCO+∠B ,即可求解.【详解】解:(1)ADB ∠=A ∠+B Ð+C ∠,理由如下:连接CD 并延长到点E ,∵∠ADE =∠ACD +∠A ,∠BDE =∠BCD +∠B ,∴∠ADE +∠BDE =∠ACD +∠A +∠BCD +∠B ,∴ADB ∠=A ∠+B Ð+ACB ∠.(2)由第(1)题可得:ADB ∠=A ∠+B Ð+ACB ∠,∴∠ADB-∠ACB=∠A+∠B=66°+24°=90°,∵DE 平分ADB ∠,CE 平分ACB ∠,∴∠EDO-∠BCO=12(∠ADB-∠C )=12×90°=45°,∵∠DOE=∠BOC ,∴∠EDO+∠E=∠BCO+∠B ,∴∠B-∠E=∠EDO-∠BCO=45°,∴∠E=∠B-45°=66°-45°=21°.。
人教版八年级上册数学期中考试试卷含答案

人教版八年级上册数学期中考试试题一、单选题1.下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是()A .B .C .D .2.下面各组线段中,能组成三角形的是()A .6,9,14B .8,8,16C .10,5,4D .5,11,63.一个多边形的每个内角均为135°,则这个多边形是()A .五边形B .六边形C .七边形D .八边形4.如图,ABC 中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120∠=︒BEC ;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有()A .①②B .①③C .②③D .①②③5.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A .①B .②C .③D .①和②6.如图,在 ACE 中,点D 在AC 边上,点B 在CE 延长线上,连接BD ,若∠A =47°,∠B =55°,∠C =43°,则∠DFE 的度数是()A.125°B.45°C.135°D.145°7.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是()A.①②B.②③C.③④D.①④8.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.189.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是()A.10B.15C.20D.3010.已知:如图,FD∥BE,则()A.∠1+∠2-∠A=180°B.∠2+∠A-∠1=180°C.∠A+∠1-∠2=180°D.∠1-∠2+∠A=180°二、填空题11.如图,在△ABC中,BE和AD分别是边AC和BC上的中线,则△AEF和四边形EFDC 的面积之比为_____.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB ,CD ),这其中的数学原理是__________.13.若一个多边形的内角和为1800°,则这个多边形______边形.14.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.15.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.16.如图,线段AC ,BD 相交于点E ,EB CE =,要使ABE DCE △≌△,只需增加的一个条件是________.(只要填出一个即可)17.如图,在ABC 中,AD BC ⊥于点D ,AE 平分BAC ∠,若30BAE ∠=︒,20CAD ∠=︒,则B ∠=______.18.如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连结DE ,动点P 从点B 出发,以每秒2个单位长度的速度沿BC CD DA --向终点A 运动.设点P 的运动时间为t 秒,当t 的值为______________时,ABP △和DCE 全等.三、解答题19.如图,电信部门要在公路m ,n 之间的S 区域修一座电视信号发射塔P.按照设计要求,发射塔P 到区域S 内的两个城镇A,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).20.一个等腰三角形的周长是36厘米.(1)已知腰长是底长的2倍,求各边长.(2)已知其中一边长为8厘米,求其它两边长.21.在一次数学课上,老师在黑板上画出如图所示的图形,并写下四个等式,(1)AB DC =,(2)BD AC =,(3)B C ∠=∠,(4)BDA CAD ∠=∠.要求同学从这四个等式中选出其中的两个或三个作为条件,推出第四个,请你试着完成王老师提出的要求(写出三种)并选择一种说明理由.22.已知BC ED =,AB AE =,B E ∠=∠,F 是CD 的中点,求证:AF CD ⊥.23.如图,三角形纸片中,AB=8cm ,BC=6cm ,AC=5cm .沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,求ADE 的周长24.如图,在△ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若△CMN 的周长为15cm ,求AB 的长;(2)若70MFN ∠=︒,求MCN ∠的度数.25.探究与发现:如图①,在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 在底边BC 上,AE=AD ,连接DE .(1)当∠BAD=60°时,求∠CDE 的度数;(2)当点D在BC(点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.参考答案1.D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.A【解析】【分析】运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:由6,9,14可得,6+9>14,故能组成三角形;由8,8,16可得,8+8=16,故不能组成三角形;由10,5,4可得,4+5<10,故不能组成三角形;由5,11,6可得,5+6=11,故不能组成三角形;故选:A.【点睛】本题主要考查了三角形的三边关系的运用,三角形的两边差小于第三边,三角形两边之和大于第三边.3.D【解析】【详解】︒-︒=︒,解:正多边形的每个外角都相等,每个外角为18013545多边形的外角和为360︒,︒÷︒=所以边数为:360458故选:D.4.D【解析】【详解】分析:根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠,∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒,∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒,故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG 中,90BFD CGD DF DG BDF CDG∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒,∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.5.C【解析】【分析】观察每块玻璃形状特征,利用ASA 判定三角形全等可得出答案.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带③去.故选:C .【点睛】本题属于利用ASA 判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合,解题的关键是熟练掌握全等三角形的判定定理.6.D【解析】【分析】利用三角形内角和定理求出∠AEC,再求出∠EFB可得结论.【详解】解:∵∠A+∠C+∠AEC=180°,∴∠AEC=180°﹣47°﹣43°=90°,∴∠FEB=90°,∴∠EFB=90°﹣∠B=35°,∴∠DFE=180°﹣35°=145°,故选:D.【点睛】本题考查三角形内角和定理,解题的关键是熟练掌握三角形的内角和定理,属于中考常考题型.7.D【解析】【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【详解】解:①全等三角形的对应边相等,正确;②全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;③全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故该选项错误;④全等三角形是指能够完全重合的两个三角形,故正确;故正确的是①④.故选D.8.B【解析】【分析】根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.【详解】解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .【点睛】本题考查了等腰三角形的性质.9.B【解析】【分析】过D 作DE ⊥BC 于E ,根据角平分线性质求出DE =3,对12BDC S BC DE =⨯ 计算求解即可.【详解】解:如图,过D 作DE ⊥BC 于E ,∵BD 平分ABC∠∴由角平分线的性质可知3DE AD ==∴111031522BDC S BC DE =⨯=⨯⨯= 故选B .【点睛】本题考查了角平分线的性质.解题的关键在于根据角平分线的性质求出BDC 的高.10.A【解析】【详解】∵FD//BE ,∴∠2=∠4,∵∠4+∠5=180°,∴∠5=180°-∠4=180°-∠2,∵∠1+∠3=180°,∴∠3=180°-∠1,∵∠3+∠5+∠A=180°,∴180°-∠1+(180°-∠2)+∠A=180°,∴∠1+∠2-∠A=180°,故选:A.11.1:2【解析】【分析】设△DEF的面积为S,先判断F点为△ABC的重心,根据三角形重心的性质得到AF=2FD,=2S,再利用E点为AC的中点得到S△DAE=S△DCE=则根据三角形面积公式得到S△AEF3S,从而得到△AEF和四边形EFDC的面积之比.【详解】解:设△DEF的面积为S,∵BE和AD分别是边AC和BC上的中线,∴F点为△ABC的重心,∴AF=2FD,=2S,∴S△AEF∵E点为AC的中点,=S△DCE=S+2S=3S,∴S△DAE∴△AEF和四边形EFDC的面积之比为2S:(S+3S)=1:2.故答案为:1:2.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S12=⨯底×高.三角形的中线将三角形分成面积相等的两部分.12.三角形的稳定性【解析】【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【详解】解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.【点睛】本题主要考查了三角形的稳定性,解题的关键在于能够熟知三角形具有稳定性.13.十二【解析】【分析】根据多边形的内角和公式列式求解即可.【详解】解:设这个多边形的边数是n,则()21801800n-⨯︒=︒,解得:12n=.故答案为:十二.【点睛】本题考查了多边形的内角和公式,熟记公式是解题的关键.14.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.15.240°.【解析】【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.16.AE=DE或∠A=∠D或∠B=∠C【解析】【分析】根据全等三角形的判定方法添加条件即可.【详解】解:∵BE=CE,∠AEB=∠DEC,添加AE=DE,可根据SAS证明△ABE≌△DCE,添加∠A=∠D,可根据AAS证明△ABE≌△DCE,添加∠B=∠C,可根据ASA证明△ABE≌△DCE,故答案为:AE=DE或∠A=∠D或∠B=∠C.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.17.50︒【解析】【分析】想办法求出AED∠,再利用三角形的外角的性质求解即可.【详解】解:AE∠,∵平分BAC∴∠=∠=︒,BAE CAE30∴∠=∠-∠=︒-︒=︒,EAD EAC DAC302010,⊥AD BC∴∠=︒,ADE90∴∠=︒-∠=︒,AED EAD9080,∠=∠+∠AED B BAE∴∠=︒-︒=︒,B803050故答案是:50︒.【点睛】本题考查三角形内角和定理,角平分线的性质等知识,解题的关键是熟练掌握三角形内角和定理.18.1或7【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】解:当点P在BC上时,∵AB=CD,∴当△ABP≌△DCE,得到BP=CE,由题意得:BP=2t=2,当P在AD上时,∵AB=CD,∴当△BAP≌△DCE,得到AP=CE,由题意得:AP=6+6-4﹣2t=2,解得t=7.∴当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解.19.作图见解析【解析】【分析】作线段AB的垂直平分线,再作直线m与n的夹角的角平分线,两线的交点就是P点.【详解】解:如图所示.20.(1)365cm,725cm,725cm;(2)14cm,14cm.【解析】【分析】(1)设底边BC=acm,则AC=AB=2acm,代入求出即可;(2)分类讨论,然后根据三角形三边关系定理判断求出的结果是否符合题意.解:如图,(1)设底边BC=acm ,则AC=AB=2acm ,∵三角形的周长是36cm ,∴2a+2a+a=36,∴a=365,2a=725,∴等腰三角形的三边长是365cm ,725cm ,725cm .(2)①当等腰三角形的底边长为8cm 时,腰长=(36-8)÷2=14(cm );则等腰三角形的三边长为8cm 、14cm 、14cm ,能构成三角形;②当等腰三角形的腰长为8cm 时,底边长=36-2×8=20;则等腰三角形的三边长为8cm ,8cm 、20cm ,不能构成三角形.故等腰三角形另外两边的长为14cm ,14cm .【点睛】本题考查了等腰三角形的性质及三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.见解析【解析】【分析】根据SAS 、ASA 、AAS 进行推理即可得到答案.【详解】解:由①②③可推出④;由②③④可推出①;由①③④可推出②;第一种情况证明:∵AB DC =,BD AC =,B C ∠=∠,∴ABD DCA ∆≅∆(SAS )∴BDA CAD∠=∠第二种情况证明:∵BD AC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(ASA )∴AB DC=第三种情况证明:∵AB DC =,B C ∠=∠,BDA CAD∠=∠∴ABD DCA ∆≅∆(AAS )∴BD AC=22.见解析【分析】连接AC 、AD ,由已知证明ABC AED ∆≅∆,得到AC AD =,又因为点F 是CD 的中点,利用等腰三角形的三线合一或全等三角形可得AF CD ⊥.【详解】解:如图,连接AC 、AD,在ABC ∆和AED ∆中,AB AE B E BC ED =⎧⎪∠=∠⎨⎪=⎩,()ABC AED SAS ∴∆≅∆.AC AD ∴=.ACD ∴∆是等腰三角形.又 点F 是CD 的中点,AF AF CF DF AC AD =⎧⎪∴=⎨⎪=⎩,()ACF ADF SSS ∴∆≅∆,90AFC AFD ∴∠=∠=,AF CD ∴⊥.23.7cm【分析】根据翻折变换的性质可得DE=CD ,BE=BC ,然后求出AE ,再根据三角形的周长列式求解即可.【详解】解:∵BC 沿BD 折叠点C 落在AB 边上的点E 处,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,∴AE=AB-BE=AB-BC=8-6=2cm ,∴△ADE 的周长=AD+DE+AE ,=AD+CD+AE ,=AC+AE ,=5+2,=7cm .24.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒.【解析】(1)根据线段垂直平分线的性质,可得AM CM =,CN NB =,可得△CMN 的周长等于线段AB ;(2)根据三角形内角和定理,列式求出MNF NMF ∠+∠,再求出A B ∠+∠,根据等边对等角可得A ACM ∠=∠,B BCN ∠=∠,即可求解.【详解】解:(1)∵DM ,EN 分别垂直平分AC 和BC∴AM CM =,CN NB=∵△CMN 的周长为15cm∴15CM CN MN cm++=∴15AM BN MN cm++=∴15AB cm=AB 的长为15cm(2)由(1)得AM CM =,CN NB=∴A ACM ∠=∠,B BCN∠=∠在MNF 中,70MFN ∠=︒∴110FMN FNM ∠+∠=︒根据对顶角的性质可得:FMN AMD ∠=∠,FNM BNE∠=∠在Rt ADM △中,9090A AMD FMN∠=︒-∠=︒-∠在Rt BNE 中,9090B BNE FNM∠=︒-∠=︒-∠∴909070A B FMN FNM ∠+∠=︒-∠+︒-∠=︒∴70MCA NCB ∠+∠=︒在ABC 中,70A B ∠+∠=︒∴110ACB ∠=︒∴()40MCN ACB MCA NCB ∠=∠-∠+∠=︒25.(1)30°(2)∠CDE=12∠BAD(3)∠CDE=12∠BAD 【分析】(1)根据等腰三角形的性质得到∠CAD=∠BAD=60°,由于AD=AE ,于是得到∠ADE=60°,根据三角形的内角和即可得到∠CDE=75°﹣45°=30°;(2)设∠BAD=x ,于是得到∠CAD=90°﹣x ,根据等腰三角形的性质得到∠AED=45°+12x ,于是得到结论;(3)设∠BAD=x ,∠C=y ,根据等腰三角形的性质得到∠BAC=180°﹣2y ,由∠BAD=x ,于是得到∠DAE=y+12x ,即可得到结论.【详解】解:(1)∵AB=AC ,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE ,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+12x,∴∠CDE=12 x;∴∠CDE=12∠BAD(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠DAE=y+12 x,∴12 CDE AED C x ∠=∠-∠=.∴∠CDE=12∠BAD21。
人教版数学八年级上册期中考试题附答案

人教版数学八年级上册期中考试试卷一、精心选择(每小题3分,共24分)1.在下列各电视台的台标图案中,是轴对称图形的是()A .B .C .D .2.下列说法正确的是()A .三角形三条高的交点都在三角形内B .三角形的角平分线是射线C .三角形三边的垂直平分线不一定交于一点D .三角形三条中线的交点在三角形内。
3.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么y x +的值是()A .1-B .7-C .7D .1第5题图第6题图第7题图4.正多边形的每个内角都等于135°,则该多边形是()A .正八边形B .正九边形C .正十边形D .正十一边形5.在正方形网格中,∠AOB 的位置与图所示,到∠AOB 两边距离相等的点应是()A .M 点B .N 点C .P 点D .Q 点第8题图第9题图第11题图6.如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是()A .CB=CDB .∠BAC=∠DAC C .∠BCA=∠DCAD .∠B=∠D=90°7.如图,在△ABC 中,AD 为∠BAC 的平分线,D E⊥AB 于E ,D F⊥AC 于F ,△ABC 的面积是228cm ,AB=20cm ,AC=8cm ,则DE 的长是()A .4cm B .3cm C .2cm D .1cm8.如图,在四边形ABCD 中,AD ∥BC ,∠C=90°,BC=CD=8,过点B 作EB ⊥AB ,交CD 于点E 。
若DE=6,则AD 的长为()A .6B .8C .9D .10二、细心填空(每小题3分,共24分)9.如图,已知△ABC ≌△ADE ,若AB=7cm ,AC=3cm ,则BE 的长为。
10.若等腰三角形有两边长分别为4cm 和7cm ,则它的周长是cm 。
11.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,若△ABC 的周长为22,BC=6,则△BCD 的周长为。
人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、单选题1.以下列各组线段为三角形的边,能组成三角形的是()A .1cm ,2cm ,4cmB .3cm ,3cm ,6cmC .7cm ,7cm ,12cmD .3cm ,6cm ,10cm2.点(3,2)M 关于y 轴对称的点的坐标为()A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)-3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A .SSSB .SASC .AASD .ASA4.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A .五边形B .六边形C .七边形D .八边形5.如果等腰三角形的两边长分别为2和5,则它的周长为()A .9B .7C .12D .9或126.下列运算中正确的是()A .55102a a a +=B .326326a a a ⋅=C .623a a a ÷=D .222(2)4ab a b -=7.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是()A .20°B .60°C .50°D .40°8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是()A.12B.10C.8D.69.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.2∥交ED的延长线于点10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF ACF,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题11.等腰三角形的一个角是70°,则它的底角是_____.12.(45)2015×1.252014×(﹣1)2016=_______.13.如图,点D在BC上,AB=AD,∠C=∠E,∠BAD=∠CAE,若∠1+∠2=105°,则∠ABC 的度数是_____.14.计算:﹣3x(2x2+4x﹣3)=_______.15.若29a ka ++是一个完全平方式,则k 的值是________.16.计算:()03.14π-=_____________________.17.在△ABC 中,点P 是边AB,边BC 的垂直平分线的交点,∠A=50°.则∠PBC=______.18.如图,已知点A 、C 、F 、E 在同一直线上,△ABC 是等边三角形,且CD=CE ,EF=EG ,则∠F=_____度.三、解答题19.计算题:(1)(5x+2y )(3x-2y )(2)(4x-3y+2)(4x+3y+2)(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3(4)19992-2000×199820.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .21.如图,在长度为1个单位长度的小正方形组成的网格图中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短.22.如图,已知:△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,求∠BAC 的度数.23.如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.24.如图,△ABC是等边三角形,BD是中线,过点D作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.20.如图,AD⊥BC于D,AD=BD,AC=BE.(1)请说明∠1=∠C;(2)猜想并说明DE和DC有何特殊关系.26.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图①,求∠DCE的度数;(3)如图②,③,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由,并求出∠DCE的度数.参考答案1.C【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,逐项判断即可.【详解】解:A :1cm 2cm 4cm +<,故不能构成三角形;B :3cm 3cm 6cm +=,故不能构成三角形;C :7cm 7cm 12cm +>,故能构成三角形;D :3cm 6cm 10cm +<,故不能构成三角形.故选:C .【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.2.A【解析】【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】∵y 轴对称的点的纵坐标相等,横坐标互为相反数,∴点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.3.D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.5.C【解析】【分析】分类讨论2是腰与底,根据三角形三边关系验证即可.【详解】解:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C .【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.6.D【解析】【分析】直接利用合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则运算即可求出答案.【详解】解:(A )5552a a a +=,故A 错误;(B )532326a a a =g ,故B 错误;(C )624a a a ÷=,故C 错误;(D )222(2)4ab a b -=,故D 正确;故选:D .【点睛】本题考查了合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则的应用,熟练运用运算法则是解决本题的关键.7.D【解析】【分析】由∠BAC 的大小可得∠B 与∠C 的和,再由线段垂直平分线,可得∠BAP =∠B ,∠QAC =∠C ,进而可得∠PAQ 的大小.【详解】∵∠BAC =110°,∴∠B+∠C =70°,又MP ,NQ 为AB ,AC 的垂直平分线,∴BP=AP ,AQ=CQ ,∴∠BAP =∠B ,∠QAC =∠C ,∴∠BAP+∠CAQ =70°,∴∠PAQ =∠BAC ﹣∠BAP ﹣∠CAQ =110°﹣70°=40°.故选D .8.C【分析】由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.9.A【分析】过点D 作DG ⊥AC,由题意得出∠DEC=30°,即可得出DG=5,再证明AD 为角平分线,则DF=DG=5.【详解】过点D 作DG ⊥AC.∵15DAE ADE ∠=∠=︒,AE=10∴∠DEC=30°,DE=AE=10.∴DG=5.∵DE ∥AB,∴∠BAD=∠ADED AE AD E∠=∠∴BAD ∠=∠DAE ,即AD 为∠BAC 的角平分线.,DF AB DG AC⊥⊥ ∴DF=DG=5.故选A【点睛】本题考查角平分线的性质与判定,含30度角的直角三角形的性质,解题的关键在于利用角平分线定理作出辅助线.10.A【解析】【详解】解:∵BF AC ∥,∴∠C=∠CBF ,∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC ,∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②,③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2BF ,∴AC=3BF ,故④正确.故选A .11.55°或70°.【解析】【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为:55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.12.45【解析】【分析】根据逆用同底数幂的乘法运算和积的乘方运算计算即可【详解】(45)2015×1.252014×(﹣1)2016201420144451554⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭20144451554⎛⎫=⨯⨯⨯ ⎪⎝⎭45=故答案为:45【点睛】本题考查了同底数幂的乘法运算和积的乘方运算,正确的计算是解题的关键.13.75°.【解析】【分析】根据平角的定义求出∠ADE=75°,由AAS 证明△ABC ≌△ADE ,根据对应角相等得出即可.【详解】解:∵∠1+∠2=105°,∴∠ADE=75°,∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,在△ABC 和△ADE 中,∵BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ),∴∠ABC=∠ADE=75°;故答案为75°.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形判定定理是解题的关键.14.326129x x x --+【解析】【分析】直接利用单项式乘以多项式的计算法则求解即可.【详解】解:()23232436129x x x x x x -+-=--+,故答案为:326129x x x --+.【点睛】本题主要考查了单项式乘以多项式,解题的关键在于能够熟练掌握单项式乘以多项式的计算法则.15.6±【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:29a ka ++是一个完全平方式,即22233a a ±⨯+是一个完全平方式,6k ∴=±故答案为:6±【点睛】本题考查了完全平方式,两数的平方和,再加上或减去他们乘积的2倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.16.1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键.17.40︒【分析】连接,,AP BP CP ,根据三角形的内角和定理可得130ABC ACB ∠+∠=︒,根据垂直平分线的性质,等腰三角形的性质计算即可求得PBC ∠的度数.【详解】如图,连接,,AP BP CP ,180130ABC ACB BAC ∠+∠=︒-∠=︒ 点P 是边AB,边BC 的垂直平分线的交点,,PA PB PB PC∴==PA PC∴=,PAB PBA PAC PCA∴∠=∠∠=∠50PBA PCA PAB PAC BAC ∴∠+∠=∠+∠=∠=︒1305080PBC PCB ∴∠+∠=︒-︒=︒PB PC= 40PBC PCB ∴∠=∠=︒故答案为:40︒【点睛】本题考查了垂直平分线的性质、三角形的内角和定理,等边对等角,掌握垂直平分线的性质是解题的关键.18.15【解析】【详解】设∠F=x°,根据等腰三角形和外角的性质可得:∠DEC=2x°,∠ACB=4x°,根据等边三角形的性质可得:4x=60°,则x=15°,即∠F=15°.故答案为:15【点睛】考点:等腰三角形的性质19.(1)221544xxy y --;(2)22161649xx y ++-;(3)232324xy y xy --(4)1【解析】【分析】(1)根据多项式乘以多项式进行计算即可;(2)根据平方差公式、完全平方公式进行计算即可;(3)根据多项式除以单项式的运算法则进行计算即可;(4)根据平方差公式进行简便运算【详解】(1)(5x+2y )(3x-2y )22151064x xy xy y =-+-221544x xy y =--(2)(4x-3y+2)(4x+3y+2)()()423423x y x y =+-++()()22423x y =+-22161649x x y =++-(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3232324x y y xy =--(4)19992-2000×1998()()219991999119991=-+-()22199919991=--22199919991=-+1=【点睛】本题考查了多项式乘以多项式,多项式除以单项式,乘法公式,正确的计算是解题的关键.20.见解析【解析】【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21.(1)见详解;(2)3;(3)PB+PC【解析】【分析】(1)先分别作出△ABC 的对称点,然后依次连接即为所求;(2)在网格中利用割补法进行求解△ABC 的面积即可;(3)要使PB+PC 的长为最短,只需连接BC′,因为根据轴对称的性质及两点之间线段最短可得,然后利用勾股定理可求最短距离.【详解】解:(1)分别作B 、C 关于直线l的对称点,如图所示:(2)由网格图可得:111242221143222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ;故答案为3;(3)由(1)可得:点C 与点C '关于直线l 对称,连接PC 、BC ',如图所示:∴CP PC '=,∵BP PC BP PC BC ''+=+≥,∴要使BP+PC 为最短,则需B 、P 、C '三点共线即可,即为BC '的长,∴222313BC '=+=,即PB+PC 13【点睛】本题主要考查轴对称图形的性质、勾股定理及三角不等关系,熟练掌握轴对称图形的性质、勾股定理及三角不等关系是解题的关键.22.∠BAC=108°.【解析】【分析】由AB=AC ,DC=CA ,得到AB=AC=CD ,且AD=BD ,利用等边对等角得到∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,由外角性质得到∠ADC=∠DAC=∠B+∠BAD=2x°,在三角形ABC 中,利用三角形的内角和定理列出关于x 的方程,求出方程的解得到x 的值,确定出∠DAC 与∠ADC 的度数,由∠BAD+∠DAC 即可求出∠BAC 的度数.【详解】解:∵AB=AC=DC ,AD=BD ,∴∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,则∠ADC=∠DAC=∠B+∠BAD=2x°,∵∠B+∠C+∠BAC=180°,即x+x+2x+x=180,解得x=36,∴∠B=∠C=∠BAC=36°,∴∠DAC=∠ADC=72°,∴∠BAC=∠BAD+∠DAC=72°+36°=108°.【点睛】此题考查了等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,掌握等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,利用了方程的思想,等边对等角是解题关键.23.见解析【解析】【分析】先由角平分线的性质就可以得出DB DF =,再证明BDE FDC ∆≅∆就可以求出结论.【详解】证明:90B ∠=︒ ,BD AB ∴⊥.AD 为BAC ∠的平分线,且DF AC ⊥,DB DF ∴=.在Rt BDE 和Rt FDC 中,DE DC DB DF =⎧⎨=⎩,()Rt BDE Rt FDC HL ∴ ≌,BE CF ∴=.【点睛】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解题的关键是证明三角形全等.24.6【解析】【分析】根据等边三角形的性质和中线的性质解答即可.【详解】∵△ABC 是等边三角形,BD 是中线,∴∠A=∠ACB=60°,AC=BC ,AD=CD=12AC ,∵DE⊥AB于E,∴∠ADE=90°-∠A=30°,∴CD=AD=2AE=2,∴∠CDF=∠ADE=30°,∴∠F=∠ACB-∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴BF=BC+CF=2AD+AD=6.25.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.26.(1)∠BAD=∠CAE;(2)∠DCE=120°;(3)∠DCE的大小不变,∠DCE=60°.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE=60°,然后利用等式性质即可得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠BAD=∠CAE,再证明△ABD≌△ACE,得出∠ABD=∠ACE=60°,然后利用∠ACD+∠ACE即可得出结论;(3)分两种情况,点D在BC延长线上,与点D在CB延长线上;点D在BC延长线上,根据等边三角形的性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角的和∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =60°,利用∠DCE =∠ACD -∠ACE ;与点D 在CB 延长线上,根据等边三角形性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角差得出∠ABD=180°-∠ABC =120°,∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =120°,利用∠DCE =∠ACE -∠ACB 即可得解.【详解】解:(1)△ABC 与△ADE 都是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD+∠DAC=∠DAC+∠CAE ,∴∠BAD =∠CAE ;(2)连结CE ,∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠BAC-∠CAD =∠DAE-∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD+∠ACE =60°+60°=120°;(3)∠DCE 的大小不变,∠DCE=60°,分两种情况,点D 在BC 延长线上与点D 在CB 延长线上;点D 在BC 延长线上,如图(2)∵△ABC 是等边三角形,△ADE 是等边三角形,21∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD=180°-∠ACB =120°,∠BAC+∠CAD =∠DAE+∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°;点D 在CB 延长线上;如图(3)∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ABD=180°-∠ABC =120°,∠BAC-∠BAE =∠DAE-∠BAE ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =120°,∴∠DCE =∠ACE -∠ACB =120°-60°=60°.综合得,∠DCE 的大小不变,∠DCE=60°.。
人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
人教版八年级上学期期中考试数学试卷共五套(含答案)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a24.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.25.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣247.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于010.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= .12.(3分)计算:20152﹣2014×2016= .13.(3分)若a m=2,a n=3,则a2m+n= .14.(3分)已知a+=4,则a2+= .15.(3分)当x 时,(x﹣3)0=1.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)下列图形中,不是轴对称图形的是()A. B.C. D.【解答】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.2.(2分)点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)【解答】解:点(﹣2,3)关于y轴对称的点的坐标是(2,3),故选:B.3.(2分)下列运算中,错误的是()A.2a﹣3a=﹣a B.(﹣ab)3=﹣a3b3 C.a6÷a2=a4D.a•a2=a2【解答】解:A、2a﹣3a=﹣a,正确,不合题意;B、(﹣ab)3=﹣a3b3,正确,不合题意;C、a6÷a2=a4,正确,不合题意;D、a•a2=a3,错误,故此选项符合题意.故选:D.4.(2分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD=()A.6 B.4 C.3 D.2【解答】解:过P作PE⊥OB于E,∵∠AOP=∠BOP,PD⊥OA,∴PE=PD,∵PC∥OA,∴∠CPO=∠POA=15°=∠BOP,∴∠ECP=∠BOP+∠CPO=30°,∵∠PEC=90°,∴PE=PC=×6=3,即PD=PE=3.故选:C.5.(2分)若(﹣x+a)(x﹣3)的积不含x的一次项,则a的值为()A.3 B.﹣3 C.D.【解答】解:∵(﹣x+a)(x﹣3)=﹣x2+(3+a)x﹣3a,∴3+a=0,解得:a=﹣3,故选:B.6.(2分)若9x2+mxy+16y2是一个完全平方式,那m的值是()A.±12 B.﹣12 C.±24 D.﹣24【解答】解:∵9x2+mxy+16y2是一个完全平方式,∴m=±24,故选:C.7.(2分)如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°【解答】解:∵AB=AC,AD=AE,∠B=50°,∠AEC=120°,∴∠AED=∠ADE=60°,∠EAC=60°﹣∠C=60°﹣50°=10°,∴∠DAC=60°+10°=70°.故选:B.8.(2分)如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=72°,则∠E等于()A.18°B.36°C.54°D.72°【解答】解:∵BE⊥AC,AD=DC,∴BA=BC,∴∠ABD=∠CBD=∠ABC=36°,在△ADB和△CDE中,,∴△ADB≌△CDE,∴∠E=∠ABD=36°,故选:B.9.(2分)已知a、b、c是三角形的三边,则代数式a2﹣2ab+b2﹣c2的值()A.不能确定B.大于0 C.等于0 D.小于0【解答】解:a2﹣2ab+b2﹣c2=(a﹣b)2﹣c2=(a+c﹣b)[a﹣(b+c)].∵a,b,c是三角形的三边.∴a+c﹣b>0,a﹣(b+c)<0.∴a2﹣2ab+b2﹣c2<0.故选:D.10.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S=mn.△AEF其中正确的结论是()A.①②③B.①②④C.②③④D.①③④【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥A B于M,作ON⊥BC于N,连接OA,∵在△AB C中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF =S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:A.二.填空题(本题共8小题;每小题3分,共24分.)11.(3分)计算:(6x2﹣3x)÷3x= 2x﹣1 .【解答】解:(6x2﹣3x)÷3x,=6x2÷3x﹣3x÷3x,=2x﹣1.故答案为:2x﹣1.12.(3分)计算:20152﹣2014×2016= 1 .【解答】解:20152﹣2014×2016=20152﹣(2015﹣1)×(2015+1)=20152﹣(20152﹣1)=20152﹣20152+1=1.故答案是:1.13.(3分)若a m=2,a n=3,则a2m+n= 12 .【解答】解:∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=12.故答案为:12.14.(3分)已知a+=4,则a2+= 14 .【解答】解:∵a+=4,∴(a+)2=16,∴a2+2+=16,∴a2+=14.故答案为14.15.(3分)当x ≠3 时,(x﹣3)0=1.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:≠3.16.(3分)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有①②③④.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.【解答】①证明:连接NP,MP,在△ANP与△AMP中,∵,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②证明:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,∠ADC=60°,故此选项正确;③证明:∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④证明:∵在Rt△ACD中,∠2=30°,∴CD=AD,∴BC=BD+CD=AD+AD=AD,S△DAC=AC•CD=AC•AD,∴S△ABC=AC•BC=AC•AD=AC•AD,∴S△DAC :S△ABC=1:3,故此选项正确;故答案为:①②③④.17.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.18.(3分)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45 (度).【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x ﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.三.解答题(本大题共8小题,共56分)19.(8分)计算:(1)(x+4)2﹣(x+3)(x﹣3)(2)(x+2y﹣3)(x﹣2y+3)【解答】解:(1)(x+4)2﹣(x+3)(x﹣3)=x2+8x+16﹣(x2﹣9)=8x+25;(2)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.20.(12分)因式分解:(1)2a3﹣12a2b+18ab2(2)﹣4(x+2y)2+9(2x﹣y)2(3)x4﹣16(4)(x﹣1)(x﹣3)﹣8.【解答】解:(1)原式=2a(a2﹣6a+9b2)=2a(a﹣3b)2;(2)原式=[3(2x﹣y)+2(x+2y)][3(2x﹣y)﹣2(x+2y)]=(8x+y)(4x ﹣7y);(3)原式=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2);(4)原式=x2﹣4x﹣5=(x﹣5)(x+1).21.(4分)如图,在Rt△ABC中,∠C=90°,∠A=15°.(1)在AC边上求作点D,使得DA=DB.(尺规作图,不写作法,保留作图痕迹).= 1 .(2)在(1)的基础上,连接BD,若BC=1,则S△ABD【解答】解:(1)如图所示:此时DA=DB;(2)如图所示:∵∠C=90°,∠A=15°,AD=BD,∴∠A=∠ABD=15°,∴∠CDB=30°,∵BC=1,∴AD=BD=2,∴S=×1×2=1.△ABD故答案为:1.22.(5分)化简求值:已知[(x﹣2y)2﹣4y2+2xy]÷2x,其中 x=1,y=2.【解答】解:原式=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=(x2﹣2xy)÷2x=x﹣y当x=1,y=2时,原式=﹣2=﹣23.(5分)如图,已知△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB 于E,点F在AC上,且BD=FD,求证:AE﹣BE=AF.【解答】证明:∵AD平分∠BAC交BC于D,DE⊥AB于E,∠C=90°,∴DC=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),同理可得Rt△FCD和Rt△BED,∴AC=AE,CF=BE,∴AE﹣BE=AF.24.(6分)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE.(2)∵△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.25.(8分)如图,在△ABC中,点D为边BC的中点,过点A作射线AE,过点C 作CF⊥AE于点F,过点B作BG⊥AE于点G,连接FD并延长,交BG于点H (1)求证:DF=DH;(2)若∠CFD=120°,求证:△DHG为等边三角形.【解答】证明:(1)∵CF⊥AE,BG⊥AE,∴∠BGF=∠CFG=90°,∴∠1+∠GMB=∠2+∠CME,∵∠GMB=∠CME,∴∠1=∠2,∵点D为边BC的中点,∴DB=CD,在△BHD和△CED中,,∴△BHD≌△CED(ASA),∴DF=DH;(2)∵∠CFD=120°,∠CFG=90°,∴∠GFH=30°,∵∠BGM=90°,∵△HGF是直角三角形,HD=DF,∴DG=HF=DH,∴△DHG为等边三角形.26.(8分)如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.【解答】解:(1)过点B作BD⊥OD,∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,∴∠BCD=∠DAC,在△ADC和△COB中,,∴△ADC≌△COB(AAS),∴AD=OC,CD=OB,∴点B坐标为(0,4);(2)延长BC,AE交于点F,∵AC=BC,AC⊥BC,∴∠BAC=∠ABC=45°,∵BD平分∠ABC,∴∠COD=22.5°,∠DAE=90°﹣∠ABD﹣∠BAD=22.5°,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD,在△ABE和△FBE中,,∴△ABE≌△FBE(ASA),∴AE=EF,∴BD=2AE;(3)作AE⊥OC,则AF=OE,∵∠CBO+∠OCB=90°,∠OCB+∠ACO=90°,∴∠ACO=∠CBO,在△BCO和△ACE中,,∴△BCO≌△ACE(AAS),∴CE=OB,∴OB+AF=OC.∴=1.人教版八年级上学期期中考试数学试卷(二)一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI全等.(填“一定”或“不一定”或“一定不”)12.(4分)点P(﹣1,2)关于x轴对称点P的坐标为.113.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC= .14.(4分)如图,已知AO=OB,若增加一个条件,则有△AOC≌△BOC.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为.16.(4分)如图,在△ABC中,AD=DE, AB=BE,∠A=92°,则∠CED= .三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选:D.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F【解答】解:A、添加BC=EF,可利用SAS判定△ABC≌△DEF,故此选项错误;B、添加∠A=∠D,可利用ASA判定△ABC≌△DEF,故此选项错误;C、添加AC=DF,不能判定△ABC≌△DEF,故此选项正确;D、添加∠C=∠F,可利用AAS判定△ABC≌△DEF,故此选项错误;故选:C.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.8.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120°D.60°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°,∵∠E=40°,∴∠F=180°﹣∠D﹣∠E=180°﹣80°﹣40°=60°.故选:D.二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI 一定全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI 一定不全等.(填“一定”或“不一定”或“一定不”)【解答】解:根据全等三角形的传递性,△ABC和△GHI一定全等,三者有一对不重合则△ABC和△GHI一定不重合,则二者不全等.故结果分别为一定,一定不.的坐标为(﹣1,﹣2).12.(4分)点P(﹣1,2)关于x轴对称点P1【解答】解:点P(﹣1,2)关于x轴对称点P的坐标为(﹣1,﹣2),1故答案为:(﹣1,﹣2).13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC,∵∠CAD=∠BAC﹣∠BAD=∠DAE﹣∠CAE,∴∠BAD=∠CAE=40°,∵∠BAE=120°,∠BAD=40°,∴∠DAC=BAE﹣∠BAD﹣∠CAE=120°﹣40°﹣40°=40°.故答案为40°.14.(4分)如图,已知AO=OB,若增加一个条件∠1=∠2 ,则有△AOC≌△BOC.【解答】解:∵AO=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC.故答案为:∠1=∠2.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为3cm .【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB于点E,∵CD=3cm,∴DE=3cm.故答案为3cm.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED= 88°.【解答】解:∵在△ABD和△EBD中,∴△ABD≌△EBD(SSS),∴∠BED=∠A=92°,∴∠CED=180°﹣∠DEB=88°,故答案为:88°.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.【解答】解:当3cm是腰时,3+3<7cm,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故该三角形的周长为17cm.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.【解答】解:(1)设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=.答:等腰三角形的三边长是cm, cm, cm.(2)当4cm为腰,设底边为xcm,可得:4+4+x=18,解得:x=10,三角形的三边长是4cm,4m,10cm,不符合三角形的三边关系定理,当4cm为底,设腰为xcm,可得:x+4+x=18,解得:x=7,三角形的三边长是7cm,7cm,4cm,符合三角形的三边关系定理,所以另两边长7cm,7cm.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.【解答】证明:∵AE是∠BA C的平分线,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△BAD≌△CAD(SAS)21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC 各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.【解答】证明:∵AF=DB,∴AF+FB=DB+FB,∴AB=DF,在△ACB和△DEF中,,∴△ACB≌△DEF(SSS),∴∠ABC=∠EFD,∴CB∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.【解答】解:(1)如图,△A1B1C1即为所求;点C1的坐标(3,﹣2)(2)如图,△A2B2C2即为所求;点C2的坐标(﹣3,2).(3)S△ABC=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.人教版八年级上学期期中考试数学试卷(三)一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于度.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= .13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= °.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 度.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= .三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A 1B1.C118.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为.(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?五、解答题:(每题12分,共24分)23.(12分)如图:在等边三角形ABC中,AE=CD,(1)求证:△ABE≌△CAD;(2)过B点作BQ⊥AD于Q,求证:BP=2PQ.24.(12分)实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q 到D、E两点的距离之和最小.(要有必要的画图说明,并保留作图痕迹)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分.)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)点(﹣4,﹣2)关于y轴对称的点的坐标是()A.(4,2)B.(4,﹣2)C.(﹣4,﹣2)D.(﹣4,2)【解答】解:点(﹣4,﹣2)关于y轴对称的点的坐标是(4,﹣2),故选:B.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.6.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.7.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.8.(3分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选:D.9.(3分)如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是()A.40°B.35°C.25°D.20°【解答】解:∵AD=AC,∠DAC=80°,∴∠ADC==50°,又∵AD=BD,∴∠B=∠BAD,∵∠B+∠BAD=∠ADC,∴2∠B=∠ADC,∴∠B=∠ADC=25°,故选:C.10.(3分)如图,点A的坐标是(2,2),若点P在x轴或y轴上且△APO是等腰三角形,这样的点P共有()个.A.6 B.7 C.8 D.9【解答】解:如图,满足条件的点P有8个,故选:C.二、填空题(本大题共6小题,每小题3分,共18分.)11.(3分)三角形的外角和等于360 度.【解答】解:三角形的外角和等于360°.故答案是:360.12.(3分)直线CD是线段AB的垂直平分线,点P在直线CD上,如果PA=5,则PB= 5 .【解答】解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.故答案是:5.13.(3分)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 540 °.【解答】解:如图,∵∠1+∠2+γ=180°①,∠3+∠4+β+θ=360°②,∠5+∠6+∠7+α=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+α+β+γ+θ=900°,∵α+β=180°,γ+θ=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=900°﹣180°﹣180°,=540°.故答案为:540.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为30°.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠CBE=∠ABC﹣∠EBA=30°,故答案为:30°.15.(3分)如图,等边三角形ABC中,BD是AC边上的中线,BD=BE,则∠EDA= 15 度.【解答】解:∵等边三角形ABC中,BD是AC边上的中线,∴∠ABD=ABC=30°,∠ADB=90°,∵BD=BE,∴∠BDE=∠BED==75°,∴∠EDA=15°.故答案为:15.16.(3分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长= 9 .【解答】解:在Rt△ADE中,∠A=60°,∴∠A DE=30°,又AE=1,∴AD=2AE=2,∵D为AB的中点,∴AB=AC=4,∴CE=AC﹣AE=4﹣1=3,∵EF∥AB,∴∠EFC=∠B=60°,又∠C=60°,∴△EFC为等边三角形,∴EF=FC=EC=3,∴△EFC的周长=3+3+3=9.三、作图题:(每题8分,共16分)17.(8分)如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).【解答】解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).18.(8分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为4或5或3 .(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为3,2.5 .【解答】解:(1)以AB为腰的等腰三角形的面积:×2×3=3;面积为:4或5或3;(2)以AB为底的等腰三角形的面积:2×3﹣×3×1﹣×1×2×2=2.5,故答案为3,2.5.四、解答题(每题8,共32分)19.(8分)已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB ⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,AC=DF.求证:BF=CE.【解答】证明:∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.在Rt△ABC和△RtDEF中,,∴△RtABC≌Rt△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即:BF=CE.20.(8分)如图,在△ABC中,AB=AC,BD垂直AC,垂足为D,∠A=40°,求∠DBC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)÷2=70°;又∵BD⊥AC垂足为D,∴∠DBC=90°﹣∠ACB=90°﹣70°=20°.21.(8分)如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.【解答】(1)证明:∵∠BAC=30°,D为角平分线上一点,∴∠BAD=∠CAD,∵DF∥AC,∴∠CAD=∠FDA,∴∠BAD=∠FDA,∴FA=FD,即△ADF是等腰三角形;(2)解:作DH⊥AB于H,∵DF∥AC,∴∠BFD=∠BAC=30°,∴DH=DF=5,∵D为角平分线上一点,DE⊥AC,DH⊥AB,∴DE=DH=5cm.22.(8分)如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?【解答】解:∵△ABC和△BED都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°,∴∠ABE=∠CBD=60°﹣∠CBE,在△ABE和△CBD中,∴△ABE≌△CBD(SAS),∴AE=CD=4,∵△BED是等边三角形,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级(上)数学期中考试试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 把直线y=x 沿y 轴向下平移
2 个单位,所得直线的函数解析式为()
A.y=x+2B.y=x﹣2C.y=2x D.y=2x﹣2
2 . 点M(-2018,2018)的位置在()
A.第一象限B.第二象限C.第三象限D.第四象限
3 . 如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()
A.x≥4B.x≤4C.x≥1D.x≤1
4 . 已知三角形的两边长分别为4和7,第三边长是方程x2﹣16x+55=0的根.则这个三角形的周长是()A.16B.22C.16或22D.0
5 . 如图,在中,,,直角的顶点是的中点,两边,分别交,
于点,,连接交于点,给出以下五个结论:
①,②,③,
④是等腰直角三角形,
⑤四边形的面积是面积的一半.其中正确的结论是()
A.①②⑤B.①④C.①②③④D.①②④⑤
6 . 一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是()
A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形
7 . 下列说法正确的是()
A.全等图形是指形状相同的两个图形B.全等图形的周长和面积一定相等
C.两个等边三角形一定全等D.面积相等的两个三角形一定全等
8 . 如果一个三角形的两边长分别是和,则第三边长可能是()
A.B.C.D.
9 . 下列命题中错误的有()个
(1)等腰三角形的两个底角相等
(2)对角线相等且互相垂直的四边形是正方形
(3)对角线相等的四边形为矩形
(4)圆的切线垂直于半径
(5)平分弦的直径垂直于弦
A.1B.2C.3D.4
10 . 下列关于变量x,y的关系式中:①3x-2y=5;②y=|x|;③2x-y2=10.其中y是x的函数的是()A.①②③B.①②C.①③D.②③
二、填空题
11 . “内错角相等,两直线平行”的逆命题是_____.
12 . 华中师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩
下的成员速度不变向华中师大一附中前进.小李取回物品后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车,再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车.拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达.设自行车队和小李行驶时间为t分钟,与武汉站距离s千米,s与t的函数关系如图所示,则从第二次相遇到出租车堵车结束,经过了_____
分钟.
13 . 如图,AB∥CD,则∠1+∠3—∠2的度数等于 __________.
14 . 若代数式有意义,则自变量的取值范围是________.
三、解答题
15 . 如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t秒.
(1)当t=______时,CP把△ABC的面积分成相等的两部分;
(2)当t=5时,CP把△ABC分成的两部分面积之比是S△APC:S△BPC=______
(3)当t=______时,△BPC的面积为18.
16 . 如图,直线MN分别与直线AC、DG交于点
A.F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点
B.
E,∠BFG的角平分线FC交直线AC于点
(1)求证:BE∥CF;
(2)若∠C=35°,求∠BED的度数.
17 . 如图,AD、BC相交于点O,AD=BC,∠1=∠2,求证:AC=BD.
18 . 已如如图1,在平面直角坐标系中,点A的坐标为(6,0)、点B的坐标为(0,8),点C在y轴上,作直线A
A.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.
(1)写出点B′的坐标,并求出直线AC对应的函数表达式;
(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;
(3)如图2,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.
19 . 画出函数y=﹣x+3的图象,并利用图象解下列问题:
(1)求方程﹣x+3=0的解.
(2)求不等式﹣x+3>0的解集.
(3)若﹣3≤y<6,求x的取值范围.
20 . 在平面直角坐标系xOy中,直线与y轴交于点
A.
(1)如图,直线与直线交于点B,与y轴交于点C,点B横坐标为.
①求点B的坐标及k的值;
②直线与直线与y轴所围成的△ABC的面积等于;
(2)直线与x轴交于点E(,0),若,求k的取值范围.
21 . 求出图形中x的值.
22 . 判断下列命题是真命题还是假命题.
(1)若|a|=|b|,则a=b;
(2)若a=b,则a3=b3;
(3)若x=a,则x2-(a+b)x+ab=0;
(4)如果a2=ab,则a=b;
(5)若在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,则△ABC≌△A′B′C′.
(6)若x>3,则x>2.
23 . 某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况.
(1)求A,B两种品牌护眼灯的销售价;
(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
三、解答题
1、2、3、4、5、6、7、8、9、。