《应用光学》第2章课后答案解析
《应用光学》第2章课后答案全文

12. 由两个透镜组成的一个倒像系统,设第一组透镜的焦距 为f1′,第二组透镜的焦距为f2′,物平面位于第一组透镜 的物方焦面上,求该倒像系统的垂轴放大率。
解:
1
1
1
1
F2
1
1
第一组透镜
第二组透镜
1
第二组透镜
13. 由两个同心的反射球面(二球面球心重合)构成的光学系 统,按照光线反射的顺序第一个反射球面是凹的,第二个 反射球面是凸的,要求系统的像方焦点恰好位于第一个反 射球面的顶点,求两个球面的半径r1,r2和二者之间的间隔 d之间的关系。
B′
面,如图示.
l ′ = 2f′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −f′
B
……
F
F′
A
H H′
像平面在像 空间无限远 处.
l′=∞
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l f' 2
B′
r1 无穷远物点
r2
r1/2
最终像点
11 2
l2 l2 r2
l2
l2
2 r2
(l2l2 )
14. 假定显微镜物镜由相隔20mm的两个薄透镜组构成,物平 面和像平面之间的距离为180mm,放大率β=-10×,要求近 轴光线通过二透镜组时的偏角Δu1和Δu2相等,求二透镜 组的焦距。
y n1u1 u1 10
l = −f′
B
……
F′
F
H H′
A
像平面在像 空间无限远 处.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
应用光学课后习题答案

应用光学课后习题答案应用光学课后习题答案光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。
应用光学是将光学原理应用于实际问题的学科,广泛应用于光学仪器、光学通信、光学材料等领域。
在学习应用光学的过程中,习题是巩固知识、提高应用能力的重要途径。
下面是一些应用光学课后习题的答案,希望对大家的学习有所帮助。
1. 一束入射光线从空气射向玻璃,入射角为30°,玻璃的折射率为1.5。
求折射光线的入射角和折射角。
解答:根据折射定律,入射角和折射角之间满足的关系是:n₁sinθ₁ =n₂sinθ₂,其中n₁和n₂分别为两种介质的折射率,θ₁和θ₂分别为入射角和折射角。
已知n₁ = 1(空气的折射率),θ₁ = 30°,n₂ = 1.5(玻璃的折射率),代入折射定律得:1sin30° = 1.5sinθ₂,解得θ₂ ≈ 19.47°。
所以,折射光线的入射角为30°,折射角为19.47°。
2. 一束光线从空气射入水中,入射角为60°,水的折射率为1.33。
求折射光线的入射角和折射角。
解答:同样利用折射定律,已知n₁ = 1(空气的折射率),θ₁ = 60°,n₂ = 1.33(水的折射率),代入折射定律得:1sin60° = 1.33sinθ₂,解得θ₂ ≈ 45.05°。
所以,折射光线的入射角为60°,折射角为45.05°。
3. 一束光线从玻璃射入空气,入射角为45°,玻璃的折射率为1.5。
求折射光线的入射角和折射角。
解答:同样利用折射定律,已知n₁ = 1.5(玻璃的折射率),θ₁ = 45°,n₂ = 1(空气的折射率),代入折射定律得:1.5sin45° = 1sinθ₂,解得θ₂ ≈ 30°。
所以,折射光线的入射角为45°,折射角为30°。
应用光学第二版胡玉禧第二章作业参考题解

第二章作业参考题解1. 习题2-2;解:依题意作图如图。
mm r 50=,n= ,n '=1 1)对球心处气泡,mm l 50'=,据rnn l n l n -=-''' 将数值代入解得 mm l 50=;2)对球心与前表面间的一半处气泡,mm l 25'=,据rn n l n l n -=-''',将数值代入得 505.115.1251-=-l ,解得:mm l 30=2. 习题2-6(c),(d),(f );3. 用作图法求下列各图中物体AB 的像A ′B ′4. 习题2-75. 习题2-10 解: 据题意有2111-=-=x f β (1) 122-=-=x f β (2) 10012+=x x (3) 联立(1)(2)(3)式解得 )(100mm f -=; 或据 ''f x -=β 和题目条件可以解得 )(100'mm f = (说明:本题也可以用高斯公式求解) 6. 习题2-13解:由于两透镜密接,故d = 0 , 所求 ''x f f x L ++--= ,或 'l l L +-=把透镜看成光组,则此为双光组组合问题。
可由∆-='''21f f f 和∆=21f f f 计算组合后系统的焦距:)(31005010050100'''21mm f f f =+⨯-=∆-= ,)(310050100)50(10021mm f f f -=---⨯-=∆= 又 (法一)101''-=-=-=x f f x β, 所以 )(310'101'mm f x =-= ,)(3100010mm f x -== )(3.403312103103100310031000''mm x f f x L ≈=+++=++--=又 (法二)101'-==l l β, 所以 '10l l -= ,代入高斯公式得 1003'1011=--'l l 解得 )(311031001011'mm l =⨯=, )(31100'10mm l l -=-=所以 )(3.40331210311031100'mm l l L ≈=+=+-=7. 习题2-18解:据题意透镜为同心透镜,而r 1=50mm ,d =10 mm ,故有 r 2= r 1-d = 40 mm ,所以,由dn r r n dr l H )1()(121-+--=得)(50163.5163.1550010)15163.1()5040(5163.15010mm l H =+--=⨯-+-⨯-=dn r r n dr l H )1()('122-+--=得)(40163.5163.1540010)15163.1()5040(5163.14010'mm l H =+--=⨯-+-⨯-=10)15163.1()5040(5163.1)15163.1(40505163.1)1()()1('221221⨯-+-⨯-⨯⨯=-=-+--=f d n r r n n r nr f)(37168.587163.56.3032665656.2828656.76.3032mm -=-=+-=。
应用光学【第二章】习题第三部分

10.一个双凸透镜,两面的曲率半径为r1=15cm, r2=10cm, 透镜玻璃的折射系数n=1.5,透镜厚度d=3cm, 透镜置于空气中,求透镜的主焦点及主平面的位置。
11.凸透镜焦距为10厘米,凹透镜焦距为4厘米,两个透镜相距12厘米,已知物在凸透镜左方20厘米处,计算像的位置和横向放大率。
12.空气中双凹厚透镜的两个凹面半径r1和r2分别为-8厘米和7厘米,沿主轴的厚度为2厘米,玻璃折射率n为1.5。
求焦点和主平面的位置。
13.已知两透镜的像方焦距分别为5厘米和10厘米,两镜光学间隔为10厘米,物离透镜为15厘米,用复合光组法求最后的像的位置。
14.一焦距为20厘米的薄透镜与一焦距为20厘米的薄凹透镜相距6厘米,求(1)复合光组焦点及主平面的位置。
(2)若物放在凸透镜前30厘米处,求像的位置和放大率。
物理光学与应用光学第二版课件及课后习题答案

由式(1-12)
2 所以有: ( E ) ) E
由式(1-16)得:
2
即 E 0
E 2 E 2 t
(1-17)
同理对式(1-15)两边 取旋度,得
2 2 D B E H ( D) 2 2 t t t t
即:
E E 2 t
2
(1-16)
利用矢量微分恒等式
2 ( A) ( A) A
有:
2 ( E ) ( E ) E
D 0
可知 E 0
同理,利用矢量微分恒等式,可得:
2 有以上两式得: H H 2 t
2
2 ( H ) H
(1-18)
v 令
1
可将式(1-17)式(1-18)变为:
2 1 2E 2 E 2 2 0 (1-19) 2 H 1 H 0 v t v 2 t 2
4.波动方程
麦克斯韦方程组描述了电磁现象的变化规律, 指出随时间变化的电场将在周围空间产生变化的磁 场,随时间变化的磁场将在周围空间产生变化的电 场,变化的电场和磁场之间相互联系,相互激发, 并且以一定速度向周围空间传播。因此,时变电磁 场就是在空间以一定速度由近及远传播的电磁波。
一、 电磁场波动方程:
D H j t
符号的意义:
哈密顿算符:
i j k x y z
具有矢量和求导的双重功能 Dx Dy Dz 散度: D D
x y z
王文生——应用光学习题集答案

王⽂⽣——应⽤光学习题集答案第⼀章1、游泳者在⽔中向上仰望,能否感觉整个⽔⾯都是明亮的?(不能,只能感觉到⼀个明亮的圆,圆的⼤⼩与游泳都所在的⽔深有关,设⽔深H,则明亮圆半径R Htglc)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表⾯发⽣了全反射现象?答:是。
3、⼀束在空⽓中波长为589.3nm的钠黄光从空⽓射⼊⽔中时,它的波长将变为多少?在⽔中观察这束光时其颜⾊会改变吗?答:n —;,' 442nm 不变4、⼀⾼度为1.7m的⼈⽴于路灯边(设灯为点光源)1.5m远处,路灯⾼度为答:设影⼦长x,有:x 17x=0.773mx 1.5 55、为什么⾦钢⽯⽐磨成相同形状的玻璃仿制品显得更加光彩夺⽬?答:由于⾦钢⽯折射率⼤,所以其临界⾓⼩,⼊射到其中的光线⼤部分都能产⽣全反射。
6为什么⽇出或⽇落时太阳看起来稍微有些发扁?(300例P1)答:⽇出或⽇落时,太阳位于地平线附近,来⾃太阳顶部、中部和底部的光线射向地球⼤⽓层的⼊射⾓依次增⼤(如图)。
同时,⼤⽓层密度不均匀,折射率⽔接近地⾯⽽逐渐增⼤。
当光线穿过⼤⽓层射向地⾯时,由于n逐渐增⼤,使其折射⾓逐渐减⼩,光线的传播路径就发⽣了弯曲。
我们沿着光线去看,看到的发光点位置会⽐其实际位置⾼。
另⼀⽅⾯,折射光线的弯曲程度还与⼊射⾓有关。
⼊射⾓越⼤的光线,弯曲越厉害,视觉位置就被抬得越⾼,因为从太阳上部到下部发出的光线,⼊射⾓依次增⼤,下部的视觉位置就依次⽐上部抬⾼的更多。
第⼆章1、如图2-65所⽰,请采⽤作图法求解物体AB的像,设物像位于同⼀种介质空间。
图2-652、如图2-66所⽰,MM '为⼀薄透镜的光轴,B为物点,B'为像点,试采⽤作图法求解薄透镜的主点及焦点的位置。
B'(a)(b)图 2 -663、如图2-67所⽰,已知物、像的⼤⼩及位置,试利⽤图解法求解出焦点的位置,设物、像位于同⼀种介质空间。
图2 -674、已知⼀对共轭点B, B'的位置和系统像⽅焦点F'的位置,如图2-68所⽰,假定物像空间介质的折射率相同,试⽤作图法求出该系统的物、像⽅主平⾯的位置及其物⽅焦点位置。
物理光用与应用光学习题解答(整理后全)

1-1.计算由 E = ( -2i + 2 3 j ) exp éi ( 3 x + y + 6 ´ 108 t ) ù 表示的平面波电矢量的振动方向、
ê ë
ú û
传播方向、相位速度、振幅、频率、波长。 解:由题意: E x = -2e
i ( 3 x + y + 6 ´ 108 t )
解: (1)∵ k = w / v ∵ k = 2p / l ∴ vg = v - l ∴ vg =
d (kv) dv =v+k dk dk
∴ dk = -( 2p / l2 ) dl
dv b 2l =v-l dl c 2 + b 2 l2
2 2
= c +b l 2
b 2 l2 c 2 + b 2 l2
1-4 题用图 - 2( Ex '2 sin a cos a - E y '2 sin a cos a + E x ' E y ' cos 2 a - E x ' E y ' sin 2 a ) E x 0 E y 0 cos j = E 2 E2 sin 2 j x0 y0 ( E x '2 cos 2 a + E y '2 sin 2 a - E x ' E y ' sin 2a ) E 2 + ( E x '2 sin 2 a + E y '2 cos 2 a + E x ' E y ' sin 2a ) E 2 y0 x0
i ( 3 x + y + 6 ´ 108 t )
v v ky = 1
《应用光学基础》思考题部分参考解答

《应用光学基础》思考题部分参考解答《应用光学基础》思考题参考答案第一章几何光学的基本定律和成像概念1-1 (1)光的直线传播定律:例子:影子的形成。
应用:射击瞄准。
实验证明:小孔成像。
(2)光的独立传播定律:例子:两束手电灯光照到一起。
应用:舞台灯光照明;无影灯。
实验证明:两束光(或两条光线)相交。
(3)光的反射定律:例子:照镜子;水面上的景物倒影。
应用:制镜;汽车上的倒车镜;光纤通讯。
实验证明:平面镜成像;球面反射镜成像。
(4)光的折射定律:例子:插入水中的筷子出现弯折且变短;水池中的鱼看起来要比实际的位置浅。
应用:放大镜;照相机;望远镜等实验证明:光的全反射;透镜成像;用三棱镜作光的色散。
1-2 否。
这是因为光线在棱镜斜面上的入射角I2 = 45°,小于此时的临界角I m= 62.46°。
1-3小孔离物体有90cm远。
1-4此并不矛盾,这是因为光在弯曲的光学纤维中是按光的全反射现象传播的,而在光的全反射现象中,光在光学纤维内部仍按光的直线传播定律传播。
第二章平面成像2-1 略。
2-2 以35°的入射角入射。
2-3 二面镜的夹角为60°。
2-4 双平面镜夹角88.88°。
2-5 平面镜的倾斜角度为0.1°。
2-6 实际水深为4/3 m。
2-7 平板应正、反转过0.25rad的角度。
2-8 (1)I = 55.59°;(2)δm = 51.18°。
2-9 光楔的最大折射角应为2°4′4〞。
2-10 略。
第三章球面成像3-1 该棒长l′= 80mm。
3-2l = -4.55 mm,D = 4.27 mm。
3-3最后会聚点在玻璃球后面l2′= 15 mm (或离球心45 mm的右侧)处。
3-4l2′=7.5cm。
3-5l2′= -105.96 mm(即位于第一面前97.96mm处),y′= 14.04mm。
3-6n = 1.5,r = 7.5 mm(或r = -7.5 mm)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l = 2f′
B F′ B′ A A′ H H′
F
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平A′ H
H′
F
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
第二章 部分习题答案
牛顿公式 一、物像位置关系 二、物像大小关系 1、垂轴放大率 2、轴向放大率 3、角放大率 三、物方像方焦距关系 四、物像空间不变式
f' n' f n
y nl y nl
高斯公式
f' f 1 l' l
nuy n' u' y'
2. 有一放映机,使用一个凹面反光镜进行聚光照明,光源经过反
f' l 2
B
B′ A F′ A′ H H′
F
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l=0
B
B′
F′ H A
A′ H′
F
像平面为: 像方主平面
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
考虑物镜组二主面之间的距离)。 解:
9. 已知航空照相机物镜的焦距f′=500mm,飞机飞行高度为
6000m,相机的幅面为300×300mm2,问每幅照片拍摄的地
面面积。 解:
10. 由一个正透镜组和一个负透镜组构成的摄远系统,前组
正透镜的焦距f1′=100,后组负透镜的焦距f2 ′=-50,要 求由第一组透镜到组合系统像方焦点的距离D与系统的组合 焦距之比为1∶1.5,求二透镜组之间的间隔d应为多少?组 合焦距等于多少?
l ′ = f′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −2f′
B
F A H H′
F′
A′
B′
像平面为 A’B’所在平 面,如图示.
l ′ = 2 f′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l=∞
F H H′
F′
像平面为:
像方焦平面.
l ′ = f′
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −∞
F′ H H′
F
像平面为: 像方焦平面
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
f' l 2
B′
B H H′
A
F A′
F′
像平面为 A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −f ′
B
… …
F′ H H′
F A
像平面在像 空间无限远 处.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
光镜反射以后成像在投影物平面上。光源长为10mm,投影物高
为40mm,要求光源像等于投影物高;反光镜离投影物平面距离 为600mm,求该反光镜的曲率半径等于多少?
解:
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = −∞
F H H′
F′
像平面为:
像方焦平面.
l = −2f′
B
A′
F′ H H′
F A
B′
像平面 为A’B’ 所在平 面,如图 示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l=∞
F′ H H′
F
像平面为: 像方焦平面.
l ′ = f′
6. 已知照相物镜的焦距f′=75mm,被摄景物位于距离x=-
∞,-10,-8,-6,-4,-2m处,试求照相底片应分别放在离物镜
的像方焦面多远的地方? 解:
7. 设一物体对正透镜成像,其垂轴放大率等于-1,
试求物平面与像平面的位置,并用作图法验证。
解:
8. 已知显微物镜物平面和像平面之间的距离为180mm,垂轴
放大率等于-5,求该物镜组的焦距和离开物平面的距离(不
1 1 1 l2 f 2 l2
) l 2 l2 f 2(l2 l2
d x x f 2(l1 F f 2 x) (l1 d x)(xF f 2 x)
l = f′
B B′ F H H′ A ′ F′ A
像平面为 A’B’所在平 面,如图示.
l ′ = f′/2
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l = 2f′
B B′ F′ H H′
F
A′
A
像平面为 A’B’所在平 面,如图示.
l ′ = 2f′/3
l=0
B B′
F H A
A′ H′
F′
像平面为:
像方主平面
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
f' l 2
B B′ F H A′ H′ A F′
像平面为 A’B’所在平 面,如图示.
l ′ = f′/3
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
解:
D d x F f2
D 2 f 3
d1 f1 f 2 28.87 78.87 d 2 f1 f 2 28.87 21.13
11. 如果将上述系统用来对10m远的物平面成像,用移动第二
组透镜的方法,使像平面位于移动前组合系统的像方焦平 面上,问透镜组移动的方向和移动距离。
l = −f ′
B
… …
F A
F′ H H′
像平面在像 空间无限远 处.
l′=∞
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.
l f' 2
B′
B
A′ F A H F′ H′
像平面为 A’B’所在平 面,如图示. l ′ = −f ′
4 试用作图法对位于空气中的正透镜组( f 0 )分别求 下列不同物距的像平面位置.