高考物理知识点之原子结构与原子核
物理学中的原子结构和核物理概念

物理学中的原子结构和核物理概念一、原子结构1.原子的组成:原子由原子核和核外电子组成。
原子核由质子和中子组成,质子带正电,中子不带电。
2.电子:电子是原子核外带负电的粒子,绕着原子核做圆周运动。
3.原子序数:原子序数表示原子核中质子的个数,也就是元素在周期表中的序号。
4.相对原子质量:相对原子质量是原子核中质子数和中子数的总和,是一个比值,没有单位。
二、核物理概念1.核反应:核反应是指原子核发生变化的过程,包括核裂变和核聚变。
2.核裂变:核裂变是指重核分裂成两个或多个质量较小的核,同时释放出大量能量的过程。
3.核聚变:核聚变是指两个轻核结合成一个质量较大的核,同时释放出大量能量的过程。
4.核辐射:核辐射是指原子核在发生衰变过程中产生的粒子辐射和电磁辐射。
5.放射性:放射性是指某些元素的原子核不稳定,会发生衰变,从而产生核辐射的性质。
6.半衰期:半衰期是指放射性物质衰变到其原有数量一半所需的时间,是放射性衰变的定量描述。
三、原子核的组成1.质子:质子是原子核中带正电的粒子,质量约为1.67×10^-27千克。
2.中子:中子是原子核中不带电的粒子,质量约为1.67×10^-27千克。
3.核力:核力是一种作用在原子核内部的强相互作用力,它负责将质子和中子束缚在原子核内。
4.核力的特点:核力是一种短程力,作用范围在1.5×10^-15米以内,具有饱和性,每个核力只作用于两个核子。
五、核能的应用1.核电站:核电站利用核裂变反应产生的热能来发电。
2.核武器:核武器是利用核裂变或核聚变反应释放的大量能量来造成破坏的武器。
六、核物理的发展1.原子核物理学:研究原子核的结构、性质和相互作用规律的学科。
2.粒子物理学:研究物质的最基本组成粒子及其相互作用的学科,包括强相互作用、弱相互作用和电磁相互作用。
习题及方法:已知氢原子的原子序数为1,相对原子质量为1,求氢原子的核外电子数。
氢原子的原子序数等于其核外电子数,所以氢原子的核外电子数为1。
高考物理原子必考知识点总结

高考物理原子必考知识点总结在高考物理考试中,原子物理是一个必考的知识点。
了解原子物理的基本概念和相关原理,掌握一些基本计算方法,对于顺利完成物理题目至关重要。
本文将对高考物理原子必考的知识点进行总结。
1. 原子结构原子结构是原子物理的基础。
原子由质子、中子和电子组成。
质子和中子构成了原子核,而电子围绕在原子核外部的轨道上。
2. 质子数和电子数质子数通常等于电子数,一个稳定的原子内,正电荷和负电荷相等,使得原子整体是电中性的。
3. 同位素和质量数同位素是指具有相同质子数但质量数不同的原子。
质量数是指原子核中质子和中子的总数。
4. 原子的电离原子发生电离意味着它失去或获得电子。
当原子失去电子时,它会变成正离子;当原子获得电子时,它会变成负离子。
电离过程对于理解离子化合物的形成和电解质的行为至关重要。
5. 原子核的稳定性原子核的稳定性决定了原子是否具有放射性。
通过了解原子核的稳定性规律,可以判断某个核素是否具有放射性以及它的衰变方式。
6. 放射性衰变放射性衰变是指原子核自发地转变为另一种原子核的过程。
常见的放射性衰变有α衰变、β衰变和γ衰变。
α衰变是指原子核放出一个α粒子,质量数减少4、原子序数减少2;β衰变是指原子核衰变成另一个元素,电子从原子核中发射出来;γ衰变是指原子核释放出γ射线,改变的只是能量状态而不改变原子核本身。
7. 原子能级和能级跃迁原子的电子在不同的能级上存在。
原子的电子可以吸收或释放能量,从一个能级跃迁到另一个能级。
这种能级跃迁是光谱学研究的基础,也是激光产生的原理之一。
8. 粒子的波粒二象性粒子的波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。
通过对粒子的物态描述和双缝干涉实验等现象的解释,可以更好地理解物质微观本质。
9. 干涉和衍射干涉是指两个或多个波的叠加现象。
光的干涉在涉及光的波动性质的实验中经常发生。
衍射是波在穿过障碍物或经过边缘时产生的弯曲和扩散现象。
2020高考备考物理重难点《原子结构和原子核》(附答案解析版)

重难点10 原子结构和原子核【知识梳理】一、氢原子光谱、氢原子的能级、能级公式 1.原子的核式结构(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱 (1)光谱用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝⎛⎭⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
3.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m -E n 。
(h 是普朗克常量,h =6.63×10-34 J·s ) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
4.氢原子的能级、能级公式 (1)氢原子的能级 能级图如图所示(2)氢原子的能级和轨道半径①氢原子的能级公式:E n=1n2E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6 eV。
高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结必修三原子、原子核这一章虽然不是重点;但是高考选择题也会涉及到;其实只要记住模型和方程式;就不会在做题上出错;下面的一些总结希望对大家有所帮助.卢瑟福根据α粒子散射实验提出了原子的核式结构学说;玻尔把量子说引入到核式结构模型之中;建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的;发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程..整个知识体系;可归结为:两模型原子的核式结构模型、波尔原子模型;六子电子、质子、中子、正电子、粒子、光子;四变衰变、人工转变、裂变、聚变;两方程核反应方程、质能方程..4条守恒定律电荷数守恒、质量数守恒、能量守恒、动量守恒贯串全章..1.汤姆生模型枣糕模型汤姆生发现电子;使人们认识到原子有复杂结构..从而打开原子的大门.2.卢瑟福的核式结构模型行星式模型卢瑟福α粒子散射实验装置;现象;从而总结出核式结构学说α粒子散射实验是用α粒子轰击金箔;实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进;但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上..卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核;叫原子核;原子的全部正电荷和几乎全部质量都集中在原子核里;带负电的电子在核外空间运动..由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m..而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定;②其发出的光谱是否连续3.玻尔模型引入量子理论;量子化就是不连续性;整数n叫量子数玻尔补充三条假设⑴定态--原子只能处于一系列不连续的能量状态称为定态;电子虽然绕核运转;但不会向外辐射能量..本假设是针对原子稳定性提出的⑵跃迁--原子从一种定态跃迁到另一种定态;要辐射或吸收一定频率的光子其能量由两定态的能量差决定本假设针对线状谱提出辐射吸收光子的能量为hf=E初-E末氢原子跃迁的光谱线问题一群氢原子可能辐射的光谱线条数为 ..大量处于n激发态原子跃迁到基态时的所有辐射方式⑶能量和轨道量子化----定态不连续;能量和轨道也不连续;即原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应;原子的定态是不连续的;因此电子的可能轨道分布也是不连续的针对原子核式模型提出;是能级假设的补充氢原子的激发态和基态的能量最小与核外电子轨道半径间的关系是:说明氢原子跃迁① 轨道量子化r n=n2r1n=1;2.3…r1=0.53×10-10m=-13.6eV能量量子化:E1②③氢原子跃迁时应明确:一个氢原子直接跃迁向高能级跃迁;吸收光子一般光子某一频率光子一群氢原子各种可能跃迁向低能级跃迁放出光子可见光子一系列频率光子④氢原子吸收光子时——要么全部吸收光子能量;要么不吸收光子1光子能量大于电子跃迁到无穷远处电离需要的能量时;该光子可被吸收..即:光子和原于作用而使原子电离2光子能量小于电子跃迁到无穷远处电离需要的能量时;则只有能量等于两个能级差的光子才能被吸收..受跃迁条件限:只适用于光于和原于作用使原于在各定态之间跃迁的情况..⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量实物粒子作用而使原子激发..因此;能量大于某两个能级差的电子均可被氢原子吸收;从而使氢原子跃迁..E51=13.06 E41=12.75 E31=12.09 E21=10.2;有规律可依E52=2.86 E42=2.55 E32=1.89; E53=0.97 E43=0.66; E54=0.31⑶玻尔理论的局限性..由于引进了量子理论轨道量子化和能量量子化;玻尔理论成功地解释了氢光谱的规律..但由于它保留了过多的经典物理理论牛顿第二定律、向心力、库仑力等;所以在解释其他原子的光谱上都遇到很大的困难..氢原子在n能级的动能、势能;总能量的关系是:EP=-2EK;E=EK+EP=-EK..类似于卫星模型由高能级到低能级时;动能增加;势能降低;且势能的降低量是动能增加量的2倍;故总能量负值降低..量子数1.天然放射现象的发现;使人们认识到原子核也有复杂结构..核变化从贝克勒耳发现天然放射现象开始衰变用电磁场研究:2.各种放射线的性质比较三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:四种核反应类型衰变;人工核转变;重核裂变;轻核骤变⑴衰变:α衰变:实质:核内α衰变形成外切同方向旋;β衰变:实质:核内的中子转变成了质子和中子β衰变形成内切相反方向旋;且大圆为α、β粒子径迹..+β衰变:核内γ衰变:原子核处于较高能级;辐射光子后跃迁到低能级..⑵人工转变:发现质子的核反应卢瑟福用α粒子轰击氮核;并预言中子的存在发现中子的核反应查德威克钋产生的α射线轰击铍人工制造放射性同位素正电子的发现约里奥居里和伊丽芙居里夫妇α粒子轰击铝箔⑶重核的裂变:在一定条件下超过临界体积;裂变反应会连续不断地进行下去;这就是链式反应..⑷轻核的聚变:需要几百万度高温;所以又叫热核反应所有核反应的反应前后都遵守:质量数守恒、电荷数守恒..注意:质量并不守恒..核能计算方法有三:①由△m单位为“kg”计算;②由△E=931.5△m△m 单位为“u”计算;③借助动量守恒和能量守恒计算..2.半衰期放射性元素的原子核有半数发生衰变所需的时间叫半衰期..对大量原子核的统计规律计算式为: N表示核的个数 ;此式也可以演变成或 ;式中m表示放射性物质的质量;n 表示单位时间内放出的射线粒子数..以上各式左边的量都表示时间t后的剩余量..半衰期由核内部本身的因素决定;与物理和化学状态无关、同位素等重要概念放射性标志3.放射性同位素的应用⑴利用其射线:α射线电离性强;用于使空气电离;将静电泄出;从而消除有害静电..γ射线贯穿性强;可用于金属探伤;也可用于治疗恶性肿瘤..各种射线均可使DNA发生突变;可用于生物工程;基因工程..⑵作为示踪原子..用于研究农作物化肥需求情况;诊断甲状腺疾病的类型;研究生物大分子结构及其功能..⑶进行考古研究..利用放射性同位素碳14;判定出土木质文物的产生年代..一般都使用人工制造的放射性同位素种类齐全;各种元素都有人工制造的放射性同位..半衰期短;废料容易处理..可制成各种形状;强度容易控制..高考对本章的考查:以α粒子散射实验、原子光谱为实验基础的卢瑟福原子核式结构学说和玻尔原子理论;各种核变化和与之相关的核反应方程、核能计算等..在核反应中遵循电荷数守恒和质量数守恒;在微观世界中动量守恒定律同样适用..。
2021版高考物理大复习通用版:原子结构和原子核含答案

(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
二、氢原子光谱
1.光谱:
用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
2.光谱分类
3.氢原子光谱的实验规
律:巴耳末系是氢光谱在可见光区的谱线,其波长公式
1
λ
=R(
1
22
-1
n2
),(n=3,4,5,…,R是里德伯常量,R=1.10×107 m-1)。
4.光谱分
析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高。
在发现和鉴别化学元素上有着重大的意义。
三、氢原子的能级、能级公式
1.玻尔理论。
2024届高考一轮复习物理课件(新教材鲁科版):原子结构、原子核

提升 关键能力
1.两类能级跃迁 (1)自发跃迁:高能级→低能级,释放能量,发射光子. 光子的频率 ν=ΔhE=E高-h E低. (2)受激跃迁:低能级→高能级,吸收能量. ①吸收光子的能量必须恰好等于能级差hν=ΔE.(注意:当入射光子能量 大于该能级的电离能时,原子对光子吸收不再具有选择性,而是吸收以 后发生电离) ②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E外≥ΔE.
3.三种射线的比较
名称 构成 符号 电荷量
α射线 __氦__核 42H
+2e
β射线 _电__子__ -01e
-e
γ射线 光子 γ
0
质量 电离能力 贯穿本领
4u 1 1 837 u
0
最_强__ 较强 最_弱__
最_弱___ 较强
最_强___
4.原子核的衰变 (1)衰变:原子核自发地放出α粒子或β粒子,变成另一种 原子核 的变化 称为原子核的衰变. (2)α衰变、β衰变
衰变后两个新核速度方向相反,受力方向也相反, 根据左手定则可判断出两个粒子带同种电荷, 所以衰变是α衰变,衰变后的新核由洛伦兹力提供向心力, 有 Bqv=mvr2,可得 r=mqBv, 衰变过程遵循动量守恒定律,即mv相同, 所以电荷量与半径成反比,有q1∶q2=r2∶r1, 但无法求出质量比,故A、D错误,B、C正确.
2.氢原子光谱 (1)光谱:用棱镜或光栅可以把光按波长(频率)展开,获得光的 波长(频率) 和强度分布的记录,即光谱. (2)光谱分类: ①线状谱是一条条的 亮线 . ②连续谱是连在一起的 光带 .
(3)氢原子光谱的实验规律: ①巴耳末系是氢原子光谱在可见光区的谱线,其波长公式1λ=R∞212-n12(n =3,4,5,…),R∞是里德伯常量,R∞=1.10×107 m-1,n 为量子数,此公 式称为巴耳末公式. ②氢光谱在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关 系式.
高考知识之原子与原子核总结

第十八章 原子结构一.电子:英国物理学家汤姆孙认为阴极射线就是带电粒子流,经过实验,他发现那就是电子流,电子的电荷后来由密立根通过“油滴实验”测得,e=1.6×10-19 。
二.α粒子散射实验卢瑟福和学生用α粒子轰击金箔,发现:绝大多数的α粒子穿过金箔后,基本上沿原来的方向前进,但有极少数α粒子发生了 大角度的偏转,偏转的角度甚至大于90°,也就是说它们被“撞了回来”。
这个实验证明了卢瑟福的核式结构模型。
原子的核式结构模型内容:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间运动.[说明] 核式结构模型的实验基础是α粒子散射实验,从α粒子散射的实验数据,估计原子核半径的数量级为10-14m ~10-15m ,而原子半径的数量级是10-10m.三.波尔的原子模型内容:玻尔认为,围绕原子核运动的电子轨道半径只能是某些分立的数值,这种现象叫轨道量子化;不同的轨道对应着不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的;原子在不同的状态中具有不同的能量,所以原子的能量也是量子化的.理解要点:玻尔的原子模型是以假说的形式提出来的,包括以下三方面的内容:○1轨道假设:即轨道是量子化的,只能是某些分立的值. ○2定态假设:即不同的轨道对应着不同的能量状态,这些状态中原子是稳定的,不向外辐射能量.○3跃迁假设:原子在不同的状态具有不同的能量,从一个定态向另一个定态跃迁时要辐射或吸收一定频率的光子,该光子的能量,等于这两个状态的能级差.n m E E hv -= 四.氢原子光谱的理解第十九章原子核一.射线的组成,能量都很高。
α射线,即氦核,24He ,速度可以达到光速的十分之一,电离能力强,穿透能力比较差。
β射线是高速电子流,速度可达光速的99%,电离能力较弱,穿透能力较强。
γ射线是能量很高的电磁波,电离能力更小,但穿透能力很强。
高考物理备考重点原子与核物理

高考物理备考重点原子与核物理原子与核物理是高考物理的重点内容之一,它涉及了原子的结构、原子核的性质以及核反应等知识点。
在备考过程中,我们需要重点掌握以下几个方面的知识。
一、原子结构1. 原子的组成:原子由质子、中子和电子组成,其中质子和中子集中于原子核内,电子分布在原子核周围的电子壳层中。
2. 原子的电荷:质子带正电荷,中子不带电荷,电子带负电荷。
原子整体是电中性的,质子和电子的数量相等。
3. 原子的半径:原子半径大小与电子外层的能级有关,外层电子的能级越高,原子半径越大。
二、原子核的性质1. 原子核的组成:原子核由质子和中子组成,质子数目决定了元素的原子序数,即元素的核电荷数。
2. 原子核的尺寸:原子核的尺寸较小,直径约为10^-15米量级。
3. 原子核的质量:原子核的质量主要由质子和中子的质量决定,质子和中子的质量几乎相等。
三、放射性与核衰变1. 放射性现象:某些核素具有放射性自发变化的性质,通过放射性衰变释放出辐射。
2. 核衰变类型:常见的核衰变类型包括α衰变、β衰变和γ衰变。
3. 核衰变定律:核衰变过程符合指数函数规律,可以根据半衰期来描述放射性元素的衰变速率。
四、核反应与核能1. 核反应的概念:核反应是指原子核之间的相互作用,包括裂变、聚变和放射性衰变等。
2. 裂变与聚变:裂变是指重核分裂成两个较轻的核,聚变是指轻核融合成较重的核。
3. 核能的释放:核反应过程中释放出的能量称为核能,核能的利用广泛应用于核能发电和核武器等领域。
五、辐射与防护1. 辐射的分类:辐射主要分为电离辐射和非电离辐射,电离辐射包括α粒子、β粒子和γ射线。
2. 辐射的损害:辐射对人体具有一定的危害性,长期接触高剂量辐射会引发放射病。
3. 辐射防护措施:合理利用辐射防护装置、减少暴露时间和保持距离等方法可以降低辐射损害。
以上是高考物理备考中原子与核物理的重点内容。
通过系统学习和不断练习,我们可以更好地理解和掌握这些知识,为高考物理取得好成绩打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理知识点之原子结构与原子核
考试要点
基本概念
一、原子模型
1.J .J 汤姆生模型(枣糕模型)——1897年发现电子,认识到原子有复杂结构。
2.卢瑟福的核式结构模型(行星式模型)
α粒子散射实验是用α粒子轰击金箔,结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。
这说明原子的正电荷和质量一定集中在一个很小的核上。
卢瑟福由α粒子散射实验提出模型:在原子的中心有一
个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15
m 。
3.玻尔模型(引入量子理论) (1)玻尔的三条假设(量子化)
①轨道量子化:原子只能处于不连续的可能轨道中,即原子的可能轨道是不连续的
②能量量子化:一个轨道对应一个能级,轨道不连续,所以能量值也是不连续的,这些不连续的能量值叫做能级。
在这些能量状态是稳定的,并不向外界辐射能量,叫定态 ③原子可以从一个能级跃迁到另一个能级。
原子由高能级
氢原子的能级图
n E /eV
∞ 0
-13.6
-3.4
4 -0.853
向低能级跃迁时,放出光子,在吸收一个光子或通过其他途径获得能量时,则由低能级向高能级跃迁。
原子在两个能级间跃迁时辐射或吸收光子的能量12E E h -=γ(量子化就是不连续性,n 叫量子数。
)
(2)从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。
原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。
(如在基态,可以吸收E ≥13.6eV 的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。
(3)玻尔理论的局限性。
由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。
但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
4.氢原子中的电子云
对于宏观质点,只要知道它在某一时刻的位置和速度以及受力情况,就可以应用牛顿定律确定该质点运动的轨道,算出它在以后任意时刻的位置和速度。
对电子等微观粒子,牛顿定律已不再适用,因此不能用确定的坐标描述它们在原子中的位置。
玻尔理论中说的“电子轨道”实际上也是没有意义的。
更加彻底的量子理论认为,我们只能知道电子在原子核附近各点出现的概率的大小。
在不同的能量状态下,电子在各个位置出现的概率是不同的。
如果用疏密不同的点子表示电子在各个位置出现的概率,画出图来,就像一片云雾一样,可以形象地称之为电子云。
二、天然放射现象
1.天然放射现象——天然放射现象的发现,使人们认识到原子核也有复杂结构。
1895年——汤姆生——电子
1896年——贝可勒尔——天然放射现象 1897年——伦琴——伦琴射线
大于等于83号元素的都具有天然放射性,小于83号的有的也具有天然放射性 2.各种放射线的性质比较
三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:
⑴ ⑵ ⑶
如⑴、⑵图所示,在匀强磁场和匀强电场中都是β比α的偏转大,γ不偏转;区别是:在磁场中偏转轨迹是圆弧,在电场中偏转轨迹是抛物线。
⑶图中γ肯定打在O 点;如果α也打在O 点,则β必打在O 点下方;如果β也打在O 点,则α必打在O 点下方。
3、半衰期 描述衰变的快慢
由核内部本身决定,与所处的物理和化学状态无关 是统计规律,少数原子核不存在该规律
n N N )21(0= n m m )2
1
(0=
三、核反应(核的变化,电荷数守恒,质量数守恒,质量并不守恒。
)
(1)衰变:α衰变:e 422349023892H Th U +→(核内He n 2H 24
21011→+)
β衰变:e Pa Th 012349123490-+→(核内e H n 011110-+→)
+β衰变:e S i P 0130143015+→(核内e n H 011011+→)
γ衰变:原子核的能量也是不连续的,原子核放出射线后,核处于激发态,当它向低能级跃迁时,辐射γ光子。
因此γ衰变是伴随着α、β衰变发生的。
(2)人工转变:H O He N 1
117842147+→+(卢瑟福发现质子的核反应)
n C He Be 101264294+→+(查德威克发现中子的核反应)
n P He Al 103015422713+→+ e S i P 0130143015+→(小居里人工制造放射性同位素)
放射性同位素的应用
①利用其射线:α射线电离性强,用于使空气电离,将静电泄出,从而消除有害静电。
γ射线贯穿性强,可用于金属探伤,也可用于治疗恶性肿瘤。
各种射线均可使DNA 发生突变,可用于生物工程,基因工程。
②作为示踪原子。
用于研究农作物化肥需求情况,诊断甲状腺疾病的类型,研究生物大分子结构及其功能。
③进行考古研究。
利用放射性同位素碳14,判定出土木质文物的产生年代。
一般都使用人工制造的放射性同位素(种类齐全,半衰期短,可制成各种形状,强度容易控制)。
(3)重核的裂变: n 3Kr Ba n U 1
09236141561023592++→+ 在一定条件下
(超过临界体积),裂变反应会连续不断地进行下去,这就是链式反应。
(4)轻核的聚变:n He H H 1
0423121+→+(需要几百万度高温,所以又叫热核反应)
四、核能
1.核能——核反应中放出的能叫核能。
2.质量亏损——核子结合生成原子核,所生成的原子核的质量比生成它的核子的总质量要小些,这种现象叫做质量亏损。
3.爱因斯坦质能方程:物体的能量和质量间存在着正比关系。
比例系数为光速的平方。
2mc E = 2mc E ∆=∆
(在非国际单位里,可以用1Uc 2
=931.5MeV 。
它表示1原子质量单位的质量跟931.5MeV 的能量相对应。
)
4.释放核能的途径
凡是释放核能的核反应都有质量亏损。
核子组成不同的原子核时,平均每个核子的质量亏损是不同的,所以各种原子核中核子的平均质量不同。
核子平均质量小的,每个核子平均放的能多。
铁原子核中核子的平均质量最小,所以铁原子核最稳定。
凡是由平均质量大的核,生成平均质量小的核的核反应都是释放核能的。
5.核反应堆
目前的所有正式运行的核电站都是应用裂变发电的。
核反应堆的主要组成是:
(1)核燃料。
用浓缩铀(能吸收慢中子的铀235占3%~4%)。
(2)减速剂。
用石墨或重水(使裂变中产生的中子减速,以便被铀235吸收)。
(3)控制棒。
用镉做成(镉吸收中子的能力很强)。
(4)冷却剂。
用水或液态钠(把反应堆内的热量传输出去用于发电,同时使反应堆冷却,保证安全)。
(5)水泥防护层。
用来屏蔽裂变产物放出的各种射线。
6.粒子物理学
到19世纪末,人们认识到物质由分子组成,分子由原子组成,原子由原子核和电子组成,原子核由质子和中子组成。
20世纪30年代以来,人们认识了正电子、μ子、K 介子、π介子等粒子。
后来又发现了各种粒子的反粒子(质量相同而电荷及其它一些物理量相反)。
现在已经发现的粒子达400多种,形成了粒子物理学。
按照粒子物理理论,可以将粒子分成三大类:媒介子、轻子和强子,其中强子是由更基本的粒子——夸克组成。
从目前的观点看,媒介子、轻子和夸克是没有内部结构的“点状”粒子。
用粒子物理学可以较好地解释宇宙的演化。