八年级上期中考试--数学(解析版)
广东佛山2023-2024学年八年级上学期期中数学试题(解析版)

2023-2024学年度第一学期第一次质量检测八年级数学试卷试卷说明:本试卷共4页,满分120分,考试时间90分钟.答题前,学生务必将自己的姓名等信息按要求填写在答题卡...上;答案必须写在答题卡...各题目指定区域内;考试结束后,只需将答题卡...交回.一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确)1. 下列图形一定是轴对称图形的是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】D【解析】【分析】根据轴对称图形的定义项判定即可.【详解】解:A 、锐角三角形不一定是轴对称图形,故此选项不符合题意;B 、直角三角形不一定是轴对称图形,故此选项不符合题意;C 、钝角三角形不一定是轴对称图形,故此选项不符合题意;D 、等腰三角形一定是轴对称图形,底边的垂直平分线是它的对称轴,故此选项符合题意; 故选:D .【点睛】本题考查轴对称图形.解此题的关键是掌握如果一个图形沿着一条直线对折,直线两旁的部分能够完全重合的图形,叫轴对称图形,这条直线叫它的对称轴.2. 某蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是( )A. 60.1610−×B. 51.610−×C. 41.610−×D. 41610−× 【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a −×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:50.000016 1.610-=⨯;故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a −×,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3. 下列几组数中是勾股数的一组是( )A. 3,4,6B. 1.5,2,2.5C. 9,12,15D. 6,8,13 【答案】C【解析】【分析】根据“勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方”逐个选项判断即可.【详解】解:A 、222346+≠,不是勾股数,故本选项不符合题意;B 、1.5和2.5不是正整数,所以不是勾股数,故本选项不符合题意;C 、22291215+=,是勾股数,故本选项符合题意;D 、2226813+≠,不是勾股数,故本选项不符合题意;故选C4. 如图,直线AB 、CD 相交于点O .若163∠=°,则2∠的度数是()A. 37°B. 63°C. 117°D. 127° 【答案】B【解析】【分析】根据对顶角相等解答即可.【详解】解:1∠ 和2∠是对顶角,12∴∠=∠,163∠=° ,263∴∠=°,故选:B .【点睛】本题考查的是对顶角,熟记对顶角相等是解题的关键.5. 以下事件属于必然事件的是( )A. 同一年出生的370人中至少有两人的生日相同B. 早上的太阳从西方升起C. 两边及一角分别相等的两个三角形全等D. 任意掷一枚质地均匀的骰子,掷出的点数是偶数【答案】A【解析】【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A .同一年出生的370人中至少有两人的生日相同是必然事件,符合题意;B .早上的太阳从西方升起是不可能事件,不符合题意;C .两边及一角分别相等的两个三角形全等是随机事件,不符合题意;D .任意掷一枚质地均匀的骰子,掷出的点数是偶数是随机事件,不符合题意.故选A .【点睛】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念. 6. 某商户在元旦假期进行促销活动时,将一件标价80元的衬衫,按照八折销售后仍可获利10元,设这件衬衫的成本为x 元,根据题意,可列方程( )A. ()800.810x x −×−=B. ()800.810x x −×=−C. 800.810x ×=−D. 800.810x ×−=【答案】D【解析】 【分析】根据题意找出题中存在的等量关系:售价﹣成本价=利润,列方程即可.【详解】解:设这件衬衫的成本为x 元,根据题意,可列方程:800.810x ×−=,故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,列方程的关键是正确找出题目的相等关系,此题应重点弄清两点:(1)利润、售价、成本价三者之间的关系;(2)打八折的含义.7. 满足下列条件的ABC ,不是直角三角形的是( )A. A B C ∠=∠−∠B. ::1:1:2A B C ∠∠∠=C. 222b a c =−D. ::1:1:2a b c =【答案】D【解析】【分析】运用直角三角形的判定方法,当一个角是直角时,或当两边的平方和等于第三条边的平方时,可得出它是直角三角形,对每个选项分别判定即可.【详解】解:A 、∵∠A+∠B+∠C=180°,∠A = ∠B-∠C ,∴∠B=90°,∴△ABC 是直角三角形; B 、∵∠A+∠B+∠C=180°,∠A :∠B :∠C=1:1:2,∴∠A=45°,∠B=45°,∠C=90°,∴△ABC 是直角三角形;C 、∵a 2-c 2=b 2,∴a 2=b 2+c 2,∴△ABC 是直角三角形.D 、a :b :c=1:1:2,设a=x ,那么b=x ,c=2x ,a 2+b 2=2x 2,c 2=4x 2,∴a 2+b 2≠c 2,∴△ABC 不是直角三角形;故选:D .【点睛】此题主要考查了直角三角形的判定方法,勾股定理逆定理的实际运用,灵活的应用此定理是解决问题的关键.8. 在下列图形中,正确画出△ABC 的边BC 上的高的是( )A. B.C. D.【答案】C【解析】【分析】从三角形一个顶点向对边所在直线作垂线,顶点与垂足间的线段叫做三角形的高,根据三角形高的定义逐项作出判断即可.【详解】A 、画出的是△ABC 的边AB 上的高,故不合题意;B 、画出的不是△ABC 任一边上的高,故不合题意;C 、画出的△ABC 的边BC 上的高,故符合题意;D 、画出的是△ABC 的边AC 上的高,故不合题意;故选:C的【点睛】本题考查了画三角形的边上的高,理解三角形的高的含义是正确画出高的前提.9. 如图,点E 、F 在直线AC 上,AE CF =,AD BC =.要使ADF CBE △≌△,还需要添加一个条件,给出下列条件:①A C ∠=∠;②BE DF =;③BE DF ∥;④AD BC ∥,其中符合要求的是( )A. ①②③B. ①③④C. ②③④D. ①②④【答案】D【解析】 【分析】在ADF △与CBE △中,AE CF =,AD CB =,所以结合全等三角形的判定方法分别分析四个选项即可.【详解】解:①添加A C ∠=∠,由全等三角形的判定定理SAS 可以判定ADF CBE △≌△,故本选项符合题意.②添加BE DF =,由全等三角形的判定定理SSS 可以判定ADF CBE △≌△,故本选项符合题意. ③添加BE DF ∥,可得到=B E C A FD ∠∠,不能判定ADF CBE △≌△,故本选项不合题意. ④添加AD BC ∥,可得到A C ∠=∠,由全等三角形的判定定理SAS 可以判定ADF CBE △≌△,故本选项符合题意.故选:D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10. 如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A. 254cmB. 152cmC. 7cmD. 132cm【答案】A【解析】【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm,设AF=xcm,则DF=(8-x)cm,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm,则DF=(8-x)cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm, 222(8)6x x =−+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.二、填空题(本大题53分,共15分)11. 汽车开始行驶时,邮箱中有油60升,如果每公里耗油0.12升,则油箱内剩余油量y (升)与行驶路程x (公里)的关系式为 _______________.【答案】600.12y x =− 【解析】【分析】读懂题意,剩油量=原有油量-工作时间内耗油量,把相关数值代入即可.列出关于变量x y 、的关系式.【详解】解:由题意得:600.12y x =−. 故答案为:600.12y x =−. 【点睛】本题考查了函数关系式,解题的关键是读懂题意,掌握两个变量之间的关系.12. 某农科所在相同条件下进行某作物种子发芽试验,结果(部分数据)如表所示: 种子个数n 100 200 400 600 800 1000则任取一粒种子,在相同条件下,估计它能发芽的概率约为______(精确到0.01);【答案】0.90【解析】【分析】本题考查了利用频率估计概率.大量重复试验下种子能发芽的频率的稳定值即为种子能发芽的概率,据此求解即可.【详解】解:观察表格发现随着试验次数的增多种子发芽的频率逐渐稳定在0.90附近,∴任取一粒种子,在相同条件下,估计它能发芽的概率约为0.90.故答案为:0.90.13. 若长方形的面积是32693a a ab +−,其中一边长是3a ,则它的邻边长是______.【答案】223a a b +−【解析】【分析】根据长方形面积公式即可列出式子,计算即可解答.本题考查了多项式除以单项式,解题的关键是掌握多项式除以单项式的法则.【详解】解:邻边长为:322(693)323a a ab a a a b +−÷+−,故答案为:223a a b +−.14. 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点1C 处(三条棱长如图所示),问最短路线长为_________.【答案】5【解析】【分析】长方体展开是长方形,根据题意可知,蚂蚁爬的路径有三种可能,根据两点之间线段最短,可求出解.【详解】如图1,当展开的长方形的长是AC=4+2=6,宽是11CC =,路径长为1AC =如图2,当展开的长方形的长是AB=4,宽是1213BC =+=,路径长为15AC =;如图3,当展开的长方形的长是1415C D =+=,宽是AD=2,路径长为1AC ==故沿长方体的表面爬到对面顶点1C 处,只有图2最短,其最短路线长为:5.故答案为:5.【点睛】本题考查了勾股定理的应用,平面展开最短路径问题,展成平面,确定起点和终点的位置,根据两点之间线段最短从而可求出解.15. 如图,ABC 中,点D 、E 分别是AB BC 、的中点,连接AE CD 、交于点F ,当AFD △的面积为72时,ABC 的面积为 _______.【答案】21【解析】【分析】根据D 、E 分别是AB BC 、的中点,得到12ABE ACE ABC ADC BDC S S S S S ====,△△△△△72AFD BFD CEF BEF S S S S ===,,△△△△进行等面积转换即可求解; 【详解】解:连接BF ,∵D 、E 分别是AB BC 、的中点, ∴1722ABE ACE ABC ADC BDC AFD BFD CEF BEF S S S S S S S S S =======,,,△△△△△△△△△ ∴72CEF AFD BFD BEF S S S S ====,△△△△, ∴2132ABE AFD S S ==△△ ∴21ABC S = ,故答案为:21.【点睛】本题主要考查根据三角形的中线求面积,掌握三角形中线的性质,应用等底等高等面积转换即可解题.三、解答题一(本大题共3小题,每题8分)16. 计算:102991001(2022)(1)10103− −−+−+÷ . 【答案】910−【解析】 【分析】本题是幂的混合运算,根据()10110,13133a a − =≠== ,同底数幂相除,底数不变,指数相减,结合乘方法则计算即可. 详解】102991001(2022)(1)10103− −−+−+÷ 9910013110−=−++1110−=−+【1110=−+ 910=−. 17 先化简,再求值:()()()222x y x y x y x +++−−,其中=1x −,2y =.【答案】244x xy +,4−【解析】【分析】根据完全平方公式和平方差公式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:()()()222x y x y x y x +++−− 2222244x y xy x y x +++−−244x xy +当1x =−,2y =时,原式()()2414124=×−+×−×=−.【点睛】本题考查整式的混合运算—化简求值,解答本题的关键是明确整式化简求值得方法. 18. 填空:(请补全下列证明过程及括号内的推理依据)已知:如图,12∠=∠,C D ∠=∠,求证:A F ∠=∠.证明:∵12∠=∠(已知), 13∠=∠(_______), ∴23∠∠= (等量代换),∴BD CE ∥(_______), ∴______D ∠=∠(_______), 又∵C D ∠=∠(已知), ∴____C ∠=∠(等量代换), ∴_______∥_______(_______), ∴A F ∠=∠(_______). .【答案】对顶角相等;同位角相等,两直线平行;4;两直线平行,同位角相等;4;DF ;AC ;内错角相等,两直线平行;两直线平行,内错角相等.【解析】【分析】因为13∠=∠,12∠=∠,所以23∠∠=,由同位角相等证明BD CE ∥,则有4D ∠=∠,又因为C D ∠=∠,所以4C ∠=∠,由内错角相等证明DF AC ∥,故可证明A F ∠=∠.【详解】证明:∵12∠=∠(已知), 13∠=∠(对顶角相等), ∴23∠∠= (等量代换),∴BD CE ∥(同位角相等,两直线平行), ∴4D ∠=∠(两直线平行,同位角相等), 又∵C D ∠=∠(已知), ∴4C ∠=∠(等量代换), ∴DF AC ∥, ∴A F ∠=∠(两直线平行,内错角相等). 【点睛】此题考查平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.四、解答题二(本大题共3小题,每题9分)19. 已知ABC DCB ∠=∠,A D ∠=∠,那么ABC 与DCB △全等吗?请说明理由.【答案】全等,理由见解析【解析】【分析】利用AAS 证明ABC DCB △≌△即可.【详解】解:全等,理由是:在ABC 和DCB △中,A D ABC DCB BC CB ∠=∠ ∠=∠ =, ∴()AAS ABC DCB ≌.【点睛】本题主要考查了全等三角形的判定,解题时注意:两角及其中一个角的对边对应相等的两个三角形全等.20. 某中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了,他们距起点的距离s (米)与小明出发的时间t (秒)之间的关系如图所示(不完整),根据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是 ,因变量是 ;(2)求小明和朱老师的速度;(3)小明与朱老师相遇 次,相遇时距起点的距离分别为 米.【答案】(1)t ,s (2)朱老师的速度为2米/秒,小明的速度为6米/秒(3)2,300和420【解析】【分析】(1)观察函数图象即可找出谁是自变量谁是因变量;(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)根据函数图象即可得到结论.【小问1详解】观察函数图象可得出:自变量为小明出发的时间t ,因变量为距起点的距离s .故答案为:t ,s ;【小问2详解】朱老师的速度为:(300200)502−÷=(米/秒); 小明的速度为:300506÷=(米/秒). 答:朱老师的速度为2米/秒,小明的速度为6米/秒;【小问3详解】由图象得:小明与朱老师相遇2次,相遇时距起点的距离分别为300和420米,故答案为:2,300和420.【点睛】本题考查了函数的图象,观察函数图象找出点的坐标是解题的关键.21. 将完全平方公式作适当变形,可以用来解决很多数学问题.(1)观察图1,写出代数式()2a b +,()2a b −,ab 之间的等量关系:__________; (2)若6x y +=,4xy =,则22x y +=________;()2x y −=______; (3)如图2,边长为5的正方形ABCD 中放置两个长和宽分别为m ,n (5m <,5n <)的长方形,若长方形的周长为12,面积为8.5,求图中阴影部分的面积123S S S ++的值.【答案】(1)()()224a b a b ab +−−=(2)28,20 (3)10【解析】【分析】(1)根据图1中左边一幅图空白部分面积可以表示为4个小长方形面积,也可以表示为大正方形面积减去中间阴影部分正方形面积进行求解即可;(2)先根据完全平方公式求出22236x xy y ++=,再代入4xy =,即可求出22xy +的值,再根据(1)的结论求出()2x y −的值即可;(3)由题意得,()5555ED m HG n m m n BQ n =−=−−=+−=−,,,根据长方形面积和周长得到68.5m n mn +==,,进而得到2219m n +=,再根据正方形面积公式求出()221231051S S S m n m n ++=+-++,代值计算即可得到答案.【小问1详解】解:图1中左边一幅图空白部分面积可以表示为4个小长方形面积,即4ab ;图1中右边一幅图空白部分面积可以表示大正方形面积减去中间阴影部分正方形面积,即()()22a b a b +−−; ∴()()224a b a b ab +−−=,故答案为:()()224a b a b ab +−−=;【小问2详解】 解:∵6x y +=, ∴()22636x y +==,∴22236x xy y ++=又∵4xy =,∴22836x y ++=,∴2228x y +=,∵()()224x y x y xy +−−=,∴()()224364420x y x y xy −+−−×,故答案为:28,20;【小问3详解】解:如图所示,由题意得,()5555ED m HG n m m n BQ n =−=−−=+−=−,,,∵长方形的周长为12,面积为8.5, ∴1268.52m n mn +,, ∴()2222361719m n m n mn +=+-=-=∴()()()222123555S S S mm n n ++=-++-+- ()()()2225655m n =-+-+-22102511025m m n n =-+++-+()221051m n m n =+-++1910651=-⨯+10=.【点睛】本题考查了完全平方公式的变形求值及其在几何图形中的应用,熟练掌握完全平方公式的变形是解题的关键.五、解答题三(本大题共2小题,每题12分)22. (1)探索:请你利用图(1)验证勾股定理.(2)应用:如图(2),已知在Rt ABC △中,90ACB ∠=°,6AB =,分别以AC ,BC 为直径作半圆,半圆面积分别记为1S ,2S ,则12=S S +______.(请直接写出结果). (3)拓展:如图(3),MN 表示一条铁路,A ,B 是两个城市,它们到铁路所在直线MN 的垂直距离分别为40AC =千米,60BD =千米,且80CD =千米.现要在CD 之间建一个中转站O ,求O 应建在离C 点多少千米处,才能使它到A ,B 两个城市的距离相等.【答案】(1)见解析;(2)92π;(3)O 应建在离C 点52.5千米处. 【解析】【分析】(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;(2)根据半圆面积公式以及勾股定理,知S 1+S 2等于以斜边为直径的半圆面积;(3)设CO=xkm ,则OD=(80-x )km ,在Rt △AOC 和Rt △BOD 中,利用勾股定理分别表示出AO 和BO 的长,根据AO=BO 列出方程,求解即可.【详解】(1)由面积相等可得2111()()2222a b a b ab c ++=×+, ∴2()()2a b a b ab c ++=+,的∴22222a ab b ab c ++=+,∴222+=a b c .(2)2118S AC π= ,2218S BC π=, ∴()22212 119882S S AC BC AB πππ+=+==. 故答案为:92π (3)设CO x =千米,则()80-OD x =千米.∵O 到A ,B 两个城市距离相等,∴AO BO =,即22AO BO =,由勾股定理,得22224060(80)x x +=+−,解得52.5x =.即O 应建在离C 点52.5千米处.【点睛】本题考查了勾股定理的证明和勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解是解题的关键.23. 在ABC 中,90BAC ∠=°,AB AC =,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .【特例体验】(1)如图1,若直线l BC ∥,1BD =,则线段DE 的长为______.【探究应用】(2)如图2,若直线l 从图1状态开始绕点A 顺时针旋转()045αα°<<°时,线段BD 、CE 和DE 的数量关系是________;(3)如图3,若直线l 从图1状态开始绕点A 顺时针旋转()4590αα°<<°时与线段BC 相交,探究线段BD 、CE 和DE 的数量关系并说明理由(4)若BD a =,CE b =(a ,b 均为正数),请你直接写出以点B 、D 、C 、E 为顶点的四边形的面积.的【答案】(1)1;(2)DE BD CE =+;(3)DE BD CE =−,理由见解析;(4)221122a b − 【解析】 【分析】(1)先证ABD △和ACE △是等腰直角三角形,再根据等腰直角三角形的三边关系可得出BD ,DE 和CE 的长即可;(2)先证ABD CAE ∠=∠,由AAS 即可得出ABD CAE △△≌,进而解答即可;(3)先证ABD CAE ∠=∠,由AAS 即可得出ABD CAE △△≌,进而解答即可;(4)根据(2)和(3)中的图形列式求解即可.【详解】(1)在ABC 中,90BAC ∠=°,AB AC =,45ABC ACB ∴∠=∠=°,l BC ∥ ,45DAB ABC ∴∠=∠=°,45CAE ACB ∠=∠=°,45DAB ABD ∴∠=∠=°,45EAC ACE ∠=∠=°,1AD BD ∴==,AE CE =,AB AC ==1AD BD AE CE ∴====,2DE ∴=; (2)DE BD CE =+在Rt ADB 中,90ABD BAD ∠+∠=°,90BAC ∠=° ,90BAD CAE ∴∠+∠=°,ABD CAE ∴∠=∠,在ABD △和CAE 中,90ABD CAE BDA AEC AB AC ∠=∠ ∠=∠=° =, (AAS)ABD CAE ∴△≌△;CE AD ∴=,BD AE =,DE AE AD BD CE ∴=+=+.(3)DE BD CE =−.理由如下:在Rt ADB 中,90ABD BAD ∠+∠=°,90BAC ∠=° ,90BAD CAE ∴∠+∠=°,ABD CAE ∴∠=∠,在ABD △和CAE 中,90ABD CAE BDA AEC AB AC ∠=∠ ∠=∠=° =, (AAS)ABD CAE ∴△≌△;CE AD ∴=,BD AE =,DE AE AD BD CE ∴=−=−.(4)由(2)可得,四边形BDEC 的面积()()21122CE BD DE a b =×+×=+;由(3)可得,四边形BDCE 的面积()()()22111111222222BD DE CE DE DE BD CE a b a b a b =××+××=+=×−+=−. 【点睛】本题是三角形综合题,考查了直角三角形的性质、全等三角形的判定与性质,三角形的面积;证明三角形全等是解题的关键.。
上海市闵行区2022-2023学年八年级上学期期中考试数学试卷(解析版)

2022学年第一学期期中考试八年级数学试卷(考试时间:90分钟,满分100分)一、选择题:(本大题共6题,每题3分,满分18分)1.下列各组二次根式中,属于同类二次根式的是()A.B. C.与3 D.【答案】B【解析】【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A.,不是同类二次根式,故该选项不符合题意;B.=,是同类二次根式,故该选项符合题意;C.33=-和3,不是同类二次根式,故该选项不符合题意;D.==故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键.2.的一个有理化因式是()A. B. C. D.【答案】A【解析】【分析】根据有理化的定义以及二次根式的乘除法则解决此题.【详解】解:A m n =+,的一个有理化因式,故A 符合题意;B =+不是的一个有理化因式,故B 不符合题意;C =-的一个有理化因式,故C 不符合题意;D =,的一个有理化因式,故D 不符合题意;故选:A .【点睛】本题主要考查分母有理化,熟练掌握有理化的定义以及二次根式的乘除法则是解决本题的关键.3.下列选项中的数是一元二次方程28x x x +=-的根的是()A.2- B.5 C.4- D.4【答案】C【解析】【分析】利用因式分解法解出一元二次方程的解,再作出判断即可.【详解】解:28x x x +=-,移项得2280x x +-=,因式分解得(4)(2)0x x +-=,所以40x +=或20x -=,解得4x =-或2x =.故选:C .【点睛】本题考查了一元二次方程的解,掌握一元二次方程的解法并灵活运用是解题的关键.4.下列计算正确的是()A.+=B.=C.4=D.2=-【答案】C【解析】【分析】分别根据二次根式的加法,乘法,除法法则以及利用平方差公式进行分母有理化逐一判断即可.【详解】解:A 、与B 、6742=⨯=,故本选项不合题意;C 4==,故本选项符合题意;D 2=,故本选项不合题意.故选:C .【点睛】本题考查了二次根式的混合运算以及分母有理化,掌握相关运算法则是解答本题的关键.5.下列命题中,假命题的是()A.在同一平面内,垂直于同一条直线的两条直线平行B.面积相等的两个三角形全等C.等腰三角形的顶角平分线垂直于底边D.三角形的一个外角大于任何一个与它不相邻的内角【答案】B【解析】【分析】分别利用平行线的判定、三角形全等的判定方法、等腰三角形的性质以及三角形外角的性质逐一判断即可.【详解】A .在同一平面内,垂直于同一条直线的两条直线平行,是真命题,故选项A 不合题意;B .面积相等的两个三角形不一定全等,故选项B 是假命题,符合题意;C .等腰三角形的顶角平分线垂直于底边,是真命题,故选项C 不合题意;D .三角形的一个外角大于任何一个与它不相邻的内角,是真命题,故选项D 不合题意,故选:B【点睛】本题考查了命题的真假,熟练掌握已经学过的概念、性质、定理是解题的关键.6.已知a 、b 、c 是三角形三边的长,则关于x 的一元二次方程()220ax b c x a +-+=的实数根的情况是()A.有两个相等的实数根B.有两个不相等的实数根;C.没有实数根D.无法确定【答案】C【解析】【分析】根据三角形的三边关系可知Δ0<,可知一元二次方程根的情况.【详解】解:[]222()44()()b c a b c a b c a ∆=--=-+--,∵a 、b 、c 是三角形三边的长,∴00b c a b c a -+>--<,,∴4()()0b c a b c a ∆=-+--<,∴原方程没有实数根,故选:C.【点睛】本题考查了一元二次方程根的判别式,三角形的三边关系,熟练掌握根的判别式与根的情况的关系是解题的关键.二、填空题:(本大题共12题,每题2分,满分24分)7.分母有理化:=____________.【答案】【解析】【即可分母有理化.255==..【点睛】本题考查了二次根式的运算,解题的关键是掌握分母有理化.8.=____________.【答案】3π-【解析】【分析】根据二次根式的性质解答.【详解】∵π>3,∴π−3>0;=π−3.【点睛】本题考查二次根式的性质与化简,解题的关键是掌握二次根式的性质.9.设x x应满足的条件是____________.【答案】14 x≥【解析】【分析】根据二次根式有意义的条件进行求解即可.【详解】解:∵二次根式∴410x-≥,解得14x ≥,故答案为:14x ≥.【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.10.比较大小:-.(填“>”“<”“=”)【答案】>【解析】【分析】利用两个负数比较大小,绝对值大的反而小即可求解.【详解】解:∵=,-==∴-即-故答案为:>【点睛】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.11.已知2410ax x +-=是关于x 的一元二次方程,那么a 的取值范围为___________.【答案】0a ≠【解析】【分析】根据一元二次方程的定义求解即可.【详解】解:因为2410ax x +-=是关于x 的一元二次方程,所以a 的取值范围为0a ≠.故答案为:0a ≠.【点睛】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程的定义:只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20(0)ax bx c a ++=≠.特别要注意0a ≠的条件.12.不等式10->的解集是____________.【答案】66x <-【解析】【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以66x <-,故答案为:6x <-【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.13.方程()87x x -=-的根是____________.【答案】17x =,21x =【解析】【分析】把原方程化为一般形式后利用因式分解法解方程即可.【详解】解:∵()87x x -=-,∴2870x x -+=,∴()()710x x --=,∴70x -=或10x -=,解得17x =,21x =,故答案为:17x =,21x =【点睛】本题考查了因式分解法解一元二次方程,根据所给方程的特点选择适当的是解题的关键.14.一种型号的电视,原来每台售价7500元,经过两次降价后,现在每台售价为4800元,如果每次降价的百分率相同,设每次降价百分率为x ,那么根据题意可列出方程:______.【答案】()2750014800x -=【解析】【分析】设每次降价百分率为x ,根据原来每台售价为7500元,经过两次降价后,现在每台售价为4800元,可列出方程.【详解】解:每次降价百分率为x ,()2750014800x -=.故答案为:()2750014800x -=.【点睛】本题考查理一元二次方程的应用,是个增长率问题,根据两次降价前的结果,和现在的价格,列出方程是关键.15.在实数范围内分解因式:231x x --=_________.【答案】(22x x --##()(22x x --【解析】【分析】求出方程2310x x --=中的判别式的值,求出方程的两个解,代入212()()ax bx c a x x x x ++=--即可.【详解】设2310x x --=,∵2(3)41(1)13∆=--⨯⨯-=,∴3132x ±=∴1 2x =,2 2x =,∴231()()22x x x x --=--.故答案为:3133+13(22x x ---.【点睛】本题考查了在实数范围内分解因式和解一元二次方程,注意:若x 1和x 2是一元二次方程20ax bx c ++=的两个根,则212()()ax bx c a x x x x ++=--.16.已知关于x 的一元二次方程230x mx +-=的一个根是3,则该方程的另一个根是___________.【答案】1-【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵关于x 的一元二次方程230x mx +-=的一个根是3,∴该方程的另一个根是313-=-,故答案为:1-.【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程()200ax bx c a ++=≠,若其两根为12x x ,则1212bc a x x x x a+=-=,.17.已知:如图,AC AD =,要使ACB ADB ≌,还需添加一个条件,这个条件可以是__________.写出一个即可)【答案】BC BD =(答案不唯一)【解析】【分析】根据全等三角形的判定定理求解即可.【详解】解:这个条件可以是BC BD =,在ACB △和ADB 中,AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩,∴(SSS)ACB ADB ≌△△,故答案为:BC BD =(答案不唯一).【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.阅读材料:在直角三角形中,斜边和两条直角边满足定理:两条直角边的平方和,等于斜边的平方,因此如果已知两条边的长,根据定理就能求出第三边的长,例如:在Rt ABC △中,已知90C ∠=︒,3AC =,4BC =,由定理得222AC BC AB +=,代入数据计算求得5AB =.请结合上述材料和已学几何知识解答以下问题:已知:如图,90C ∠=︒,AB CD ∥,5AB =,11CD =,8AC =,点E 是BD 的中点,那么AE 的长为____________.【答案】5【解析】【分析】延长AE 交CD 于点F ,如图所示,只要证得()ASA ABE FDE ≌,根据全等三角形的性质可得AE EF =,5AB DF ==,然后在Rt ACF 中,利用勾股定理求得10AF ===,最后可得152AE EF AF ===.【详解】解:延长AE 交CD 于点F,如图所示,∵AB CD ∥,∴B D ∠=∠,∵点E 是BD 的中点,∴BE DE =,在ABE 和FDE V 中B D BE DE AEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE FDE ≌,∴AE EF =,5AB DF ==,∵11CD =,∴1156CF DC DF =-=-=,又∵90C ∠=︒,8AC =,∴Rt ACF中,10AF ===,∴152AE EF AF ===,故答案为:5【点睛】本题考查了全等三角形的判定和性质,勾股定理的应用,根据题意作出适当的辅助线是解题的关键.三、简答题:(本大题共4题,满分32分)19.(1)计算:-+;(2(其中0x >).【答案】(1)3-;(2)3y x 【解析】【分析】(1)利用二次根式的性质及二次根式的加减混合运算计算即可;(2)利用二次根式的乘除混合运算法则计算即可.【详解】解:(1)-21224=-⨯+()2221122=---++3=-(2====3yx=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质及加减乘除混合运算的法则是解题的关键.20.(1)解方程:()()22131x x -=-;(2)用配方法解方程:23620x x +-=.【答案】(1)112x =-,21x =;(2)11513x =-+,21513x =--【解析】【分析】(1)把方程移项变形后,利用因式分解法解方程即可;(2)直接利用配方法解方程即可.【详解】解:(1)()()22131x x -=-解:移项,得()()202131x x -+-=因式分解得,()()2110x x +-=,∴210x +=或10x -=,解得112x =-,21x =;(2)23620x x +-=,解:方程两边同除以3,得22203x x +-=,移项,得2232x x +=,方程两边同加上一次项系数一半的平方,得221321x x +=++,即()2513x +=,∴1513x +=±,解得11513x =-+,21513x =--.【点睛】本题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.21.已知:x =,求代数式221x x --的值.【答案】1【解析】【分析】先分母有理数求出1x =+,再根据完全平方公式进行变形,最后代入求出答案即可.【详解】解:∵1x ==,∴221x x --2(1)11x =---211)2=--32=-1=.【点睛】本题考查了二次根式的化简求值和分母有理化,能求出x 的值是解此题的关键.22.已知:a 、b 20b +=,求关于x 的一元二次方程2102ax bx ++=的根.【答案】12113x x ==,【解析】、b 的值,然后解一元二次方程即可.20b +=020b ≥+=≥,,∴30202a b -=+=,,∴322a b ==-,,∴原一元二次方程即为2312022x x -+=,整理得:23410x x -+=,∴()()3110x x --=,解得12113x x ==.【点睛】本题主要考查了非负数的性质,解一元二次方程,正确求出a 、b 的值是解题的关键.四、解答题:(本大题共2题,满分16分)23.如图,点D ,E 在ABC ∆的边BC 上,AD AE =,BD CE =,求证:B C ∠=∠.【答案】证明见解析【解析】【分析】利用全等三角形的性质证明即可.【详解】证明∵AD AE =,∴ADE AED ∠=∠,∵180ADE ADB AED AEC ∠+∠=∠+∠=︒,∴ADB AEC ∠=∠,在ABD ∆和ACE ∆中,AD AE ADB AEC BD EC =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ∆≅∆,∴B C ∠=∠.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24.某小区为了美化环境,准备在一块长50米,宽42米的长方形场地上修筑内外宽度相等且互相垂直的道路,余下的部分作为草坪(图中阴影部分),若草坪的面积是1920平方米,求道路的宽度.【答案】道路的宽度为2米【解析】【分析】设道路的宽度为x 米,根据平移的性质可知草坪的面积可以看作一个长为()50x -米,宽为()42x -米的长方形面积,据此列出方程求解即可.【详解】解:设道路的宽度为x 米,由题意得()()50421920x x --=,∴2921800x x -+=,解得2x =或90x =(不符合题意,舍去)∴道路的宽度为2米.【点睛】本题主要考查了一元二次方程的应用,正确理解题意找到等量关系是解题的关键.五、综合题:(本大题共1题,满分10分)25.已知:如图,在Rt ABC △中,90BAC ∠=︒,ABC ∠的平分线交AD 于点E ,交AC 于点F ,AD BC ⊥,垂足为点D .(1)求证:AE AF =;(2)过点E 作EG D C ∥交AC 于点G ,过点F 作FH BC ⊥,垂足为点H .①请判断AF 与CG 的数量关系,并说明理由;②当AE BE =时,设BF x =,试用含有x 的式子表示GC 的长.【答案】(1)见解析(2)①AF CG =,理由见解析;②12CG x =.【解析】【分析】(1)根据90AEF BED CBF ∠=∠=︒-∠,90AFB ABF ∠=︒-∠,得AFE AEF ∠=∠,从而AE AF =;(2)①由角平分线的性质知AF FH =,由(1)知AF AE =,则AE FH =,再利用AAS 证明AEG FHC ≌△△,得AG CF =,即可证明;②由等腰三角形的性质可得BAE ABE ∠=∠,可证AE EF AF BE ===,可得结论.【小问1详解】证明:∵BF 平分ABC ∠,∴ABF CBF ∠=∠,∵AD BC ⊥,∴90ADB ∠=︒,∴90AEF BED CBF ∠=∠=︒-∠,∵90AFB ABF ∠=︒-∠,∴AFE AEF ∠=∠,∴AE AF =;【小问2详解】解:①AF CG =,理由如下:∵BF 平分ABC ∠,FA AB FH BC ⊥⊥,,∴AF FH =,由(1)知AF AE =,∴AE FH =,∵EG D C ∥,∴90AEG FHC ∠=∠=︒,AGE C ∠=∠,∴(AAS)AEG FHC ≌△△,∴AG CF =,∴AF CG =;②∵AE BE =,∴BAE ABE ∠=∠,∵90BAC ∠=︒,∴EAF EFA ∠=∠,∴AE EF =,∴AE EF AF BE ===,∴2BF AF =,∴12CG AF x ==.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,角平分线的性质等知识,得到AEG FHC ≌△△是解题的关键.第16页/共16页。
浙江省宁波市2024-2025学年八年级上学期期中数学模拟试题(解析版)

2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1. 下列图形中对称轴条数最多的是( )A.B. C. D. 【答案】A【解析】【分析】此题主要考查如何确定轴对称图形的对称轴条数及位置,掌握轴对称图形的概念是本题的解题关键.根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此找出各个图形的对称轴条数,再比较即可解答.【详解】解:A 、有5条对称轴;B 、有3条对称轴;C 、有0条对称轴;D 、有4条对称轴.故对称轴最多的有5条.故选:A .2. 若a b < )A. 11a b +<+B. 22a b −<−C. 33a b <D. 4a <4b 【答案】B【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A .∵a b <,∴11a b +<+,故本选项不符合题意; B .∵a b <,∴a b −>−,∴22a b −>−,故本选项符合题意;C .∵a b <,∴33a b <,故本选项不符合题意;D .∵a b <,∴4a <4b ,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键,①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,②不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,③不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A. 2mB. 3mC. 3.5mD. 4m【答案】D【解析】 【分析】本题考查勾股定理的应用,利用勾股定理求出AB 的长,再根据少走的路长为AC BC AB +−,计算即可.明确少走的路长为AC BC AB +−是解题的关键.【详解】解:如图,点C A 和点B 都在长方形的边上且6AC =,8BC =, ∴90C ∠=°,∴10AB ,∴他们少走的路长为:()68104m AC BC AB +−=+−=. 故选:D .4. 下列条件中,可以判定ABC 是等腰三角形的是( )A. 40B ∠=°,80C ∠=°B. 123A B C ∠∠∠=::::C. 2A B C ∠=∠+∠D. 三个角的度数之比是2:2:1【答案】D【解析】【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=°,80C ∠=°,∴18060AC B ∠=°−∠−∠=°, ∴ABC 不是等腰三角形,故选项A 错误;B .∵123A BC ∠∠∠=::::,180A B C ∠+∠+∠=°, ∴118030123A ∠=×°=°++,218060123B ∠=×°=°++,318090123C ∠=×°=°++, ∴ABC 不是等腰三角形,故选项B 错误;C .∵2A B C ∠=∠+∠,180A B C ∠+∠+∠=°,∴2180A A ∠+∠=°,∴60A ∠=°,而无法判断B ∠与C ∠的大小,∴ABC 不是等腰三角形,故选项C 错误;D .∵三个角的度数之比是2:2:1, ∴三个角的度数分别是218072221×°=°++,72°,218072221×°=°++, ∴ABC 是等腰三角形,故选项D 错误;故选:D .5. 某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( )A. 六折B. 七折C. 八折D. 九折 【答案】B【解析】【分析】设最多可打x 折,根据题意,得110070070010%10x ×−≥×,求整数解即可. 本题考查了一元一次不等式的应用,打折问题,正确理解,列出不等式解答是关键.【详解】解:设最多可打x 折, 根据题意,得110070070010%10x ×−≥×, 解得7x ≥.故最多打7折,6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )A. 5B.C. 6D. 8【答案】B【解析】 【分析】连接AD ,如图,先根据等腰三角形的性质和三角形内角和定理计算出30B C ∠=∠=°,再由作法得DDDD 垂直平分AC ,所以3DA DC ==, 所以30DAC C ∠=∠=°, 从而得到90BAD ∠=°, 然后根据含30度角的直角三角形三边的关系求BD 的长,进而求出AB 的长.【详解】连接AD , 如图∵,120AB AC A =∠=°,∴30B C ∠=∠=°,由作法得DE 垂直平分AC ,∴3DADC ==, ∴30DAC C ∠=∠=°,∴1203090BAD ∠=°−°=°,在Rt ABD △中,30B ∠=°,∴26BD AD ==,AB ∴=【点睛】本题考查了作图−基本作图,勾股定理,线段垂直平分线的性质和等腰三角形的性质,含30°角直角三角形的性质,解题的关键是掌握以上知识点.7. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F ,则线段BF 的长为()A. 5B. 4C. 3D. 2.8【答案】A【解析】 【分析】过点F 作FN ⊥AB 于N ,由作图可知,AM 是∠BAC 的平分线,由角增分线的性质可得FN =FC ,则可利用HL 定理证明Rt △ACF ≌Rt △ANF ,得出AN =AC =12,再在Rt △ACB 中,由勾股定理求出BC =9,设BF =x ,则FN =CF =BC -BF =9-x ,由勾股定理列方程求解即可.【详解】解:过点F 作FN ⊥AB 于N ,由作图可知:AM 平分∠BAC ,∵∠C =90°,∴FC ⊥AC ,∵FN ⊥AB ,∴FN =FC ,在Rt △ACF 和Rt △ANF 中,FC FN AF AF = =, ∴Rt △ACF ≌Rt △ANF (HL),∴AN =AC =12,∴BN =AB -AN =15-12=3,在Rt △ACB 中,由勾股定理,得BC ==9,设BF =x ,则FN =CF =BC -BF =9-x ,在Rt △BNF 中,由勾股定理,得x 2=32+(9-x )2,解得:x =5,故选:A .【点睛】本题考查勾股定理,全等三角形的判定与性质,用尺规作角的平分线,角平分线的性质,由作图得出,AM 是∠BAC 的平分线是解题的关键.8. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( ).A. 30°B. 45°C. 60°D. 90°【答案】C【解析】 【分析】本题主要考查了等边三角形的性质,垂直平分线的性质,最短路径问题,掌握等边三角形三线合一的性质是解题关键.连接BP ,由等边三角形的性质,得出PB PC =,进而得到PC PE PB PE BE +=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,再利用三线合一性质,得到BE AC ⊥,即可得到CPE ∠的度数.【详解】解:如图,连接BP ,ABC 是等边三角形,AD 是BC 边上的高,D ∴是BC 中点,即AD 垂直平分BC ,PB PC ∴=,PC PE PB PE BE ∴+=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,点E 是AC 边的中点,BE AC ∴⊥,90CEP CEB ∴∠=∠=°,∵等边ABC 中60ABC ACB ∠=∠=°,BE AC ⊥, ∴1302CBE ABC ∠=∠=°, ∵PB PC =,∴此时30PCB PBC ∠=∠=°,∴60CPE PBC PCB ∠=∠+∠=°.故选:C .9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度;点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……,则2024M 的坐标为是( )A. (1,0)B. ()0,1−C. ()1,0−D. ()1,2−【答案】B【解析】 【分析】本题考查了平面直角坐标系上点的坐标规律,求出长方形ABCD 的周长为()23210+×=,设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,根据题意列出方程,求出相遇各点坐标,得出规律,即可得出答案.【详解】解:∵在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.∴()1,1B −−,()1,2D ,∴2AD BC ==,3AB CD ==,∴长方形ABCD 的周长为:()23210+×=, 设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,由题意得:2310t t +=,解得:2t =,∴当2t =时,P Q ,第一次相遇,此时相遇点1M 的坐标为()1,0,当4t =时,P Q ,第二次相遇,此时相遇点2M 的坐标为()1,0−,当6t =时,P Q ,第三次相遇,此时相遇点3M 的坐标为()1,2,当8t =时,P Q ,第四次相遇,此时相遇点4M 的坐标为()0,1−,当10t =时,P Q ,第五次相遇,此时相遇点5M 的坐标为()1,2−,当12t =时,P Q ,第六次相遇,此时相遇点6M 的坐标为()1,0,…,∴五次相遇为一循环,∵202454044÷=…,∴2024M 的坐标为是()0,1−,故选:B .10. 如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°.其中正确的有( )A. ①③⑤B. ①③④⑤C. ①②③⑤D. ①②③④⑤【答案】C【解析】 【分析】此题主要考查了全等三角形的判定和性质的应用,等边三角形的判定和性质.①根据全等三角形的判定方法,判断出ACD BCE △△≌,即可判断出AD BE =.②首先根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出CP CQ =;然后根据60PCQ ∠=°,可得PCQ △为等边三角形,所以60PQC DCE ∠=∠=°,据此判断出PQ AE ∥即可.③根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出AP BQ =.④首先根据,60DC DE PCQ CPQ =∠=∠=°,可得60DPC ∠>°,然后判断出DP DC ≠,再根据DC DE =,即可判断出DP DE ≠.⑤60AOB DAE AEO DAE ADC DCE ∠=∠+∠=∠+∠=∠=°,据此判断即可.【详解】解:∵ABC 和ECD 都是等边三角形,∴,,60ACBC CD CE ACB DCE ====°∠∠, ∴ACB BCD DCE BCD ∠+∠=∠+∠,∴ACD BCE ∠=∠,在ACD 和BCE 中,∵,,AC BCACD BCE CD CE ∠∠===, ∴ACD BCE △△≌,∴AD BE =,结论①正确.∵ACD BCE △△≌,∴CAD CBE ∠=∠,又∵60ACB DCE °∠=∠=,∴180606060BCD ∠=°−°−°=°,∴60ACP BCQ ∠=∠=°, 在ACP △和BCQ △中,,,ACP BCQ CAP CBQ AC BC ∠=∠∠=∠,∴ACP BCQ ≌△△,∴CP CQ =,又∵60PCQ ∠=°, ∴PCQ △为等边三角形,∴60PQC DCE ∠=∠=°, ∴PQ AE ∥,结论②正确.∵ACP BCQ ≌△△,∴AP BQ =,结论③正确.∵,60DC DE PCQ CPQ =∠=∠=°, ∴60DPC ∠>°,∴DP DC ≠,又∵DC DE =,∴DP DE ≠,结论④不正确.∵60AOB DAE AEO ADC DCE ∠=∠+∠=∠+∠=∠=°,结论⑤正确.综上,可得正确的结论有4个:①②③⑤.故选:C .二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11. 若不等式()11m x m −+<的解是1x >,则m 的取值范围是______.【答案】1m <【解析】【分析】先移项得(1)1m x m −<−,结合不等式的解集为1x >,可知10m −<,解之即可.【详解】解:∵()11m x m −+<,∴(1)1m x m −<−,∵不等式的解集为1x >,∴10m −<,则1m <,m<.故答案为:1【点睛】本题考查解一元一次不等式,掌握解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12. 若等腰三角形的两边长分别为4和6,则其周长是____________.【答案】14或16【解析】【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【详解】解:根据题意,①当腰长为6时,三边为6,6,4,=++=;符合三角形三边关系,周长66416②当腰长为4时,三边为4,4,6,=++=.符合三角形三边关系,周长44614故答案为:14或16.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.13. 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.【答案】26【解析】【详解】过点B作EF⊥l2,交l1于E,交l3于F,如图,∵EF⊥l2,l1∥l2∥l3,∴EF⊥l1⊥l3,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=4,AE=BF=6,在Rt△ABE中,AB2=BE2+AE2,∴AB2=52,∴S△ABC=12AB⋅BC=12AB2=26.故答案是26.14. 在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.【答案】9【解析】【详解】∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故答案为9.15. 如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为_____.【答案】12【解析】【分析】根据线段的垂直平分线的性质得到DC =DB =6,则∠DCB =∠B ,由∠ACB =∠ACD +∠DCB =90°,得∠A +∠B =90°,从而∠A =∠ACD ,DA =DC =6,则AB =AD +DB 便可求出.【详解】解:∵EF 是线段BC 的垂直平分线,DC =6,∴DC =DB =6,∴∠DCB =∠B ,又∵∠ACB =∠ACD +∠DCB =90°,∴∠A +∠B =90°,∴∠A =∠ACD ,∴DA =DC =6,∴AB =AD +DB =6+6=12,故答案为:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.16. 如图,Rt BDE △中,90BDE ∠=°,2DB DE ==,A 是DE 的中点,连结AB ,以AB 为直角边作等腰Rt ABC △,其中90ABC ∠=°.①AC 的长为 ______;②连结CE ,则CE 的长为 _____.【答案】 ①. ②.【解析】【分析】①根据勾股定理先计算A BAC ,解答即可;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,根据等面积法可以求得EG FB =的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可.本题考查勾股定理、等腰直角三角形性质,解答本题的关键是明确题意,求出和的长.【详解】解:①∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===根据勾股定理,得A BAC ,;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===, 四边形EGBF 是矩形,∴EG BF =,根据勾股定理,得A BBE ∴111221222ABE DBE S S ==×××= ,∴112EG =,∴EG =∴BF =,∴EF∴CE的.三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤 17. 解一元一次不等式组,并把解集表示在数轴上.(1)()2112x x −−−<; (2)4261139x x x x >− −+ ≤ 【答案】(1)2x >−,数轴见解析(2)32x −<≤,数轴见解析【解析】分析】(1)先去分母,再去括号,移项,然后合并同类项,并画出数轴,即可作答;(2)由①易得,3x >−,由②去分母,得331x x −≤+,故不等式组得解集为:32x −<≤,并画出数轴,即可作答.【小问1详解】解:去分母得,()()2212x x −−−<,去括号得,2222x x −−+<,移项得,2222x x −<+−,合并同类项得,2x −<,系数化为1得,2x >−,在数轴上表示为:;【小问2详解】 解:4261139x x x x >− −+≤①②,由①得,3x >−,【由②去分母,得331x x −≤+解得,2x ≤.故不等式组得解集为:32x −<≤.在数轴上表示:【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,难度较小,正确掌握相关性质内容是解题的关键.18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.【答案】见解析【解析】【分析】因为BED CED ∠=∠,所以AEB AEC ∠=∠,因为ABE ACE =∠∠,得证()AAS AEB AEC ≌,即可作答.【详解】证明:∵180AEB BED ∠=°−∠,180AECCED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠,在AEB 和AEC △中,ABE ACE AEB AEC AE AE ∠=∠ ∠=∠ =, ∴()AAS AEB AEC ≌,∴BE CE =.【点睛】本题考查了全等三角形的判定与性质,难度较小,熟记全等三角形的判定与性质是解题的关键. 19. 如图,有一块凹四边形的绿地ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.为【答案】这块空地的面积是224m【解析】【分析】本题主要考查了勾股定理及其逆定理的应用,连接AC ,根据勾股定理求出AC ,再根据勾股定理的逆定理说明90ACB ∠=°,最后根据1122ABC ACD S S BC AC DC AD −=⋅−⋅ 得出答案. 【详解】解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC ,∵13m AB =,12m BC =,∴22222251213CB AC AB +=+==,∴90ACB ∠=°,∴四边形ABCD 面积为:1122ABC ACD S S BC AC DC AD −=⋅−⋅ ()2115123424m 22=××−××=. 答:这块空地面积是224m .20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△;(2)求ABC 的面积;的(3)求BC 边上的高.【答案】(1)见解析 (2)4.5(3)BC 【解析】【分析】(1)利用网格特点和轴对称的性质画出点A 、B 关于直线l 的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积;(3)先计算出BC 的长,然后利用面积法求BC 边上的高.【小问1详解】解:如图,A B C ′′△为所作; 【小问2详解】解:ABC 的面积11134121433 4.5222=×−××−××−××=; 【小问3详解】解:设BC 边上的高为h ,∵BC,∴1 4.52h ×=,解得h =即BC 【点睛】本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了勾股定理.21. 如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.【答案】(1)见解析;(2【解析】【分析】(1)根据“∠B=90°,AC ⊥CD”得出∠2=∠BAC ,即可得出答案;(2)由(1)可得AC=CD ,并根据勾股定理求出AC 的值,再次利用勾股定理求出AD 的值,即可得出答案.【详解】(1)证明:∵90B E ∠=∠=°,∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠.在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5AB CE ==,AC CD =.∵2BC =,∴在Rt ABC △中,AC∵CD =∴在Rt ACD △中,AD ==【点睛】本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出2BAC ∠=∠.22. 根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2 如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m和1.8m ,90BOC ∠=°.问题解决任务1OBD 与COE 全等吗?请说明理由;任务2当爸爸在C 处接住小丽时,小丽距离地面有多高?【答案】任务1:OBD 与COE 全等,理由见解析;任务2:1.4m【解析】【分析】本题考查了利用三角形全等测距离的问题,理解题意及熟知全等三角形的性质与判定是解题关键. 任务1:利用AAS ,证得OBD 与COE 全等;任务2:根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE −=,即可求出问题答案.【详解】解:任务1:由题意,得OB OA OC ,1m AD =, 1.4m BD =, 1.8m CE =,90BDO CEO ∠=∠=°,∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠,在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BD OE ==, 1.8m OD CE ==∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23. 某电器超市销售A B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价分别为150元,下表是近两天的销售情况: 销售时段销售数量销售收入A 种型号B 种型号 第一天3台 5台 1620元 第二天 4台 10台 2760元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B ;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号的电风扇销售单价分别为240元、180元;(2)18;(3)能,方案为A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1620元,4台A 型号10台B 型号的电扇收入2760元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)根据利润大于等于1060元,列不等式求出a 的取值范围,结合(2)中a 的取值范围,即可确定方案.【详解】(1)设A. B 两种型号的电风扇的销售价分别为x 、y 元,由题意得3516204102760x y x y += +=解得:240180x y = =答:A 型号电风扇的销售单价为240元,B 型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30−a)台则200a+150(30−a)≤5400,解得:a ≤18,答:最多采购A 种型号的电风扇18台.(3)根据题意得:(240−200)a+(180−150)(30−a)≥1060,解得a ≥16,∵在(2)的条件下a ≤18,∴16≤a ≤18∵a 为正整数,∴a 可取16,17,18,∴符合题意的方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台;答:在(2)条件下超市销售完这30台电风扇能实现利润不少于1060元的目标,方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,根据售价乘以销量等于销售收入列方程组是解题的关键.24. 等腰Rt ABC △中,=AB AC ,=90BAC °∠.的(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF .①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 __________.(直接给出答案). 【答案】(1)①证明见解析;②297(2)或【解析】【分析】(1)①利用全等三角形的判定定理即可求证;②证=90DCF ∠°,进而在Rt DCF 中利用勾股定理即可求解;(2)分情况讨论点E 在线段BC ,点D 在线段CB 的延长线上,即可求解.【小问1详解】 ①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .②解:如图1中,设DE x =,则7CD x =−.AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CFBE ==, ∴()22273x x =−+,解得297x, ∴297DE =. 【小问2详解】解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=°EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°==90EBD ∴∠°=222226345DE BE BD ∴=+=+=DE ∴②当点D 在线段CB 的延长线上,如图3中所示,连接BE :同法可证DBE 是直角三角形12,3EB CD DB ===222222123153DE BE BD ∴=+=+=DE ∴ 【点睛】本题考查了全等三角形的判定与性质、用勾股定理解三角形等知识点.分类讨论的数学思想是解决本题的重要思路.。
广东省深圳市南山第二外国语学校(集团)2022-2023学年八年级上学期期中考试数学试卷(解析版)

2022—2023学年第一学期期中检测八年级数学试卷一、选择题:(本题共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个是正确的.)1. 的值为()B. C. ±2 D. 2【答案】D【解析】表示4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选:D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.2. 下列各组数据中,不是勾股数的是()A. 3,4,5B. 5,7,9C. 5,12,13D. 7,24,25【答案】B【解析】【分析】判断是否为勾股数,首先这三个数都要是正整数,同时还需验证两较小数的平方和是否等于最大数的平方.【详解】解:A 、32+42=52,能构成直角三角形,都是正整数,故选项不符合题意;B 、52+72≠92 ,不能构成直角三角形,故选项符合题意;C 、52+122=132,能构成直角三角形,都是正整数,故选项不符合题意;D 、72+242=252,能构成直角三角形,都是是整数,故选项不符合题意;故选: B .【点睛】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.3. 下列各点在第二象限的是()A. ()B. ()2,1−C. ()0,1−D. ()2,1-【答案】B【解析】【分析】根据第二象限点的特征:(),−+ 进行判断即可;【详解】解:A 、()在x 轴上,不符合题意;B 、()2,1−在第二象限,符合题意;C 、()0,1−在y 轴上,不符合题意;D 、()2,1-在第四象限,不符合题意; 故选B .【点睛】本题考查平面坐标系下点的特征.熟练掌握不同象限点的特征是解题的关键.4. 若一次函数1y mx =−的图象经过点(10),,则m 的值为( ) A. 1B. 2C. 3D. 4 【答案】A【解析】【分析】将点(1,0)代入即可求解.【详解】解:将(1,0)代入,得:m -1=0,解得m =1,故选:A .【点睛】本题考查待定系数法求解析式,将点(1,0)代入一次函数解析式是解题的关键.5. 在 3.5−,227,0,2π,,,0.151151115中,无理数有( ) A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在-3.5,227,0,2π,-,0.151151115中,无理数有2π共2个. 故选:B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…(相邻两个1之间0的个数逐次加1),等有这样规律的数.6. 下列计算正确的是( )A.B. 2=±C.D. 18= 【答案】C【解析】【分析】根据二次根式的加法对选项A 进行判断,根据二次根式的性质对选项B 进行判断,根据二次根式的乘法对选项C 进行判断,根据二次根式的除法对选项D 进行判断,即可得.【详解】解:A,选项说法错误,不符合题意;B2=,选项说法错误,不符合题意;C==,选项说法正确,符合题意; D,选项说法错误,不符合题意;故选:C .【点睛】本题考查了二次根式的运算,解题的关键是掌握二次根式运算的相关法则.7. 关于函数2y x =−+有下列结论,其中错误的是( ) A. 图象经过点()1,1B. 若点()10,A y ,()22,B y 图象上,则12y y >C. 图象向下平移2个单位长度后,图象经过点()0,1D. 当2x >时,0y <【答案】C【解析】【分析】根据一次函数的性质及一次函数图象上点的坐标特点对各选项进行逐一分析即可.【详解】解:A 、当1x =时,21y x =−+=,故图象经过点(1,1),故本选项正确,不合题意; B 、 函数2y x =−+中,10k =−<, y ∴随x 的增大而减小,02<Q ,12y y ∴>,故本选项正确,不合题意;在C 、根据平移的规律,函数2y x =−+的图象向下平移2个单位长度得解析式为y x =−,所以当0x =时,0y =,则图象经过点()0,0,故本选项错误,符合题意; D 、把2x =代入函数20y x =−+=,所以当2x >时,0y <,故本选项正确,不符合题意. 故选:C .点睛】本题考查了一次函数(0)y kx b k =+≠的性质:当0k >,图象经过第一、三象限,y 随x 增大而增大;当0k <,图象经过第二、四象限,y 随x 增大而减小;当0b >,图象与y 轴的交点在x 的上方;当0b =,图象经过原点;当0b <,图象与y 轴的交点在x 的下方,也考查了一次函数的图象与几何变换.8. 大家都知道,九点五十五分可以说成十点差五分.这启发人们设计了一种新的加减记数法.比如:9写成11,11101=−,198写成202,2022002=−;7683写成12323,123231000023203=−+,…总之,数字上画一杠表示减去它,按这个方法请计算:1231789−=( )A. 540B. 509C. 500D. 491【答案】A【解析】 分析】先根据新定义计算出()()1231789120031700809−=−−−+,再计算可得答案. 【详解】解:由题意知1231789− ()()120031700809=−−−+120031700809=−−+−540=,故选:A .【点睛】本题考查有理数的混合运算,解题的关键是掌握新定义并熟练加以运用.9. 如图,小蓓要赶上去实践活动基地的校车,她从点A 知道校车自点B 处沿x 轴向原点O 方向匀速驶来,她立即从A 处搭一辆出租车,去截汽车.若点A 的坐标为()2,3,点B 的坐标为()8,0,汽车行驶速度与出租车相同,则小蓓最快截住汽车的坐标为( )【【A. ()2,0B. 7,02C. 17,04D. ()5,0【答案】C【解析】 【分析】如图,假设小蓓与汽车在D 点相遇,过点A 作AC OB ⊥,则小蓓的行进路线为AD ,设OD x =,则2CD x =−,8BD x =−,在Rt ACD △中,利用勾股定理求出()22232AD x =+−,再根据22BD AD =得出关于x 的方程,解方程求出x 即可得到相遇点的坐标.【详解】解:如图,假设小蓓与汽车在D 点相遇,过点A 作AC OB ⊥,∵点A 的坐标为()2,3,点B 的坐标为()8,0,∴3AC =,2OC =,8OB =,设OD x =,则2CD x =−,8BD x =−,在Rt ACD △中,222AD AC CD =+,∴()22232AD x =+−,∵汽车行驶速度与出租车相同,∴BD AD =,∴22BD AD =,即()()222832x x −=+−, 解得:174x =, ∴D 点坐标为17,04,故选:C .【点睛】本题考查了勾股定理在实际生活中的运用,能够根据题意画出图形,利用勾股定理得出方程是解题的关键.10. 如图,已知点()0A 1,,924B −−,,点P 在直线y x =上运动,则PA PB −的最大值为( )A. 174 B. 92 C. 4 D. 154【答案】D【解析】【分析】根据轴对称的性质可求得答案.【详解】解:作A 关于直线y x =对称点C ,∴OC OA =,∵()10A ,,∴C 的坐标为()01,;连接CB 并延长,交直线y x =于P 点, 此时PA PB PC PB BC −=−=,取得最大值,∴154PA PB BC −==.故选D .【点睛】本题考查了一次函数图像上点的坐标特征,轴对称−最短路线问题,正确的作出辅助线是解决本题的关键.二、填空题:(本题共5小题,每小题3分,共15分.)11. 已知平面直角坐标系中,点()2a ,和点()23−,关于原点对称,则=a ______. 【答案】3−【解析】【分析】若两点关于原点对称,则两点的横坐标之和为0,纵坐标之和为0,据此可分别求出a 、b 的值.【详解】解:∵点()2a ,和点()23−,关于原点对称, ∴30a +=,解得3a =−,故答案为:3−.【点睛】本题考查平面直角坐标系中两点关于原点对称的相关知识点,了解关于原点对称的两点横、纵坐标之和均为0是本题的关键.12. 如图,小正方形的边长为1,则数轴上点A 所表示的实数是______.【答案】1−【解析】【分析】根据正方形的性质求得圆的半径的长,进而即可求得答案.【详解】解:∵小正方形的边长为1且对角线为圆的半径,∴圆的半径,由图可得点A 在圆上,∴点A 所表示的实数是1−+,故答案为:1−+【点睛】本题考查了正方形的性质、勾股定理和数轴,灵活运用所学知识求解是解决本题的关键. 13. 已知||1(2)23k y k x k −=−+−是关于x 的一次函数,则k =_______.【答案】2−【解析】【分析】根据一次函数定义,求出k 的值即可. 【详解】解:∵1(2)23k y k x k −=−+−是关于x 的一次函数, ∴1120k k −= −≠, 解得:2k =−或2k =(舍去); 所以2k =−.故答案为:2−.【点睛】本题考查了一次函数的定义,掌握一次函数的定义,解题的关键是列出方程正确求出k 的值. 14. 如图1,是一个封闭的勾股水箱,其中I ,II , III 部分是可盛水的正方形,且相互联通,已知∠ACB =90°,AC =6,BC =8,开始时III 刚好盛满水,而I ,II 无水.如图2摆放时,水面刚好经过III 的中心O (正方形两条对角线的交点),则II 中有水部分的面积为________.【答案】14【解析】【分析】由勾股定理求出AB =10,根据已知条件得到Ⅲ部分的水为整个正方形面积的一半,即Ⅲ部分的有水部分的面积为50,于是得到结论.【详解】解:∵∠ACB =90°,AC =6,BC =8,∴AB10=,∴Ⅲ部分的面积是100,∵水面刚好经过Ⅲ的中心O ,∴Ⅲ部分的水为整个正方形面积的一半,即Ⅲ部分的有水部分的面积为50,的∴Ⅱ中有水部分的面积为100-36-50=14,故答案为:14.【点睛】本题考查了勾股定理,正方形的面积的计算,熟练掌握勾股定理是解题的关键.15. 如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=12x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=12x于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为_____.(用含正整数n的代数式表示)【答案】22 21 3 2nn−−【解析】【分析】【详解】解:∵点A1(2,2),A1B1∥y轴交直线y=12x于点B1,∴B1(2,1)∴A1B1=2﹣1=1,即△A1B1C1面积=12×12=12;∵A1C1=A1B1=1,∴A2(3,3),又∵A2B2∥y轴,交直线y=12x于点B2,∴B2(3,3 2),∴A2B2=3﹣32=32,即△A2B2C2面积=12×(32)2=98;以此类推,A3B3=94,即△A3B3C3面积=12×(94)2=8132;A 4B 4=278,即△A 4B 4C 4面积=12×(278)2=729128; … ∴A n B n =(32)n ﹣1,即△A n B n C n 的面积=12×[(32)n ﹣1]2=222132n n −−. 三、解答题:(本题共7小题,共55分.其中第16题10分,17、18、19、20每小题7分,21题8分,22题9分)16. 计算:(1)()101123π− −+−+(2)(21++【答案】(1(2)163【解析】【分析】(1)根据零指数幂、负整数指数幂、绝对值的意义及二次根式的加减计算;(2)先根据二次根式的乘除法则运算,然后化简后合并即可.【小问1详解】解:原式123=++=.【小问2详解】解:原式13=−++4133=−++ 163=. 【点睛】本题主要考查零指数幂、负整数指数幂、绝对值的意义和二次根式混合运算,解题的关键是要熟练掌握完全平方公式.17. A 、B 、C 三点在单位长度为1的直角坐标系内位置如图.(1)分别写出A 、B 、C 的坐标;(2)求线段BC 的长度;(3)画出ABC ∆关于x 轴对称111A B C ∆,并求111A B C ∆的面积.【答案】(1)(0,3)A ,(4,4)B −,(2,1)C −(2)BC =(3)5【解析】【分析】(1)根据题意,通过观察图像即可求出答案;(2)如图所示(见详解),构造直角三角形,利用勾股定理即可求出答案;(3)如图所示(见详解),利用“割补法”即可求出答案.【小问1详解】解:A 、B 、C 都在格点上,单位长度为1,∴(0,3)A ,(4,4)B −,(2,1)C −故答案是:(0,3)A ,(4,4)B −,(2,1)C −.【小问2详解】解:如图所示,过点B 作x 轴的垂线,过点C 作y 轴的垂线并反方向延迟,两条垂线交于点D ,得直角三角形BCD △,且3BD =,2CD =,∴BC ,故BC .【小问3详解】解:x 轴对称的111A B C △如图所示,计算111A B C △的面积的方法如下图所示,∴3412EFBG S =×=长方形,1111422A B F S =××=△,1112222A C E S =××=△,1112332C B G S =××=△,∴111122235A B C S =−−−=△,故111A B C △的面积是5.【点睛】本题主要考查图形变换,掌握图形结合,对称,构造直角三角形,勾股定理是解题的关键. 18. 现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,已知消防车高3m ,云梯最多只能伸长到10m ,救人时云梯伸至最长如图,云梯先在A 处完成从9m 高处救人后,然后前进到B 处从12m 高处救人.(1)DM = _____米,BB ′=______米,A M ′=______米;(2)求消防车两次救援移动的距离(即AB 的长度).(精确到0.1m 1.73≈,3.16≈4.36≈)【答案】(1)3;10;9(2)消防车两次救援移动的距离约为3.6m【解析】【分析】(1)根据题意,可得消防车的高为DM 的长,再根据题中图形,可得云梯的长为BB ′的长. (2)根据题意,可得A D ′的长,再根据勾股定理,即可得到消防车在A 处离楼房的距离,根据题意,可得B D ′的长,再根据勾股定理,可得到BD 的长,然后根据AB AD BD =−,即可算出消防车两次救援移动的距离.【小问1详解】解:根据题意得∶ 3m DM =, 10m BB ′=,9m A M ′=;故答案为∶ 3;10;9【小问2详解】解:由题意得3m DM =,10m AA ′=,9m A M ′=,10m BB ′=,12m B M ′=,∴936m A D A M DM ′′=−=−=,1239m B D B M DM ′′=−=−=,∴在Rt AA D ′ 中,8m AD =,在Rt BB D ′ 中, 4.36m BD =≈,∴8 4.36 3.6m AB AD BD =−=−≈.∴消防车两次救援移动的距离约为3.6m .【点睛】本题考查了数形结合思想,勾股定理等知识点,熟练运用数形结合思想是解本题的关键. 19. 《九章算术》中记载,浮箭漏(如图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校科技研究小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究.研究小组每2h 记录一次箭尺读数(箭尺最大读数为120cm ),得到下表: 供水时间x (h ) 0 2 4 6 8箭尺读数y (cm ) 6 18 30 42 54(1)如图②,建立平面直角坐标系,横轴表示供水时间()h x .纵轴表示箭尺读数()cm y ,描出以表格中数据为坐标的各点,并连线;(2)观察描出各点的分布规律,可以知道它是我们学过的______函数(填“正比例”或“一次”),通过计算我们发现该函数解析式为6y x b =+,请结合表格数据,求出b 的值; (3)应用上述得到的规律计算:①供水时间达到11h 时,箭尺的读数为多少cm ?②如果本次实验记录的开始时间是上午700:,那么当箭尺读数为90cm 时是几点钟?【答案】(1)见解析 (2)一次,6(3)①供水时间达到11h 时,箭尺的读数为72cm ;②当箭尺读数为90cm 时是2100:【解析】【分析】(1)由表格描点,连线即可;(2)根据函数图象可得是一次函数,用待定系数法可求出函数关系式;(3)①将11x =代入函数解析式求出y 即可;②求出90y =时x 的值,然后计算即可.【小问1详解】描出以表格中数据为坐标的各点,并连线,如图:【小问2详解】观察图象可知,它是我们学过的一次函数,∵所对应的函数解析式是6y x b =+, ∴将()06,,代入得:6b =, ∴函数解析式是66y x =+. 【小问3详解】由(2)知66y x =+. ①当11x =时,611672y =×+=,∴供水时间达到11h 时,箭尺的读数为72cm ;②当90y =时,即6690x +=,解得:14x =,即经过14h ,箭尺读数为90cm ,∵本次实验记录的开始时间是上午700:,∴当箭尺读数为90cm 时是2100:.【点睛】本题主要考查一次函数的应用,解题的关键是读懂题意,掌握待定系数法求函数解析式.20. 如图,P 是等边三角形ABC 内的一点,连接PA PB PC ,,,以BP 为边作60PBQ ∠=°,且BQ BP =,连接CQ .若345PA PB PC =::::,连接PQ .(1)证明:ABP CBQ ≌△△;(2)求APB ∠的度数.【答案】(1)见解析 (2)150°【解析】【分析】(1)根据等边三角形可得AB CB =,进而根据SAS 即可证明ABP CBQ ≌△△;(2)根据ABP CBQ ≌△△可得AP CQ BPA BQC =∠=∠,,则根据题意可设345PA a PB a PC a ===,,,最后结合勾股定理的逆定理即可得到结论 .【小问1详解】证明:∵ABC 是等边三角形,60PBQ ∠=°, ∴60ABC PBQ ∠=∠=°,AB CB =, ∴ABC PBC PBQ PBC ∠−∠=∠−∠.∴ABP CBQ ∠=∠. 在ABP 和CBQ △中,AB CB ABP CBQ BP BQ = ∠=∠ =, ∴()SAS ABP CBQ △≌△.【小问2详解】∵ABP CBQ ≌△△,∴AP CQ BPA BQC =∠=∠,. ∵345PA PB PC =::::,∴设345PA a PB a PC a ===,,.在PBQ 中,由于4PBBQ a ==,且60PBQ ∠=°, ∴PBQ 为等边三角形.∴604BQP PQ a ∠=°=,. 在PQC △中,∵22222216925PQ QC a a a PC +=+==,∴PQC △为直角三角形,90CQP ∠=°. ∴6090150BQC BQP CQP ∠=∠∠=°°=°++,∴150APB BQC ∠=∠=°. 【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质和勾股定理的逆定理,灵活运用所学知识求解是解决本题的关键.21. 著名数学教育家G ·波利亚,有句名言:“发现问题比解决问题更重要”,这句话启发我们:要想学会数学,就需要观察,发现问题,探索问题的规律性东西,要有一双敏锐的眼睛.请先阅读下列材料,再解决问题:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.例1====+ 解决问题:(1③ ①:______,②:______,③______.(2【答案】(1)53(2)7【解析】【分析】(1)根据题意即可作答;(2)根据题意分别将两个式子算出,进而即可求解.【小问1详解】=3=+,故答案为:53+;【小问2详解】解:原式==52=−++7=.【点睛】本题考查了二次根式的混合运算,解决本题的关键是掌握完全平方公式.22. 如图,在平面直角坐标系中,已知点A ,B ,C 为ABC 的三个顶点,直线AB 的解析式为3y x b =+.(1)如图①,若点A 在y 轴上,点B 在x 轴上,()2,0C ,OB OC =,求A ,B 两点的坐标; (2)在(1)的条件下,过x 轴上一点()6,0D −作DEAC ⊥于E ,DE 交y 轴于点F ,求DOF 的面积;(3)如图②,将ABC 沿x 轴向左平移,AC 边与y 轴交于一点P (P 不同于A 和C 两点),过P 作一直线与AB 的延长线交于Q 点,与x 轴交于点M ,且CP BQ =,在ABC 平移过程中,M 点的坐标是否发生变化?如果不变,请写出M 点的坐标及理由.【答案】(1)()2,0B −,()0,6A(2)6 (3)M 点坐标不变化,()2,0M −,理由见解析的【解析】【分析】(1)根据()2,0C ,OB OC =得()2,0B−,根据直线AB 的解析式为3y x b =+,点A 在y 轴上,令0x =得6b =,即可得;(2)根据AO BC ⊥,DE AC ⊥得90FOD COA ∠=∠=°,即可得90ODF ACO OAC ACO ∠+∠=∠+∠=°,则ODF OAC ∠=∠,即可得()0,6A ,()6,0D −,则DO AO =,利用ASA 证明DOF AOC ≌△△,即可得;(3)过点P 作PN AB ∥交BC 于点N ,则1Q ∠=∠,ABC PNC ∠=∠,根据A ABC CB =∠∠得PNC PCB ∠=∠,则PN PC =,根据CP BQ =得PN BQ =,利用AAS 证明QBM PNM ≌△△,得MN BM =,根据PC PN =,PO CN ⊥,得ON OC =,根据+++BM MN ON OC BC =,可得122OM MN ON BC =+==,即可得. 【小问1详解】解.∵()2,0C ,OB OC =,∴()2,0B −,∵直线AB 的解析式为3y x b =+,点A 在y 轴上, ∴令0x =得6b =,∴()0,6A ;【小问2详解】解:∵AO BC ⊥,DE AC ⊥,∴90FOD COA ∠=∠=°,∴90ODF ACO OAC ACO ∠+∠=∠+∠=°,∴ODF OAC ∠=∠,∴()0,6A ,()6,0D −,∴DO AO =,在DOF 与AOC 中,ODF OAC OD OA FOD COA ∠=∠ = ∠=∠∴DOF AOC ≌△△(ASA ),∴1126622DOF AOC S S OA OB ===××= △△; 【小问3详解】 M 点的坐标不发生变化,()2,0M −,理由如下, 解:如图所示,过点P 作PN AB ∥交BC 于点N ,则1Q ∠=∠,ABC PNC ∠=∠,∵A ABC CB =∠∠,∴PNC PCB ∠=∠,∴PN PC =,∵CP BQ =,∴PN BQ =,在QBM 和PNH △中,123Q BQ PN ∠=∠ ∠=∠ =, ∴()QBM PNM AAS ≌△△,∴MN BM =,∵PC PN =,PO CN ⊥,∴ON OC =,∵+++BM MN ON OC BC =, ∴122OM MN ON BC =+==, ∴()2,0M −,即M点的坐标不发生变化.【点睛】本题考查了一次函数,全等三角形的判定与性质,等边对等角,解题的关键是掌握并灵活运用这些知识点.。
人教版八年级上册数学期中考试试题含答案详解

人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
广东省深圳市罗湖区2022-2023学年八年级上学期期中考试 数学试卷 (解析版)

2022-2023学年八年级(上)期中数学试卷一、单项选择题(共10题,每题3分,共30分)1. 下列各数中,无理数是( )A. 1−B. 227C. D. 3.141 【答案】C【解析】【分析】根据无理数是无限不循环小数,包括开方不尽的根式,π,以及像0.1010010001L 即可求解.故选:C .【点睛】本题考查了无理数的定义,熟练掌握无理数的概念是解题的关键.2. 下列计算正确的是( )A.B.C. 3+D. 2= 【答案】B【解析】【分析】根据二次根式运算法则即可求解.【详解】A不能计算,故错误;B,正确;C 、D故选B .【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.3. 下列各组数中,是勾股数的一组是( )A. 2,3,4B. 3,4,5C. 0.3,0.4,0.5D. 4,5,6【答案】B【解析】【分析】根据勾股定理代入计算即可得到答案. 的【详解】解:A .选项22223134+=≠所以A 选项不是勾股数,B .选项22234255+==所以B 选项是勾股数C .选项2220.30.40.250.5+==但是3个数都不是整数,所以C 选项不是勾股数,D .选项22245416+=≠所以D 选项不是勾股数,故选B .【点睛】本题考查勾股数定义满足222+=a b c 的3个正整数,解题的关键是记得勾股数定义及快速运算验证.4. 在平面直角坐标系中,点P (3,-4)到x 轴的距离是( )A. 3B. -3C. 4D. -4【答案】C【解析】【分析】根据到x 轴的距离是其纵坐标的绝对值求解. 【详解】解:点P (3,-4)到x 轴的距离是44−=, 故选C .【点睛】本题考查了点的坐标的确定与意义,点到x 轴的距离是其纵坐标的绝对值,到y 轴的距离是其横坐标的绝对值.5. 在ABC 中,90C ∠=° ,8AC =,6BC =,则AB 的长为( )A. 5B. 10 D. 28【答案】B【解析】【分析】根据勾股定理直接运算即可得到答案.【详解】解:∵90C ∠=° ,8AC =,6BC =,即AB 直角为三角形斜边,∴222AC BC AB +=∴10AB =, 故选B .【点睛】本题主要考查勾股定理的理解应用,解题关键是认清楚直角边斜边.6. 函数y =x 的取值范围是( )A. 2x ≤B. 2x <C. 2x >D. 2x ≥【答案】D【解析】 【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x -2≥0,解得x ≥2.故选:D .【点睛】本题考查了函数自变量的取值范围,解决本题的关键是二次根式的被开方数是非负数. 7. 已知a<0,b>0,则一次函数y=ax+b 的图像可能是( )A. B.C. D.【答案】B【解析】【分析】由a <0可以推知该直线从左往右下降,由b >0与y 轴交于正半轴,从而可以判断该函数经过第一、二、四象限.【详解】解:∵a <0,∴该直线从左往右下降,∵b >0,∴该直线与y 轴交于正半轴,∴图象经过一、二、四象限;故选:B .【点睛】本题考查了一次函数图象与系数的关系:一次函数y =kx +b (k 、b 为常数,k ≠0)是一条直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;图象与y 轴的交点坐标为(0,b ).8. 若点()3,2A m −和点(),B m n 关于y 轴对称,则m n +的值为( )A. 2B. 2−C. 5D. 5−【答案】A【解析】【分析】直接利用关于y 轴对称的点的纵坐标相同,横坐标互为相反数得出m ,n 的值,进而得出答案.【详解】解:∵点()3,2A m −和点(),B m n 关于y 轴对称,∴30m +=,2m n −=, 解得3m =−,5n =,∴352m n +=−+=,故选:A【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆坐标的符号特征是解题关键.9. 若一个正比例函数的图象经过A (4,﹣8),B (3,m )两点,则m 的值为( )A. ﹣6B. 6C. ﹣32D. 32【答案】A【解析】【分析】求出正比例函数解析式,代入点的坐标求解即可.【详解】设正比例函数解析式为y kx =,把A (4,﹣8)代入得,84k −=,解得,2k =−,正比例函数解析式为2y x =−;把B (3,m )代入得236m =−×=−,故选:A .【点睛】本题考查了正比例函数的性质,解题关键是熟练运用待定系数法求出正比例函数解析式.10. 已知点P (x ,y )40y ++=,则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D【解析】0,40y ≥+≥ 40+=20,40x y ∴−=+=2,4x y ∴==−点()2,4P −在第四象限故选D二、填空题(共5题,每题3分,共15分)11. -64的立方根是_______.【答案】-4【解析】【分析】直接利用立方根意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.12. 若函数24k y x −=+是一次函数,则k 的值是_____.【答案】3【解析】【分析】根据一次函数的定义得到21k −=,然后解方程即可.【详解】解:根据题意得21k −=,解得3k =.故答案为:3.【点睛】本题考查了一次函数的定义,解题的关键是掌握一般地,形如(0y kx b k =+≠,k 、b 是常数)的函数,叫做一次函数.13.的值在两个整数a 与1a +之间,则=a ______.【答案】3【解析】【分析】利用估算无理数的方法得出接近无理数的整数,进而得出答案.<<∴34<<∴3a =故答案为:3.的的取值范围是解题关键.14. 符号“*”表示一种新运算,规定*a b =6*2的值为 __.【解析】【分析】根据新运算将6*2【详解】解:由题意得:6*2==−=【点睛】本题主要考查了二次根式的混合运算、新定义的运算等知识点,将新定义运算转换成二次根式的混合运算是解答本题的关键.15. 如图,已知点E 是长方形ABCD 中AD 边上一点,将四边形BCDE 沿直线BE 折叠,折叠后点C 的对应点为C ′,点D 的对应点为D ′,若点A 在C D ′′上,且108AB BC ==,,则AE =___________.【答案】5【解析】【分析】根据翻折的性质可知8BC BC ′==,10C D AB ′′==,90C D DAB ′′∠=∠=∠=°,在Rt AC B ′ 中,由勾股定理可得6AC ′=,则1064AD C D AC ′′′′=−=−=,在 Rt AD E ′ 中,设AE x =,则 8D E DE AD AE x ′==−=−,由勾股定理可列出方程2224(8)x x +−=,即可求解.【详解】解: 四边形ABCD 为长方形,∴根据翻折性质可得:8BC BC ′==,10C D AB ′′==,90C D DAB ′′∠=∠=∠=°,在Rt AC B ′中,由勾股定理可得6AC ′=,∴1064AD C D AC ′′′′=−=−=,在 Rt AD E ′ 中,设AE x =,则 8D E DE AD AE x ′==−=−,由勾股定理可得:222AD D E AE ′′+=,即2224(8)x x +−=的的解得:5x =,即 5AE =,故答案为:5.【点睛】本题主要考查了翻折变换,矩形的性质,勾股定理及其应用,熟练掌握矩形的性质和勾股定理等是解题的关键.三、解答题(共5题,第16题8分,第17题6分,第18题9分,第19题8分,第20题7分,第21题8分,第22题9分,共55分)16. 计算:(1−(2)2)+−+【答案】(1)2−(2)1【解析】【分析】(1)直接使用运算性质计算,化简结果即可;(2)综合运用平方差公式和二次根式性质计算即可.【小问1详解】解:原式−=2−【小问2详解】解:原式222=−342=−+1=【点睛】本题考查了二次根式的混合运算,关键要掌握运算性质,灵活运用运算公式可简化运算. 17. 一个零件的形状如图所示,按规定∠BAC 应为直角,工人师傅测得∠ADC =90°,AD =3,CD =4,AB =12,BC =13,请你帮他看一下,这个零件符合要求吗?为什么.【答案】这个零件符合要求,理由见解析【解析】【分析】先根据勾股定理求AC 的长,再利用勾股定理的逆定理,判断出△ABC 的形状,从而判断这个零件是否符合要求.【详解】解:这个零件符合要求,理由如下:连接AC .∵∠ADC =90°,AD =3,CD =4,∴AC,∵AB =12,BC =13,且22251213+=,∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∴∠BAC =90°,故这个零件符合要求.【点睛】本题考查了勾股定理和勾股定理的逆定理,关键是先求出AC 的长,结合BC 和AB 的长可判断出△ABC 的形状.18. 如图,方格纸中每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,A (﹣1,5),B (﹣1,0),C (﹣4,3).(1)画出△ABC 关于y 轴成轴对称的△A 1B 1C 1;(其中A 1、B 1、C 1是A 、B 、C 的对应点,不写画法) (2)写出A 1、B 1、C 1坐标;(3)求出△A 1B 1C 1的面积.的【答案】见解析【解析】【分析】(1)根据轴对称图形的性质画出图形;(2)根据图形得出点的坐标;(3)根据三角形的面积求法得出三角形的面积.【详解】(1)、如图(2)、根据图形可得:()115A ,,()110B ,,()143C ,. (3)、1111155322A B C S ∆=××= 19. 甲、乙两家体育用品商店出售相同的羽毛球和羽毛球拍,羽毛球每个定价3元,羽毛球拍每副定价50元.现两家商店都搞促销活动:甲店每买一副球拍赠2个羽毛球;乙店按九折优惠.某班级需购球拍4副,羽毛球(8)x x ≥个.(1)若在甲店购买付款y 甲(元),在乙店购买付款y 乙(元),分别求y 甲、y 乙与x 的函数关系式; (2)买10个羽毛球时,在哪家商店购买合算?【答案】(1)3176y x =+甲, 2.7180y x =+乙;(2)在甲家商店购买合算.【解析】【详解】解:(1)由题意可得,450(8)33176y x x =×+−×=+甲,(4503)0.9 2.7180y x x =×+×=+乙;(2)当10x =时,310176206y =×+=甲, 2.710180207y =×+=乙,206207< ,∴买10个羽毛球时,在甲家商店购买合算.20. 一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s 千米与所用的时间t 小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km /h ,大客车的速度是________ km /h ;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t ,s ;(2)50,30;(3)15小时,450km【解析】【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh 时,两车相遇,根据题意列出方程,解之可得x ,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t ;因变量是路程s ;(2)由图象可得,小轿车的速度为:500÷10=50(km/h ),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21. 如图,在△ABC中,AC=21,BC=13,D是AC边上一点,BD=12,AD=16.(1)求证:BD⊥AC.(2)若E是边AB上的动点,求线段DE的最小值.【答案】(1)证明见解析;(2)线段DE使得最小值为9.6.【解析】【分析】(1)利用勾股定理的逆定理解决问题即可.(2)根据垂线段最短可得出当DE⊥AB时,DE长度最小,再利用面积法可求出线段DE的最小值.【详解】解:(1)∵AC=21,AD=16,∴CD=AC﹣AD=5,在△BCD中,BD2+CD2=122+52=169=BC2,∴∠BDC=90°,∴BD⊥AC.(2)当DE⊥AB时,DE最短,在R t△ABD中,AB==20,∵12•AD•DB=12•AB•DE,∴DE =161220×=9.6, ∴线段DE 使得最小值为9.6.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识. 22. 八年级(1)班张山同学利用所学函数知识,对函数21y x x =+−−进行了研究.列表如下: x ... 5− 4− 3− 2− 1− 0 1 2 3 ...y ... 75 3 m 1 n 1 1 1 .... (1)表格中,m =___________;n =___________.(2)在给出的坐标系中描点,画出函数21y x x =+−−的图象.(3)自变量x 的取值范围是___________.(4)请写出该函数的一个性质.【答案】(1)1,1 (2)见解析(3)全体实数 (4)当<2x −时,y 随x 的增大而减小,2x ≥−时,y =1【解析】【分析】(1)将2x =−、0x =代入21y x x =+−−即可求解;(2)根据表格里面的数据,先描点,再作图即可;(3)结合函数图象和函数解析式即可作答;(4)结合函数图象即可作答.【小问1详解】当2x =−时,211m y x x ==+−−=;当0x =时,211n y x x ==+−−=;即:1m =,1n =;【小问2详解】描点作图如下:如图实线即为函数21y x x =+−−的图象;【小问3详解】 由图象及函数21y x x =+−−的特点可知:自变量x 的取值范围是全体实数;【小问4详解】根据图象可知:当<2x −时,y 随x 的增大而减小,2x ≥−时,y =1.【点睛】本题考查了函数的图象与性质,利用描点法画函数图象,利用图象得出两段折线的交点是解题关键.。
辽宁大连市名校联盟2024-2025学年八年级上学期期中数学 试题(解析版)

2024-2025学年度第一学期联盟试卷(一)八年级 数学注意事项:1.请准备好必要的答题工具在答题卡上作答,在试卷上作答无效.2.本试卷共三大题,23小题,满分120分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分)1. 第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,如图所示巴黎奥运会项目图标中,轴对称图形是( )A. B. C. D.【答案】B【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:B .2. 如图,用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中∠BAE 的度数是( )A. 90°B. 108°C. 120°D. 135°【答案】B 【详解】解:正五边形的内角和=(52)180540−×°=°, ∴∠BAE=5401085=°°,故选:B .3. 在平面直角坐标系中,点()6,2P −关于x 轴的对称点的坐标是( )A. ()6,2−−B. ()6,2C. ()2,6−D. ()6,2−【答案】A【详解】解:点()6,2P −关于x 轴的对称点的坐标是()6,2−−,故选A .4. 如图,在ABC 和DEF 中,A D ∠=∠,AC DF =,要使得ABC DEF ≌△△,还需要补充一个条件,则下列错误的条件是( )A. BF CE =B. //AC DFC. B E ∠=∠D. AB DE =【答案】A 【详解】解: 在ABC 和DEF 中,已有,A D AC DF ∠=∠=, ∴要使ABC DEF ≅△△,只需增加一组对应边相等或对应角即可,即需增加的条件是AB DE =,DFE B E ∠=∠∠=∠,观察四个选项可知,只有选项A 符合,故选择:A .5. 已知等腰三角形的两边长分别为5cm 、2cm ,则该等腰三角形的周长是( )A. 7cmB. 9cmC. 12cm 或者9cmD. 12cm【答案】D【详解】若2cm 为腰长,5cm 为底边长,∵2+2=4<5,不能组成三角形,∴不合题意,舍去;若2cm 为底边长,5cm 为腰长,则此三角形的周长为:2+5+5=12cm .故选D .6. 小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m 和1.8m ,90BOC ∠=°.爸爸在C 处接住小丽时,小丽距离地面的高度是( )A. 1mB. 1.6mC. 1.8mD. 1.4m【答案】D 【详解】解:90BOC ∠=° ,90BOD COE ∴∠+∠=°,90BDO ∠=°,90CEO ∠=°, 90BOD OBD ∴∠+∠=°,90COE OCE ∠+∠=°,COE OBD ∴∠=∠,BOD OCE ∠=∠,又OB CO = ,()OBD COE AAS ∴≅ ,1.4m OE BD ∴==, 1.8m OD CE ==,1.8m 1m 1.4m 1.4m AE OA OE OD DA OE ∴=−=+−=+−=.故选:D .7. 如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ’、BB 的中点,只要量出A ’B ’的长度,就可以知道该零件内径AB 的长度.依据的数学基本事实是( )A. 两边及其夹角分别相等的两个三角形全等B. 两点确定一条直线C. 两角及其夹边分别相等的两个三角形全等D. 两点之间线段最短【答案】A【详解】解: 点O 为AA ′、BB ′的中点,OA OA ∴′=,OB OB ′=,由对顶角相等得AOB A OB ′′∠=∠,在AOB 和A OB ′′△中,OA OA AOB A OB OB OB ′′= ∠=∠′′ =, ()SAS AOB A OB ′′∴△≌△,AB A B ′′∴=,即只要量出A B ′′的长度,就可以知道该零件内径AB 的长度,故选:A .8. 如图,在ABC 中,62B ∠=°,34C ∠=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 50°B. 45°C. 40°D. 35°【答案】A 【详解】解:根据作图可知,MN 垂直平分AC ,∴AD CD =,∴34DAC C ∠=∠=°,∵18084BAC B C ∠=°−∠−∠=°,∴843450BAD BAC DAC ∠=∠−∠=°−°=°,故A 正确.故选:A .9. 元旦联欢会上,3 名同学分别站在 ABC 三个顶点的位置上.游戏时,要求在他们中间放一个凳子,该先坐到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置是在ABC 的( )A. 三边垂直平分线的交点B. 三条角平分线的交点C. 三边中线的交点D. 三边上高的交点【答案】A【详解】解:∵ABC 的垂直平分线的交点到ABC 三个顶点的距离相等,∴凳子应放置的最适当的位置时在ABC 的三边垂直平分线的交点,故选:A .10. 如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE 的长为( )A. 2cmB. 36cm 13C. 12cm 5D. 3cm【答案】C 【详解】解:如图,过点D 作DF BC ⊥于F ,∵BD 是ABC ∠的平分线,DE AB ⊥,∴DE DF =,∵18cm AB =,12cm BC =, ∴1118122623ABC DE S DF =×+×= , 即6111812223DE DE ×+×=, 解得()12cm 5DE =. 故选:C .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11. 如图,ABC 中,4AB AC ==,P 是BC 上任意一点,过P 作PD AC ⊥于D ,PE AB ⊥于E ,若12ABC S =△,则PE PD +=_________【答案】6【详解】解:连接AP ,由图可得,ABCABP ACP S S S =+△△△, ∵PD AC ⊥于D ,PE AB ⊥于E ,12ABC S =△, ∴()1111442122222AB PE AC PD PE PD PE PD ×+×=××+××=+=, ∴6PE PD +=.故答案为:6.12. 小明将两把完全相同的长方形直尺如图放置在AOB ∠上,两把直尺的接触点为P ,边OA 与其中一把直尺边缘的交点为C ,点C 、P 在这把直尺上的刻度读数分别是2、5,则OC 的长度是______.【答案】3cm【详解】解:过P 作PN OB ⊥于N ,由题意得:PM PN =,PC OB ∥,PM OA ⊥,PO ∴平分AOB ∠,COP NOP ∴∠=∠,∵PC OB ∥,CPO NOP ∴∠=∠,COP CPO ∴∠=∠,OC PC ∴=, C 、P 在这把直尺上的刻度读数分别是2、5,()523cm PC ∴=−=,OC ∴长度是3cm .故答案为:3cm .13. 如图,在Rt △ABC 与Rt △DCB A =∠D =90°,请你添加一个条件(不添加字母和辅助线),使Rt △ABC ≌Rt △DCB ,你添加的条件是______.【答案】AB =DC【详解】解:添加条件是AB =CD .理由是:∵∠A =∠D =90,AB =CD ,BC =BC ,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =CD .14. 如图,亮亮想测量某湖A ,B 两点之间的距离,他选取了可以直接到达点A ,B 的一点C ,连接CA ,CB ,并作BD AC ∥,截取BD AC =,连接CD ,他说,根据三角形全等的判定定理,可得ABC DCB △≌△,所以AB CD =,他用到三角形全等的判定定理是______.的【答案】SAS【详解】解:∵BD AC ∥,∴ACB DBC ∠=∠,在ACB △与DBC △中,AC BD ACB BDC BC CB = ∠=∠ =, (SAS)ACB DBC ∴ ≌,AB CD ∴=, 故答案为:SAS .15. 如图,在等边ABC 中,BF 是AC 上中线且4BF =,点D 在线段BF 上,连接AD ,在AD 的右侧作等边ADE ,连接EF ,则AE EF +的最小值为 ____________________.【答案】4【详解】解:ABC 、ADE 都是等边三角形,AB AC ∴=,AD AE =,60BAC DAE ∠=∠=°,BAD CAE ∴∠=∠,()SAS BAD CAE ∴ ≌,ABD ACE ∴∠=∠,AF CF = ,30ABD CBD ACE ∴∠=∠=∠=°,∴点E 在射线CE 上运动(30ACE ∠=°), 作点A 关于CE 的对称点M ,连接FM 交CE 于E ′,此时AE E F ′′+的值最小,即AE E F ME E F FM ′′′′+=+=,CA CM = ,260ACM ACE ∠=∠=°, ACM ∴ 是等边三角形,ABC 是等边三角形,(AAS)ACM ACB ∴≌ ,4BF FM ∴==,即:AE EF +的最小值是4,故答案:4.三、解答题(本题共8小题,共75分)16. 如图,点B 、E 、C 、F 在同一直线上,90A D ∠=∠=°,BE CF =,AC DF =.求证:B DEF ∠=∠.【答案】见解析【详解】证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在Rt ABC △和Rt DEF △中,AC DF BC EF = =, ∴()Rt Rt HL ABC DEF ≌△△,∴B DEF ∠=∠.17. 学习完《利用三角形全等测距离》后,数学兴趣小组同学就“测量河两岸A 、B 两点间距离”这一问题,设计了如下方案. 课题测量河两岸A 、B 两点间距离为测量工具 测量角度的仪器,皮尺等 测量方案示意图测量步骤 ①在点B 所在河岸同侧的平地上取点C 和点D ,使得点A 、B 、C 在一条直线上,且CD BC =;②测得100,65DCB ADC ∠=°∠=°;③在CD 的延长线上取点E ,使得15BEC ∠=°;④测得DE 的长度为30米.请你根据以上方案求出A 、B 两点间的距离AB .【答案】A 、B 两点间的距离AB 为30米【详解】解:100,65DCB ADC ∠=°∠=° ,18015CAD DCB ADC ∴∠=°−∠−∠=°.15E ∠=° ,CAD E ∴∠=∠.在DCA △和BCE 中,CAD E ACD ECB CD BC ∠=∠ ∠=∠ =(AAS)DCA BCE ∴△△≌,AC EC ∴=.BC CD = ,AC BC CE CD ∴−=−,30AB DE =∴=米,即A 、B 两点间的距离AB 为30米.18. 如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)请写出ABC 关于x 轴对称的111A B C △的各顶点坐标;(2)请画出ABC 关于y 轴对称的222A B C △;(3)在x 轴上求作一点P ,使点P 到A 、B 两点的距离和最小,请标出P 点,并直接写出点P 的坐标______.【答案】(1)点()11,1A −,()14,2B −,()13,4C −(2)见解析 (3)()2,0【解析】【小问1详解】解:ABC 与111A B C △关于x 轴对称,∴点()11,1A −,()14,2B −,()13,4C −.【小问2详解】如图,222A B C △即为所求.【小问3详解】如图,点P 即为所求,点P 的坐标为(2,0).故答案为:(2,0).19. 图1是一个平分角的仪器,其中OD OE FD FE ==,.(1)如图2,将仪器放置在ABC 上,使点O 与顶点A 重合,D ,E 分别在边AB AC ,上,沿AF 画一条射线AP ,交BC 于点P .AP 是BAC ∠的平分线吗?请判断并说明理由.(2)如图3,在(1)的条件下,过点P 作PQ ⊥AB 于点Q ,若69PQ AC ==,,ABC 的面积是60,求AB 的长.【答案】(1)AP 是BAC ∠的平分线,理由见解析(2)11AB =【解析】【小问1详解】解:AP 是BAC ∠平分线理由如下:在ADF △和AEF △中,AD AE AF AF DF EF = = =,∴()SSS ADF AEF △△≌∴DAF EAF ∠=∠,∴AP 平分BAC ∠.【小问2详解】解: ∵AP 平分BAC ∠,PQ AB ⊥,∴APC △的高等于PQ ,∵6PQ =.∴69227APC S =×÷=△,∵33ABP ABC APC S S S =−=△△△∴2332611ABP AB S PQ =÷=×÷=△.的20. 如图,△ABC 中,∠A <60°,AB =AC ,D 是△ABC 外一点,∠ACD =∠ABD =60°,用等式表示线段BD 、CD 、AC 的数量关系,并证明.【答案】ACBD CD =+,证明见解析 【详解】ACBD CD =+. 证明:如图,延长BD 至E ,使BE AB =,连接AE ,CE .ABE ∴ 是等腰三角形.·60ABD =∠ ,ABE ∴ 是等边三角形.AE AB BE ∴==,60AEB ∠=. AB AC = ,AE BE AC =∴=.ACE AEC ∴∠=∠.60ACD =∠ ,ACD AEB ∴∠=∠.ACE ACD AEC AEB −∠=∠−∠∴∠.即ECD CED ∠=∠.CD DE ∴=.BE BD DE BD CD ∴=+=+.AC BD CD =∴+.21. 已知:如图,AC ∥BD ,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹.(不要求写作法)①作BE 平分∠ABD 交AC 于点E ;②在BA 的延长线上截取AF=BA ,连接EF ;(2)判断△BEF 的形状,并说明理由.【答案】(1)①见解析;②见解析;(2)△BEF 直角三角形;证明见解析.【详解】解:(1)①如图,点E 即为所求;②如图,AF ,EF 即为所求;(2)∵BE 平分∠ABD ,∴∠ABE=∠EBD .∵AC ∥BD ,∴∠EBD=∠AEB ,∴∠ABE =∠AEB ,∴AE=AB .∵AB=AF∴AE=AF ,∴∠AFE =∠AEF ,∵∠ABE +∠AEB+∠AFE +∠AEF=180°∴∠AEB+∠AEF=90°即∠BEF =90°∴△BEF 是直角三角形.22. 已知:在ABC 中,D 是BC 的中点.是【问题解决】(1)如图1,若6AB =,4AC =,求AD 的取值范围.小明的做法是:延长AD 至点M ,使AD MD =,连接BE ,证明ACD MBD △≌△,小明判定全等的依据为:______.【类比探究】(2)如图2,在BC 的延长线上存在点M ,BAC BCA ∠=∠,CM AB =,求证:2AM AD =.【变式迁移】(3)如图3,90BAM NAC ∠=∠=°,AB AM =,AC AN =,试探究线段AD 与MN 的关系,并证明.【答案】(1)SAS ;(2)见解析;(3)2,MN AD MN AD =⊥,证明见解析 【详解】(1)解:∵D 是BC 的中点,∴BD CD =,∵,,D BD CD ADC M M A DB D =∠==∠,∴()ADC MDB SAS ≌,其中判定全等的依据为SAS ,故答案为:SAS ;(2)解:延长AD 到E ,使AD DE =,连接BE ,∵D 是BC 的中点,CD BD ∴=,在ADC △和EDB △中DC DB ADC EDB DA DE = ∠=∠ =, (SAS)ADC EDB ∴△≌△,,BE AC BCA EBD ∴=∠=∠,,,BAC BCA ACM ABC BAC EBA EBD ABD ∠=∠∠=∠+∠∠=∠+∠ ,ACM EBA ∴∠=∠,在ACM △和EBA △中,AC EB ACM EBA CM BA = ∠=∠ =, (SAS)ACM EBA ∴ ≌,2AM AE AD ∴==.(3)解:2,MN AD MN AD =⊥, 证明如下:如图,在AD 的延长线上截取DH AD =,连接CH ,则2AH AD =,∵D 是BC 的中点,CD BD ∴=,(SAS)CDH BDA ∴ ≌,,CH AB AHC BAE ∴=∠=∠,,90AB AM BAH =∠=° ,,90CH AM AHC ∴=∠=°,90ACH CAH ∴∠+∠=°,90NAC ∠=° ,90NAM CAH ∴∠+∠=°,NAM ACH ∴∠=∠,(SAS)NAM ACH ∴ ≌,,90MN AH AMN AHC ∴=∠=∠=°, 2,MN AD MN AD ∴=⊥.23. 在学习全等三角形知识时、数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:【模型探究】已知,在ABC 中,AB BC =,点P 是ABC 外部一点,过点P 作射线AE .(1)如图1,若ABC 是等边三角形,AE 经过BAC ∠内部,60BPA ∠=°,求证:60APC ∠=°. 小宁的做法是:在AE 上截取BQ BP =,构造“手拉手模型”,得出结论.请你帮助小宁完成证明:【模型应用】(2)如图2,已知30BAC BPA ∠=∠=°.当AE 经过BAC ∠内,求APC ∠的度数. 【拓展提高】(3)如图3,已知30BAC BPA ∠=∠=°.当AE 在AC 下方,求APC ∠的度数.【答案】(1)证明见解析部分;(2)120°;(3)60APC ∠=°【详解】(1)证明:如图1,在AE 上取一点Q ,使BQ BP =,∵60BPA ∠=°,∴BPQ 是等边三角形,∴60QBP BPQ BQP ∠=∠=∠=°, ∵ABC 是等边三角形,∴60ABC ∠=°,∴ABC QBP ∠=∠, ∴ABC QBC PBQ QBC ∠−∠=∠−∠,即ABQ CBP ∠=∠, 在BAQ 和BCP 中,AB BC ABQ CBP BQ BP = ∠=∠ =∴()BAQ BCP SAS ≌,∴180********BPCAQB BQP ∠=∠=°−∠=°−°=°, 1206060APC BPC BPQ ∴∠=∠−∠=°−°=°; (2)解:如图2,在AE 上取一点,M BM BP =,30,BAC BPA AB BC ∠=∠=°= , 30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,18030150BPC BMA ∴∠=∠=°−°=°, 15030120APC ∴∠=°−°=°;(3)解:如图3.在PA 延长线上取一点M ,使得BM BP =,30,BAC BPA AB BC ∠=∠=°= ,30,30BAC BCA BMP BPM ∴∠=∠=°∠=∠=°, 120ABC MBP ∴∠=∠=°,ABM CBP ∴∠=∠,在ABM 和CBP 中,BA BC ABM CBP BM BP = ∠=∠ =, ()ABM CBP SAS ∴ ≌,30BPC M ∴∠=∠=°,303060APC BPM BPC ∴∠=∠+∠=°+°=°.。
(北师大版)2024-2025学年八年级数学上学期期中押题测试卷(一)(解析版)

2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:(北师版)八年级上册第一章~第四章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)期中数学试卷一、选择题:(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得3分,答错、不答或答案超过一个的一律得O分.)1.下列“QQ表情”中属于轴对称图形的是()2.如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°3.如图,DE∥AB,若∠ACD=55°,则∠A等于()A.35°B.55°C.65°D.125°4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cm C.14cm,6cm,7cm D.2cm,3cm,6cm5.在△ABC中,AB=AC,∠C=75°,则∠A的度数是()A.150°B.50°C.30°D.75°6.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AM∥CN C.AB=CD D.AM=CN7.等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.30°或150°C.60°或150°D.60°或120°8.三角形中,到三边距离相等的点是()A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点9.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.1210.如图所示为打碎的一块三角形玻璃,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①去B.带②去C.带③去D.带①和②去11.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD 等于()A.1cm B.2cm C.3cm D.4cm12.平面内点A(﹣1,2)和点B(﹣1,﹣2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣1二、填空题:(本大题共6小题,每题2分,共12分.)13.一辆汽车的牌照在路面旁水面的倒影为,则实际号码是.14.若等腰三角形的周长为26cm,一边为11cm,则腰长为.15.如图,点P在∠AOB内,点M、N分别是点P关于OA、OB的对称点,若△PEF的周长为15,则MN的长为.16.已知等腰三角形的底角为15°,腰长为10cm,则此等腰三角形的面积为.17.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=海里.18.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共6小题,共36分.解答应写出必要的文字说明、证明过程或演算步骤.)19.(6分)如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出△ABC 关于x轴对称的△A2B2C2的各点坐标.20.(6分)已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和.21.(6分)如图,已知∠A=∠D,CO=BO,求证:△AOC≌△DOB.22.(6分)如图,△ABC中,AB=AC,BD=CB=AD,求△ABC各角的度数.23.(6分)如图:△ABC中,∠ABC和∠ACB的平分线交于F点,过F点作DE∥BC,分别交AB、AC于点D、E.求证:DE=BD+CE.24.(6分)已知:如图等边△ABC,D是AC的中点,且CE=CD,DF⊥BE.求证:BF=EF.四、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤.)25.(8分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.26.(8分)如图,△ABC和△CDE都是等边三角形,且点A,C,E在一条直线上.(1)AD与BE相等吗?为什么?(2)连接MN,试说明△MNC为等边三角形.参考答案与试题解析一、选择题:(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中有且只有一个选项是符合题目要求的.答对的得3分,答错、不答或答案超过一个的一律得O分.)1.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选:D.3.【解答】解:∵DE∥AB,∠ACD=55°,∴∠A=∠ACD=55°.故选:B.4.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选:B.5.【解答】解:∵在△ABC中,AB=AC,∴∠C=∠B=75°,∴∠A=180°﹣∠C﹣∠B=180°﹣75°﹣75°=30°.故选:C.6.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故B选项不符合题意;D、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故C选项符合题意;故选:D.7.【解答】解:如图1,∵∠ABD=60°,BD是高,∴∠A=90°﹣∠ABD=30°;如图2,∵∠ABD=60°,BD是高,∴∠BAD=90°﹣∠ABD=30°,∴∠BAC=180°﹣∠BAD=150°;∴顶角的度数为30°或150°.故选:B.8.【解答】解:三角形中,到三边距离相等的点是三条角平分线的交点.故选:C.9.【解答】解:在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选:A.10.【解答】解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选:C.11.【解答】解:∵AC⊥BC,AE为∠BAC的平分线,DE⊥AB,∴CE=DE,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AD=AC,∵AB=7cm,AC=3cm,∴BD=AB﹣AD=AB﹣AC=7﹣3=4cm.故选:D.12.【解答】解:∵点A(﹣1,2)和点B(﹣1,﹣2)对称,∴AB平行与y轴,∴对称轴是直线y=(﹣2+2)=0.故选:A.二、填空题:(本大题共6小题,每题2分,共12分.)13.【解答】解:如图所示:该车牌照号码为M12569.故答案为:M12569.14.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故答案为:7.5cm或11cm.15.【解答】解:∵点M、N分别是点P关于直线OA、OB的对称点,∴OA为MP的中垂线,OB为PN的中垂线,∴PE=ME,FP=FN,∵△PEF的周长=15,∴PE+PF+EF=ME+EF+FN=15,∴MN=15.故答案为:15.16.【解答】解:∵∠B=∠ACB=15°,∴∠CAD=30°,∴CD=AC=×10=5,∴三角形的面积=×10×10=50cm2,故答案为:50cm2.17.【解答】解:过P作PD⊥AB于点D.∵∠PBD=90°﹣60°=30°且∠PBD=∠PAB+∠APB,∠PAB=90﹣75=15°∴∠PAB=∠APB∴BP=AB=7(海里)故答案是:7.18.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共6小题,共36分.解答应写出必要的文字说明、证明过程或演算步骤.)19.【解答】解:如图,△A1B1C1为所作;△ABC关于x轴对称的△A2B2C2的各点坐标分别为(3,﹣2)、(﹣4,3)、(﹣1,1).20.【解答】解:(1)∵每一个内角都等于150°,∴每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12;(2)内角和:12×150°=1800°.21.【解答】证明:在△AOC与△DOB中,,∴△AOC≌△DOB(AAS).22.【解答】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°,∠ABC=∠ACB=72°.23.【解答】证明:∵∠ABC和∠ACB的平分线交于F点,∴∠ABF=∠FBC,∠ACF=∠FCB.∵DE∥BC,∴∠FBC=∠BFD,∠FCB=∠EFC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DB=DF,EC=EF.∵DE=DF+EF,∴DE=BD+CE.24.【解答】证明:∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DF⊥BE,∴F是BE的中点,∴BF=EF.四、解答题(本大题共2小题,共16分.解答应写出必要的文字说明、证明过程或演算步骤.)25.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.26.【解答】解:(1)AD=BE,理由为:证明:∵△ABC和△DCE都为等边三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=CE,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;(2)∵△ACD≌△BCE,∴∠MDC=∠NCE,在△MDC和△NEC中,,∴△MDC≌△NEC(ASA),∴CM=CN,∵∠MCD=60°,∴△MNC为等边三角形.。