6章信号产生与变换电路
电路讲义第六章_new

f (t ) f (0 ) e
t
2)一阶电路的零输入响应和初始值成正比,称为零输入线性。 3) 零输入响应的衰减快慢取决于时间常数τ,其中RC 电路τ=RC , RL 电 路τ=L/R ,R 为与动态元件相连的一端口电路的等效电阻。 4) 同一电路中所有响应具有相同的时间常数。
【例6-5】 电路中开关SW闭合已久, t=0时SW断开,试求电流 iL(t),t0。
diL (t ) d u L (t ) L dt dt
C R ) (1) i 的大小取决于 u 的变化率, 与 u 的大
1 1 t uc (t ) ic d uc (t 0 ) ic d C C t0
1 t 1 t iL (t ) u L d iL (t 0 ) u L d L L t0
§6-1 动态电路的方程及其初始条件
跳变(跃变):
换路定则:
当 i C 和 u L 为有限值时,状态变量电容电压 u C 和电感电流 i L 无跳变, 即有 u C ( 0 )
u C ( 0 ) ; i L (0 ) i L (0 ) ;
过渡过程:动态电路的特点是,当电路状态发生改变后(换 路后)需要经历一个变化过程才能达到新的稳定状态,这个 变化过程称为电路的过渡过程。
§6-1 动态电路的方程及其初始条件
基本概念:
动态电路:含有动态元件电容和电感的电路称动态电路。 一阶电路:用一阶微分方程描述的电路(或只含一个独立 的动态元件的电路)
换路:电路结构、状态发生变化,即支路接入或断开或电 路参数变化; 若换路在t=0时刻进行,则换路前的最终时刻记为t=0- ;换 路后最初时刻记为t=0+ ;换路经历的时间为0-~0+ ;
随机信号处理教程第6章随机信号通过非线性系统

信号的调制和解调
01
02
03
调制过程
在非线性系统中,输入信 号会受到调制,使得信号 的参数发生变化,如幅度、 频率或相位等。
解调过程
对调制后的信号进行解调, 恢复出原始的信号参数, 以便进一步处理或使用。
调频与调相
在非线性系统中,调制和 解调的方式可以是调频或 调相,具体取决于系统的 特性和应用需求。
音频处理中的非线性系统
音频压缩
音频压缩技术利用非线性系统来减小音频文件的大小,同时保持音频质量。压 缩算法通过非线性变换和量化过程来去除音频信号中的冗余信息。
音频特效
音频处理软件中的非线性系统用于创建各种音效和特效,如失真、混响、均衡 器和自动增益控制等。这些效果通过将音频信号通过非线性函数来实现。
应用实例
给出了随机信号通过非线性系统的应用实 例,如通信系统中的非线性失真、音频处 理中的压缩效应等。
非线性系统的发展趋势和未来展望
新技术与新方法
随着科学技术的不断发展,新的非线性系 统建模方法和分析技术将不断涌现,如深
度学习在非线性系统建模中的应用等。
跨学科融合
非线性系统理论与其他领域的交叉融合将 进一步加深,如与控制理论、人工智能等 领域的结合。
升级系统的硬件设备,提升性能表现。
系统集成优化
优化系统内部各模块之间的集成方式, 提高整体性能。
05
实际应用案例
通信系统中的非线性系统
数字信号处理
在通信系统中,数字信号经过非线性系统可能导致信号失真 ,如振幅压缩和频率偏移。这种失真可以通过数字信号处理 技术进行补偿和校正。
调制解调
在无线通信中,调制解调过程可能涉及非线性系统。例如,在 QAM(Quadrature Amplitude Modulation)调制中,信号 通过非线性调制器进行调制,然后通过非线性解调器进行解调。
第6章 555定时器

T T1 q= 1 = T T1 + T2 0.7 R1C = 0.7 R1C + 0.7 R2 C = R1 R1 + R2
vI1 vC
C
3 6 555 2 1 5 0.01µF C1
vO
v I2
二. 石英晶体多谐振荡器
问题: 上面介绍的多谐振荡器中,由于其工作频率取决于电容C充 问题 上面介绍的多谐振荡器中,由于其工作频率取决于电容 充、放电过 程中,电压到达转换值的时间,因此稳定度不够高。 程中,电压到达转换值的时间,因此稳定度不够高。一般在对振荡器频率稳 定度要求很高的场合,都需要采取稳频措施,其中最常用的一种方法, 定度要求很高的场合,都需要采取稳频措施,其中最常用的一种方法,就是 利用石英谐振器—简称石英晶体或晶体 构成石英晶体多谐振荡器。 简称石英晶体或晶体, 利用石英谐振器 简称石英晶体或晶体,构成石英晶体多谐振荡器。 1.石英晶体的选频特性 石英晶体的选频特性
+ C - 1
5 kΩ Ω
R
vo
G
R2 (2)
+
5 kΩ Ω
S
C2
&
&
1
(7)
T
C
(1)
(三) 振荡频率的估算 三
用三要素法计算) (1)电容充电时间 1:(用三要素法计算) )电容充电时间T
vc (t ) = vc (∞) − [vc (∞) − vc (0)]e
vC (∞) − vC (0 + ) VCC − VCC T1 = τ 1 ln 3 vC (∞) − vC (T1 ) = τ 1 ln 2
G 1
(3)
vO
vI2 vO
,
测控电路课后习题答案

第一章绪论1-1测控电路在整个测控系统中起着什么样的作用?传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。
在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。
1-2影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?影响测控电路精度的主要因素有:(1)噪声与干扰;(2)失调与漂移,主要是温漂;(3)线性度与保真度;(4)输入与输出阻抗的影响。
其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。
1-3为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。
它包括:(1)模数转换与数模转换;(2)直流与交流、电压与电流信号之间的转换。
幅值、相位、频率与脉宽信号等之间的转换;(3)量程的变换;(4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;(5)对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等。
1-4测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。
随着传感器类型的不同,输入信号的类型也随之而异。
主要可分为模拟式信号与数字式信号。
随着输入信号的不同,测量电路的组成也不同。
图X1-1是模拟式测量电路的基本组成。
传感器包括它的基本转换电路,如电桥,传感器的输出已是电量(电压或电流)。
根据被测量的不同,可进行相应的量程切换。
第6章 脉冲产生、整形电路

6.3 多谐振荡器 6.3.1 用555定时器构成的多谐振荡器 一、电路组成及其工作原理
1.电路组成:仿真图6.3.1所示是用555定时器构成的 多谐振荡器。 2.工作原理:起始状态 (1)暂稳态I (2)自动翻转I (3)暂稳态Ⅱ (4)自动翻转Ⅱ
二、振荡频率的估算和占空比可调电路
6.1.2 集成施密特触发器 一、CMOS集成施密特触发器
1.引出端功能图:仿真图6.1.4所示是国产CMOS集成 施密特触发门电路CC40106(六反相器)和CC4093 (四2输入与非门)的引出端功能图。 2.主要静态参数
二、TTL集成施密特触发器
1.外引线功能图:仿真图6.1.5所示是几种常用的国产 TTL集成施密特触发逻辑的外引线功能图。 2.几个主要参数的典型值
1.振荡频率的估算 2.占空比可调电路:如仿真图6.3.3所示。
6.3.2 石英晶体多谐振荡器
一、石英晶体的选频特性 二、石英晶体多谐振荡器 1.电路组成:仿真图6.3.5所示是一种比较典型的石英 晶体振荡电路。 2.工作原理 3.CMOS石英晶体多谐振荡器:仿真图6.3.6所示是更 简单、更典型的CMOS石英晶体振荡电路。
二、阈值探测、脉冲展宽
1.用作阈值电压探测器 图 6.1.8所示是用作阈值电压探测器时,施密 特触发器的输入、输出波形,显然,凡是幅值达 到UT+的输入电压信号,均可被探测出来并形成相 应的输出脉冲。 2.用作脉冲展宽 图 6.1.9所示是用施密特触发器构成的脉冲展 宽器的电路及工作波形图。 3.用作多谐振荡器 仿真图 6.1.10 所示是用施密特触发反相器构 成的多谐振荡器。
二、可重触发单稳态触发器74122 74122 是一种比较典型的可重触发 TTL 单稳态触发器。 1.图形符号与功能表 (1)图形符号:仿真图6.2.4所示是可重触发单稳态 触发器74122的国标图形符号。 (2)功能表:见表6.2.2 2.功能说明及主要参数 (1)功能说明 (2)主要参数
通信原理与技术第6 章模拟信号的数字化

第6 章模拟信号的数字化本章教学要求:1、掌握低通型抽样定理、PCM 基本工作原理。
掌握均匀量化原理、非均匀量化原理(A 律13折线)和编码理论。
2、理解时分复用和多路数字电话系统原理。
3、了解PCM 抗噪声性能、DM 和DPCM 系统原理。
§6.1 引言一、什么是模拟信号数字化?就是把模拟信号变换为数字信号的过程,即模数转化。
这是本章欲解决的中心问题。
二、为什么要进行模数转换?由于数字通信的诸多优点,数字通信系统日臻完善。
致使许多模拟信源的信号也想搭乘数字通信的快车;先将模拟信号转化为数字信号,借数字通信方式(基带或频带传输系统)得到高效可靠的传输,然后再变回模拟信号。
三、怎样进行数字化?就目前通信中使用最多的模数转换方法—脉冲编码调制(PCM)为典型,它包含三大步骤:1.抽样(§2 和§3);2.量化(§4);3.编码(§5)1.抽样:每隔一个相等的时间间隙,采集连续信号的一个样值。
2.量化:将量值连续分布的样值,归并到有限个取值范围内。
3.编码:用二进制数字代码,表达这有限个值域(量化区)。
2、解调3、抽样定理从频谱图清楚地看到,能用低通滤波器完整地分割出一个F(ω)的关键条件是ωs≥2ωm,或f s≥2f m。
这里2f m 是基带信号最大频率,2f m 叫做奈奎斯特抽样频率。
抽样定理告诉我们,只要抽样频率不小于2f m,从理想抽样序列就可无失真地恢复原信号。
二、带通抽样带通信号的带宽B=f H-f L,且B<<f H,抽样频率f s 应满足f s=2B(1+K/N)=2f H/N 式中,K=f H/B-N,N 为不超过f H/B 的最大整数。
由于0≤K<1,所以f s在2B~4B 之间。
当f H >> B 即N >>1 时f S =2B。
当f S > 2B(1+R/N) 时可能出现频谱混叠现象(这一点是与基带信号不同的)例:f H= 5MHz,f L = 4MHz,f S =2MHz 或3MHz 时,求M S(f)§6.3 脉冲幅度调制(PAM)理想抽样采用的单位冲击序列,实际中是不存在的,实际抽样时采用的是具有一定脉宽和有限高度的窄脉冲序列来近似。
《数字通信电子教案》第六章数字信号的频带传输技术习题及答案

第六章数字信号的频带传输技术习题6-l已知二进制数字序列10011010,设:载频为码元速率的2倍(对于2FSK来说,f 2=2 f 1,);请画出以上情况的2ASK、2FSK和2PSK、2DPSK波形:解:载频为码元速率的2倍(对于2FSK来说,f2=2 f1,)1010已知二进制数字序列10016-2 已知数字信息{a n }=1011010,设:(1)码元速率为1200Baud,载波频率为1200Hz;(2)码元速率为1200Baud,载波频率为1800Hz。
分别画出上述两种情况的2PSK、2DPSK及相对码{b n}的波形(假定起始参考码元为1)。
解:(1)码元速率为1200Baud,载波频率为1200Hz;则载频与码元速率相等。
178179解、(2)码元速率为1200Baud ,载波频率为1800Hz 。
载频与码元速率为1:1.56-3 设某2FSK 调制系统的码元传输速率为1000Baud ,已调信号的载频为1000Hz 和2000Hz .(1)若发送数字信息为101011,试画出相应的2FSK 信号波形;(2)试讨论这时的2FSK 信号应选择怎样的解调器解调?(3)若发送数字信息是等概率的,试画出它的功率谱密度草图。
解:(1) 若发送数字信息为101011,试画出相应的2FSK 信号波形;180解 (2)试讨论这时的2FSK 信号应选择怎样的解调器解调?答 :选择相干解调和非相干解调器解调均可。
解 (3)若发送数字信息是等概率的,试画出它的功率谱密度草图。
6-4 设传码率为200Baud ,若是采用八进制ASK 系统,求系统的带宽和信息速率?若是采用二进制ASK 系统,其带宽和信息速率又为多少?解 :已知八进制ASK 系统传码率Baud R B 200=,系统的带宽::Hz R B B B 200==, 信息速率: s bit R R B b /60032008log 2=⨯=⨯=二进制ASK 系统:系统的带宽::Hz R B B B 200==,信息速率: s bit R R B b /20012002log 2=⨯=⨯=6-5 传码率为200Baud ,试比较8ASK 、8FSK 、8PSK 系统的带宽、信息速率及频带利用率。
第6章-555定时器

第二节 集成555定时器
一、555定时器的电路结构
由以下几部分组成: (1)三个阻值为5kΩ的电阻组
成的分压器。 (2)两个电压比较器C1和C2。
电压比较器的功能:
v+> v-,vO=1 v+< v-,vO=0
(3)基本RS触发器、 (4)放电三极管T及缓冲器G。
VC C 电 源
(8 )
RD 复 位
便的调节tW。
(2)恢复时间tre
vI
tre=(3~5)τ2 (3)最高工作频率fmax
4.利用施密特触发器构成多谐振荡器
R
R
VCC
1
vI
vo
8 47
C
6
3
2 555 5
C
1
0.01 F
二.单稳态触发器
特点: 1.有一个稳态和一个暂稳态; 2.在触发脉冲作用下,由稳态翻转到暂稳态; 3.暂稳状态维持一段时间后,自动返回到稳态。
(一)由555定时器构成的单稳态触发器
1. 电路组成及工作原理
7
vO 2
vI1 6
vI
v I2 2 55 5 3
vO1
1
R、VCC2构成另一输出端 vo2,其高电平可以通过 改变VCC2进行调节。
V C C( 8 ) R D( 4 )
( 5) 5kΩ
vI
v IC v I1
+ -C 1
R
&
( 6) 5kΩ
v I2 ( 2)
- +C 2
S
&
vO 5kΩ
( 7)
T
f 1 1.43 T (R12R2)C
(5)输出波形占空比q
qT1 R1R2 T R12R2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 f0 2 LC
振荡频率仅取决于电感L和电容C,与C1、C2和管子的极 间电容关系很小,因此振荡频率的稳定度较高,其频率稳定 度的值可小于0.01%。再高的稳定度 时,要用晶体振荡器。
6.1.4 石英晶体正弦波振荡电路
1.石英晶体的基本知识
(1)压电特性
在石英晶片两极加一电场,晶片会产生机械变形。相 反,若在晶片上施加机械压力,则在晶片相应的方向上会 产生一定的电扬,这种现象称为压电效应。一般情况下, 晶片机械振动的振幅和交变电场的振幅都非常小,只有在 外加某一特定频率交变电压时,振幅才明显加大,这种现 象称为压电谐振,它与LC回路的谐振现象十分相似。上述 特定频率称为晶体的固有频率或谐振频率。
三角波振荡电路 锯齿波振荡电路
6.1 正弦波振荡电路
在科学研究、工业生产、医学、通讯、测量、自 控和广播技术等领域里,常常需要某一频率的正弦波 作为信号源。例如,在实验室,人们常用正弦波作为 信号源,测量放大器的放大倍数,观察波形的失真情 况。在工业生产中, ,应用高频正弦信号可以进行感 应加热,利用超声波可以探测金属内的缺陷;在医疗 仪器中,利用超声波可以检测人体内器官的病变。在 通讯和广播中更离不开正弦波。可见,正弦波应用非 常广泛,只是应用场合不同,对正弦波的频率、功率 等的要求不同而已。 正弦波振荡电路又叫正弦波产生电路。
为了减少管子的极间电容对振荡频率的影响,可在电感 L支路中串接电容C,使谐振频率主要由L和C决定,而Cl和 C2只起分压作用。
电容三点式改进电路
+VCC Rb1 Cb C1 Rb2 Ce uf Re C2 L
Rc
1 f0 2 LC
1 1 1 1 1 C C C1 C2 C
1.石英晶体的基本知识 (2)等效电路
当晶体不振动时,可把它看成是一 个平行板电容器C0,称为静电电容。C0 与晶片的几何尺寸和电极面积有关,一 般约为几个皮法到几十皮法。当晶体振 动时,机械振动的惯性可用电感L来等 效。一般L的值为几十毫亨至几百毫亨。 晶片的弹性可用电容C来等效;C的值 很小,一般只有0.0002pF~0.1pF。晶片 振动时因摩擦而造成的损耗用电阻R来 等效,它的数值约为100Ω。
6.1.2
RC正弦波振荡电路
+ R1
1.RC串并联网络的选频特性
+
R1
C1
Uo
+ C2
Uf
Uo
-
-
+
R2 C2
U
+
f
-
Uo
C1
+ R2
Uf
通常取 R1 = R2 = R , C1 = C2 = C
-
-
R f U 2 1 jRC F o 1 2 1 R U R jC 1 jRC
6.1.1 产生正弦波振荡的条件
正弦波振荡电路是 一个带正反馈网络、不 需要输入信号但能输出 所需要信号的特殊放大 器。
X id
A
Xf
•
Xo
F
正反馈对输入信号有加强作用。若正反馈的强度足够大, 满足 的条件时,电路不需要输入信号,而完全由 A F AF 1 反馈信号代替输入,同样可以获得稳定的输出。这种不需要 输入、靠反馈代替输入维持稳定输出的状态,称为自激振荡 状态。
6.1.3 LC正弦波振荡电路
LC正弦波振荡电路可产生频率高达1000MHz以
上的正弦波信号。由于普通集成运算放大器的频带较 窄,而高速集成运放的价格高,所以LC正弦波振荡电
路一般用分立元件组成。
常见的LC正弦波振荡电路通常采用LC并联回路。 变压器反馈式 按反馈方式分类 三点式 电容三点式 电感三点式
uf Re
C2
L
1 f0 2 LC
三点式振荡电路的特点
(1) 电感三点式正弦波振荡电路容易起振,而且采用可变 电容器可在较宽范围内调节振荡频率。但是由于它的反馈电 压取自电感,它对高次谐波阻抗较大,因此输出波形中含有 高次谐波,波形较差。 (2) 由于电容三点式正弦波振荡电路的反馈电压取自电容 C2,反馈电压中谐波分量小,因此输出波形较好。而且电容 C1、C2的容量可以选得较小,并可将管子的极间电容计算到 Cl、C2中去,所以振荡频率可达100MHz以上。但管子的极 间电容随温度等因素变化,对振荡频率有一定的影响。
Cb
C
L2 L1
uf
+VCC
uf
L2 Re C
L1
Rb2
Re
Ce
1 f0 2 LC
(L L1 L2 2M)
(1)电感三点式B(共射调基式)
+VCC Rb1 Cb Rc Cc L1 uf L2 Re C uf L2 Re C L1
Rb1
Rb2
uf L2 L1
Rc
C
Rb2 Ce
1 f0 2 LC
1 f f 32 ( 0 )2 f0 f
(幅频特性)
f0 1 f F arctg ( ) (相频特性) 3 f0 f
1 3
F
90° 0.1 1 10
f/f0
0.1
1
10
f/f0
-90°
1 1 F 当 f f0 时, 最大, 相移F = 0。 3 2RC
2. RC串并联网络正弦波振荡电路
第6章 信号产生与变换电路
在实际应用中,常常需要各种波形的信号,如正弦波、 矩形波、三角波、脉冲波等,这些信号可以用专门的电路 产生,也可以通过一定电路将某一波形转化处理后得到, 前一种电路称为信号产生电路,也称为振荡电路,后一种 电路称为波形转换电路。 RC振荡电路 正弦波振荡电路 振荡电路 非正弦波振荡电路 LC振荡电路 石英晶体振荡电路 声表面波振荡电路 方波振荡电路
振荡器常采用共基极放大电路。
•
(5)由于共集电极组态电路无电压放 大能力,所以,LC振荡电路中的放大电路 没有单级的共集组态。
2. 三点式LC正弦波振荡电路
因为这类LC振荡电路的谐振回路有三个引出端子,分 别接至三极管的e、b、c极上,所以统称为三点式振荡电路。
(1)电感三点式A(共基调射式)
Rb1
Xf Xid
AF>1
(幅度条件)
Xf > Xid
A + F = 2n (相位条件)
f = id
由于反馈是从输出端取得的,而输出取决于输入,所 以振荡电路要工作,需要事先加一定输入信号,称为启动 信号。启动信号一般取自电路的电源由断开到接通瞬间在 电路输入端产生的扰动。由于扰动信号的不确定性,使电 路在自激振荡条件下的输出信号变得不可控制。为了解决 这一问题,通常的办法是适当加大反馈强度,使电源刚接 通的一段时间内,输出会经历一个由小到大的增长过程。
1) 电路结构
R
2) 振荡频率:
Rf + R1 ∞ +
1 f0 2RC
3) 起振条件:
C
uo
R
C
1 f = f0 时, F 3
R1 A 1 3 Rf
Rf 2R1
3) 稳幅环节 通常利用二极管、三极管以及热敏电阻等元件的非线 性特性,来自动地稳定振荡器输出的幅度。 选用热敏电阻时,有两种措施: ⑴ Rf选择负温度系数的热敏电阻 ⑵ R1选择正温度系数的热敏电阻
(2)电容三点式A(共基调射式)
+VCC Rb1 Cb L C2 C1 uf uf C2 Re L Re Ce C1
Rb2
1 f0 2 LC
C1C2 (C ) C1 C2
(2)电容三点式B(共射调基式)
+VCC
Rb1 Cb Rc
Rb1 Rb2
uf
L2
Rc
C1
R程:
uo7 uo6 uo5 uo4 uo uf5uf6uf7 uf4 1/F
A uo3 uo2 uo1 uf1 ui2 ui3
uf3
uf2
O ui0 ui1
ui4 ui5 ui6 ui7 ui (uf)
4. 判断能否振荡的方法:
(1)放大电路的结构是否合理,有无放大能力,静态工 作点是否合适。
(3) LC正弦波振荡电路的稳幅措施是利用放大
电路的非线性实现的。当振幅大到一定程度时,虽然
三极管进入截止或饱和,集电极电流也产生明显失真。
但是由于集电极的负载是LC并联谐振回路,具有良
好的选频作用,因此输出电压波形失真一般很小。 (4)由于三极管共基极接法的截止频率远远大 于共射极的截止频率。所以为了提高振荡频率,LC
起振条件:
R1
∞
+
uf
C
+
uo
R
R
C
iD D
B
A C
R 2 Rf 2 R1
uD
3.RC振荡电路分类及特点 串并联网络振荡电路
1)分类: 双T网络振荡电路
移相式振荡电路
2)特点:
易起振,失真小;频率低,一般在1MHz以下
3) 限制频率升高的因素:
⑴ RC网络是电路负载的一部分,频率越高,负载越 重,效率越低。 ⑵ 电路存在分布电容,使高频输出不稳定。 ⑶ 普通集成运放的带宽较窄,限制了振荡频率的提高。
R C Rf R1 Rf VD1 R2 VD2
+
∞
∞
+ uf
C
+
uo
+
uo
R
R
R
C
R1
C
3) 稳幅环节
VD1
R2
Rf VD2