第二节高速铁路接触网

合集下载

高速铁路接触网-中心锚结 PPT

高速铁路接触网-中心锚结 PPT
根据安装位置可分为跨中式和 支柱两跨式。
直线区段简单悬挂的中心锚结
1心锚结
曲线区段简单悬挂中心锚结
在曲线区段,由于曲线引 起接触悬挂横向偏移,造成线 索张力差,若将中心锚结仍放 置在跨距中间,中心锚结绳两 端会因曲线偏移产生较大张力 差,此时,应将中心锚结放置 在支柱上形成一个八字形结构
会引腕臂偏移,导致定位点处的拉出值(或“之”字 值)改变;
第三、腕臂的严重偏移,会导致承力索与接地物 (如硬横梁上的吊柱、腕臂上的跳线等)间的距离不 够而引起放电,造成馈线侧的断路器动作及承力索断 线等严重的接触网事故。
13
第二部分 高速接触网的结构特征
2.2.5 中心锚结
站场的锚段偏移的原因; 第一、锚段的中心锚结固定点两侧的张力不平衡导致锚段 偏移。引起中心锚结两端的张力不平衡的因素:
首先是中心锚结的设计位置不合适引起的,由于受站场 线路的影响(如曲线、坡度等),设计上很难保证中心锚结 固定点两侧的张力相等;
其次、受站场实际情况的限制,在渡线、非支下锚等 处的线索水平偏角会超过12°,由于线索的热胀冷缩、在水 平偏角偏大处就会卡滞,从而破坏中心锚结两端张力的平衡;
最后、站场的锚柱很多都是采用直埋杆,在极限温度 下,补偿坠砣易卡滞在限制架的上、下部角钢上,从而也会 破坏中心锚结两端张力的平衡。
14
第二部分 高速接触网的结构特征
2.2.5 中心锚结
站场的锚段偏移的原因: 第二、接触网在外力的作用下、线索也会向一侧窜动。 1)、接触悬挂在线路坡道处,由于悬挂本身的重量沿
下坡方向产生作用于悬挂的分力。 2)、曲线内侧因旋转腕臂偏转,出现对线索向某一方
向的分力作用。 3)风力和受电弓对接触线的滑动摩擦力等也会使线索

高速铁路接触网安全工作规则(2014)221号

高速铁路接触网安全工作规则(2014)221号

中国铁路总公司关于印发《高速铁路接触网安全工作规则》的通知各铁路局、各铁路公司(筹备组):现将《高速铁路接触网安全工作规则》(技术规章编号:TG/GD108-2014)印发给你们,请认真贯彻执行。

2014年8月9日TG/GD108-2014第一章总则第一条在高速铁路接触网运行和检修工作中,为确保人身、行车和设备安全,特制定本规则。

第二条从事高速铁路接触网工作各单位(包括高速铁路接触网设备管理、维修和从事高速铁路接触网施工的单位,下同)应经常进行安全技术教育,组织有关人员认真培训和学习本规则,切实贯彻执行本规则的各项规定。

第三条各级管理部门应建立健全各岗位责任制,抓好各管理岗位、作业岗位基础工作,依靠科技进步,积极采用新技术、新工艺、新材料,不断提高和改善高速铁路接触网的安全工作和装备水平,确保人身和设备安全。

第四条本规则适用于200km/h及以上铁路和200km/h以下仅运行动车组列车(含相关联络线和动车走行线)铁路接触网的安全运行和检修工作。

各铁路局(公司)可根据本规则规定的内容,结合具体情况制定细则,并报铁路总公司核备。

第二章一般规定第五条高速铁路(含200km/h及以上铁路、200km/h以下仅运行动车组列车铁路,及相关联络线和动车走行线。

下同)所有的接触网设备,自第一次受电开始即认定为带电设备。

之后,接触网上的一切作业,必须按本规则的规定严格执行。

铁路防护栅栏内进行的接触网作业,必须在上下行线路同时封锁,或本线封锁、邻线限速160km/h及以下条件下进行。

第六条从事高速铁路接触网运行和检修工作的人员,实行安全等级制度,经过考试评定安全等级,取得《高速铁路供电安全合格证》之后(安全合格证格式和安全等级的规定,分别见附件 1、2),方准参加与所取得的安全等级相适应的工作。

每年定期按下表要求进行一次安全考试并签发《高速铁路供电安全合格证》。

第七条各单位除按第6条规定组织从事高速铁路接触网运行和检修工作的有关现职人员每年进行一次安全等级考试外,对属于下列情形的人员,还应在上岗前进行安全等级考试:(一)开始参加高速铁路接触网工作的人员。

高速电气化铁路接触网- 接触网的设计计算

高速电气化铁路接触网- 接触网的设计计算
第二章 接触网的设计计算
▪ 自由悬挂导线的张力与弛度计算 ▪ 简单悬挂的状态方程 ▪ 半补偿链形悬挂的张力与弛度 ▪ 全补偿链形悬挂的安装曲线 ▪ 接触线受风偏移和跨距许可长度的计算 ▪ 链形悬挂接触线的受风偏移和跨距长度 ▪ 链形悬挂锚段长度的计算
2.1 自由悬挂导线的张力与弛度计算
等高悬挂的弛度计算 不等高悬挂的弛度和张力计算 悬挂线索实际长度的计算
1. 半补偿链形悬挂锚段长度的计算 Nhomakorabea锚段:将接触网分成若干一定长度且相互独立的分段。 划分锚段的目的:加补偿器;缩小机械事故范围;使吊弦的 偏移不致超过许可值以及改善接触线的受力情况等。 划分锚段的依据:在气象条件发生变化时,使接触线内所产 生的张力增量不超过规定值。
1. 半补偿链形悬挂锚段长度的计算
2.不等高悬挂的弛度和张力的计算
斜弛度 重要结论:一个不 等高悬挂的弛度可 转换为等高悬挂进 行计算。
2.不等高悬挂的弛度和张力的计算
不等高悬挂的张力
2.不等高悬挂的弛度和张力的计算
上拔力计算图
3.悬挂线索实际长度的计算
悬挂线索长度微分段
3.悬挂线索实际长度的计算
2.2 简单悬挂的状态方程
风偏移值的当量理论计算法
国外风偏移值的计算方法
1.风偏移值的平均值计算法
2.风偏移值的当量理论计算
2.风偏移值的当量理论计算
2.风偏移值的当量理论计算
3.国外风偏移值的计算方法
1)俄罗斯的计算方法; 2)德国的计算方法; 3)日本的计算方法。
2.7 链形悬挂锚段长度的计算
半补偿链形悬挂锚段长度的计算 全补偿链形悬挂锚段长度的计算 隧道内锚段长度的计算
曲线区段
2.简单接触悬挂的受风偏移和最大跨距

高速铁路接触网课件1

高速铁路接触网课件1
链形悬挂: 按照接触线、承力索的补偿情况: 未补偿、半补偿、全补偿 按照接触线、承力索的相对位臵: 直链型、半斜链形、斜链形 按照定位点处是否安装弹性吊索: 简单链形和弹性链形
按承力索的多少分为: 单链形(1根) 双链形(2根) 多链形(3根及以上)
中国接触网主要采用:全补偿简单(弹性)直(半)斜链形悬挂。
Page: 48
(2) 半斜链形悬挂
半斜链形悬挂示意图
1-接触线 2-承力索 3-吊弦
承力索沿线路中心线布臵,接触线在每一支柱定位点处, 通过定位装臵被布臵成“之”字形。半斜链形悬挂风稳定性好, 提速改造以前,我国在直线区段大量采用这种悬挂方式 。
Page: 49
(3) 斜链形悬挂
斜链形悬挂示意图
Page: 47
(三)按照接触线、承力索在空间的位臵关系分类:
直链型、半斜链形、斜链形 (1) 直链形悬挂
直链形悬挂示意图
1-接触线 2-承力索 3-线路中心线
承力索和接触线布臵在同一垂直平面内,它们在水平面上的投影 是一条直线。便于吊弦长度计算,提高了施工精度,避免接触线在吊 弦存在纵向倾斜时出现的接触线偏磨甚至是线夹与受电弓的碰撞。是 我国提速线路优先选用的悬挂形式。
接触线
Page: 39
弹性吊索
弹 性 链 形 悬 挂
(∏型吊弦)
接触线
承力索
吊弦
Page: 40
Page: 41
(2)双链形
双链形悬挂示意图
1-承力索 2-吊弦 3-辅助吊索 4-接触线 5-短吊弦
接触线弛度小,受流稳定性和风稳定性都比较优越,弹 性均匀度好,有利于电力机车高速运行取流。但结构较复杂, 投资及维修费用高,我国仅在个别地段试用。

第二节高速铁路接触网

第二节高速铁路接触网

第二节高速铁路接触网一、接触悬挂形式及其主要技术参数自1964年日本开通世界上第一条高速铁路至今,世界发达国家已经致力于高速电气化铁路的研究和发展。

经过30多年的运行、实验,使高速电气化铁路的车速不断提高,运营速度由220 km /h 提高到270 km /h ,正向300 km /h 进。

法国是目前轮轨系列车时速的世界记录保持者,它于 2007年 4月4日进行的实验运行速度达到574.8 km /h ,在激烈竞争的市场经济条件下,各种交通工具之间为争夺市场运输份额,不断开发和引进高新技术,而提高铁路车速将给铁路参与市场竞争带来机遇。

接触网结构在机车高速运行情况下,发生了许多重大变化,需要进行一系列的改革,采取什么样的悬挂类型来适应高速铁路,一直是各发达国家研究的课题。

根据国外高速电气化铁路运行经验,高速滑行的受电弓,其抬升力在空气动力和自身惯性作用下,以列车速度平方的比例大幅度增加,因而使接触线产生较大的抬升量,当驶过等距支柱甚至在跨距中的等距吊弦时,会周期性激发接触线振动,它会使接触线弯曲应力增加,容易引发疲劳断线事故,同时这种振动可沿导线以一定速度传播,在遇到吊弦线夹和悬挂点时,会将波反射放大引起导线振荡,这是引起受电弓离线的主要原因,离线产生的电弧会烧伤接触线使磨耗增加,即电磨耗。

当导线弯曲刚度小而张力大时,其波动速度可由下式求出: ρT C =式中 T ——接触线张力(N );ρ——线密度。

为了减少导线抬升量,可提高其张力,减少接触网弹性不均匀性,同时也提高了接触线波动传播速度,不引起导线共振使受电弓取流状态更好。

接触悬挂形式是指接触网的基本结构形式,它反映了接触网的空间结构和几何尺寸。

不同的悬挂形式,在工程造价、受流性能、安全性能上均有差别,另外,对接触网的设计、施工和运营维护也有不同的要求。

对高速接触网悬挂形式的要求是:受流性能满足高速铁路的运营要求、安全可靠、结构简单、维修方便、工程造价低。

高速铁路接触网

高速铁路接触网

接触网
1.1 接触网的组成
2.支持装置
支持装置是接触网中支持接触悬挂,并将其机械负荷传给支柱固定 的部分。支持装置包括腕臂、水平拉杆、棒式绝缘子及接触悬挂的悬吊 零件。
(1)腕臂。腕臂是从支柱上伸出的由一根或几根横臂组成的支持 结构。腕臂可以分为绝缘腕臂和非绝缘腕臂。
(2)水平拉杆。水平拉杆是腕臂中承受拉力的水平杵环杆。 (3)棒式绝缘子。棒式绝缘子是由实心的圆柱形或圆锥形绝缘件 和两端的连接金具组成的支持绝缘子。
接触网
1.2 接触网的主要设备
1.接触线
(5)接触线的接头和磨耗。
②接触线磨耗。 接触线在运行中,受电弓和接触线的摩擦会造成接触线截面积减小,称为 接触线磨耗。接触线的磨耗使接触线的截面积减小,会影响到接触线的强 度安全系数。在运营中,要求每年至少进行一次接触线磨耗测量,当接触 线磨耗达到一定限度时,应局部补强或更换,接触线磨耗的测量点通常选 在定位线、电连接线、导线接头、中心锚结、电分相、电分段、跨距中间 等处,测量工具一般是游标卡尺。
接触网
1.1 接触网的组成
③简单链形悬挂
1.接触悬挂
简单链形悬挂与弹性链形悬挂的主要区别在于它没有弹性吊索。其 性能特点是:结构最简单、安全可靠、造价最低、安装调整维修方便, 适应于高速受流,能满足列车高速运行的要求。简单链形悬挂的缺点 是,定位点处弹性小,跨中弹性大,造成受电弓在跨中抬升量大,跨中 采用预留弛度,受电弓在跨中的抬升量可降低,定位点处易形成相对硬 点,磨耗大。如果选择结构形式合理、性能优良的定位器,则可消除这 方面的不足。
接触网
1.1 接触网的组成
②弹性链形悬挂
1.接触悬挂
弹性链形悬挂的性能特点是:弹性链形悬挂的结构相对于复链 形悬挂较简单,它没有辅助承力索,造价也较低;同时它对悬挂定 位点处的弹性进行了改善,使得整个接触网的弹性均匀、受流性能 好。其缺点是弹性吊索进行调整和维修时比较复杂,定位点处导线 的抬升量较大,对定位器的安装坡度要求也比较严格。

铁总运〔2014〕221号+高速铁路接触网安全工作规则

铁总运〔2014〕221号+高速铁路接触网安全工作规则

铁总运〔2014〕221号高速铁路接触网安全工作规则TG/GD 108一2014高速铁路接触网安全工作规则第1章总则第一条在高速铁路接触网运行和检修工作中,为确保人身、行车和设备安全,特制定本规则。

第二条从事高速铁路接触网工作各单位(包括高速铁路接触网设备管理、维修和从事高速铁路接触网施工的单位,下同)应经常进行安全技术教育,组织有关人员认真培训和学习本规则,切实贯彻执行本规则的各项规定。

第三条各级管理部门应建立健全各岗位责任制,抓好各管理岗位、作业岗位基础工作,依靠科技进步,积极采用新技术、新工艺、新材料,不断提高和改善高速铁路接触网的安全工作和装备水平,确保人身和设备安全。

第四条本规则适用于200km/h及以上铁路和200 km/ h 以下仅运行动车组列车(含相关联络线和动车走行线)铁路接触网的安全运行和检修工作。

各铁路局(公司)可根据本规则规定的内容,结合具体情况制定细则,并报铁路总公司核备。

第2章一般规定第五条高速铁路(含200km/h及以上铁路、200 km/ h以下仅运行动车组列车铁路,及相关联络线和动车走行线。

下同)所有的接触网设备,自第一次受电开始即认定为带电设备。

之后,接触网上的一切作业,必须按本规则的规定严格执行。

铁路防护栅栏内进行的接触网作业,必须在上下行线路同时封锁,或本线封锁、邻线限速160km/h及以下条件下进行。

第六条从事高速铁路接触网运行和检修工作的人员,实行安全等级制度,经过考试评定安全等级,取得《高速铁路供电安全合格证》之后(安全合格证格式和安全等级的规定,分别见附录1,2 ),方准参加与所取得的安全等级相适应的工作。

每年定期按下表要求进行一次安全考试并签发《高速铁路供电安全合格证》。

应试人员主持考试单位和签发安全合格证部门安全合格证签发人单位的主管负责人和专业负责人各单位上级业务主管部门上级主管负责人其他从事接触网工作人员各单位单位的主管负责人第七条各单位除按第6条规定组织从事高速铁路接触网运行和检修工作的有关现职人员每年进行一次安全等级考试外,对属于下列情形的人员,还应在上岗前进行安全等级考试:(一)开始参加高速铁路接触网工作的人员。

高速动车组概述动车组牵引供电要求

高速动车组概述动车组牵引供电要求

(2)降低电气化铁路对电力系统的影响。
19
高速动车组概述动车组牵引供电要求
电气化铁路的单相牵引负荷是一个不对称的负荷,对三相电力 系统产生负序电流和负序电压。要减轻负序电流和负序电压对三 相电力系统的影响,需要牵引变电所采用换相接线方式或不同接 线型式的变压器。
2.变电所保护装置
20
一个变电所有十多台断路器,每台断路器
d.可靠性。要求保护装置的元件和接线处于良好状态,该动作时均能正 常工作。
第二节 高速接触网
22
高速动车组概述动车组牵引供电要求
一、接触网的构成 二、接触悬挂形式 三、接触网的性能要求 四、接触线及承力索
8
2. 吸流变压器供电方式
吸流变压器的供电方式(简称BT供电方式)是在牵引网中架 设有吸流变压器-回流线装置的一种供电方式。目前,在我国 电气化铁路上采用较为广泛,如图所示:
高速动车组概述动车组牵引供电要求
9
吸流变压器的变比为1:1,它的一次绕组 串接在接触网(T)上,二次绕组串接在专为 牵引电流流回牵引变电所而特设的回流线(NF) 上,所以也称吸流变压器-回流线供电方式 (简称吸-回方式)
高速动车组概述动车组牵引供电要求
1
动车组牵引供电要求
第一节 动车组供电 第二节 高速接触网 第三节 高速受电弓
高速动车组概述动车组牵引供电要求
2
第一节 动车组供电
一、供电方式 二、牵引变电所
动车组牵引供电系统的组成
3
高速动车组概述动车组牵引供电要求
动车组牵引供电系统
牵引变电所
保证质量良好并不 间断地向动车组供 电
接触网
在动车组运行中通 过与受电弓良好的 摩擦接触将电能传 给动车组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节高速铁路接触网一、接触悬挂形式及其主要技术参数自1964年日本开通世界上第一条高速铁路至今,世界发达国家已经致力于高速电气化铁路的研究和发展。

经过30多年的运行、实验,使高速电气化铁路的车速不断提高,运营速度由220 km /h 提高到270 km /h ,正向300 km /h 进。

法国是目前轮轨系列车时速的世界记录保持者,它于 2007年 4月4日进行的实验运行速度达到574.8 km /h ,在激烈竞争的市场经济条件下,各种交通工具之间为争夺市场运输份额,不断开发和引进高新技术,而提高铁路车速将给铁路参与市场竞争带来机遇。

接触网结构在机车高速运行情况下,发生了许多重大变化,需要进行一系列的改革,采取什么样的悬挂类型来适应高速铁路,一直是各发达国家研究的课题。

根据国外高速电气化铁路运行经验,高速滑行的受电弓,其抬升力在空气动力和自身惯性作用下,以列车速度平方的比例大幅度增加,因而使接触线产生较大的抬升量,当驶过等距支柱甚至在跨距中的等距吊弦时,会周期性激发接触线振动,它会使接触线弯曲应力增加,容易引发疲劳断线事故,同时这种振动可沿导线以一定速度传播,在遇到吊弦线夹和悬挂点时,会将波反射放大引起导线振荡,这是引起受电弓离线的主要原因,离线产生的电弧会烧伤接触线使磨耗增加,即电磨耗。

当导线弯曲刚度小而张力大时,其波动速度可由下式求出: ρT C =式中 T ——接触线张力(N );ρ——线密度。

为了减少导线抬升量,可提高其张力,减少接触网弹性不均匀性,同时也提高了接触线波动传播速度,不引起导线共振使受电弓取流状态更好。

接触悬挂形式是指接触网的基本结构形式,它反映了接触网的空间结构和几何尺寸。

不同的悬挂形式,在工程造价、受流性能、安全性能上均有差别,另外,对接触网的设计、施工和运营维护也有不同的要求。

对高速接触网悬挂形式的要求是:受流性能满足高速铁路的运营要求、安全可靠、结构简单、维修方便、工程造价低。

世界上发展高速铁路的主要国家如:日本、德国、法国的高速接触网悬挂形式是在不断改进中发展起来的,主要有三种悬挂形式:简单链形悬挂、弹性链形悬挂、复链形悬挂。

各国对这三种悬挂形式有不同的认识和侧重,根据各自的国情发展自己的悬挂形式。

日本的高速线路如:东海道新干线、山阳新干线、东北新于线、上越新干线均采用复链形悬挂,近几年来,日本高速铁路又采用了简单链形悬挂;法国的巴黎一里昂的东南线采用弹性链形悬挂,巴黎一勒芒/图尔的大西洋线采用接触导线带预留弛度的简单链形悬挂;德国在行车速度低于160km /h 的线路采用简单链形悬挂,在160km /h 及以上的线路采用弹性链形悬挂。

下面分别介绍简单链形悬挂、弹性链形悬挂和复链形悬挂三种形式的结构和技术性能。

1、简单链形悬挂以法国为代表的高速铁路采用此种类型,在 1990年开通的速度为300 km /h 的大西洋新干线上采用,而且认为该悬挂类型完全可以满足 330—350 km /h ,简单链形悬挂维修简单造价低,有多年成熟的运行经验。

结构形式如图2-1所示。

图2-1 带预留驰度的简单链形悬挂性能特点:结构简单、安全可靠、安装调整维修方便,适应于高速受流。

定位点处弹性小,跨中弹性大,造成受电弓在跨中抬升量大,跨中采用预留弛度,受电弓在跨中的抬升量可降低;定位点处易形成相对硬点,磨耗大。

如果选择结构形式合理、性能优良的定位器,则可消除这方面的不足。

2、弹性链形悬挂德国开发的高速接触网普遍采用,并作为德国联邦铁路标准,其主要出发点是降低接触网弹性不均匀度,在80年代末修建的曼海姆到斯图加特高速铁路(250 km/h)上采用,并计划在柏林至汉诺威、法兰克福至科隆间(300~400 km/h)仍采用。

弹性链形悬挂比简单链形悬挂弹性好,但造价较高。

弹性链形悬挂的结构形式图如图2-2所示。

在结构上,相对于简单链形悬挂在定位点处装设弹性吊索,主要有两种形式:“π”形和“Y”形。

弹性吊索的材质一般与承力索相同,其线胀系数与承力索相匹配。

性能特点:结构比较简单,改善了定位点处的弹性,使得定位点处的弹性与跨中的弹性趋于一致,图2-2 弹性链形悬挂整个接触网的弹性均匀,受流性能好。

其缺点是弹性吊索调整维修比较复杂,定位点处导线抬升量大,对定位器的安装坡度要求也较严格。

3、复链形悬挂在 1964年 10月建成的日本东海道新干线上采用,时速为210 km/h,它是用带弹簧的吊弦合成复链形悬挂。

日本研究部门认为它适用于多弓受流情况,在今后300 km/h高速线路上仍采用。

复链形悬挂运行性能好,但造价高、设计复杂,施工和维修难度大,复链形悬挂结构形式如图2-3所示。

图2-3 复链形悬挂在结构上,承力索和接触导线之间加了一根辅助承力索。

性能特点:接触网的张力大,弹性均匀,安装调整复杂、抗风能力强。

表2-2-1 三种悬挂类型的定性比较我国高速铁路尚在试运行阶段,已提速的几条干线仍采用原来的接触悬挂类型,目前正在建设的广深高速铁路,采用全补偿简单链形悬挂,根据国外经验和我国铁路路轨现状,通过科技人员论证,普遍认为采用全补偿简单链形悬挂较为合适,特别是在车速不高的情况下,有利于投资少见效快,完全能够适应200 ㎞/h车速的要求。

二、高速接触网的主要技术参数1.导线高度:指接触导线距钢轨面的高度。

它的确定受多方面的因素制约,如:车辆限界、绝缘距离、车辆和线路振动、施工误差等。

一般地,高速铁路接触导线的高度比常规电气化铁路的接触导线低,这主要因为:①高速铁路一般无超级超限列车通过,车辆限界为4 800nlm;②为了减少列车空气阻力及空气动态力对受电弓的影响,受电弓的底座沉于机车车顶顶面,受电弓的工作高度较小。

所以,高速铁路接触导线的高度一般在5 300mm左右。

2.结构高度:指定位点处承力索距接触导线的距离。

它由所确定的最短吊弦长度决定的,吊弦长时,当承力索和导线材质不同时,因温度变化引起的吊弦斜度小,使锚段内的张力差小,有利于改善弓网受流特性;长吊弦的另一个优点是高速行车引起的导线振动时,吊弦弯度小,可以减少疲劳,延长使用寿命。

表2-2-2为三种高速悬挂的结构高度。

表2-2-2 三种高速接触网悬挂的结构高度我国接触网的结构高度为1.1~1.6m。

3.跨距及拉出值:取决于线路曲线半径、最大风速和经济因素等。

考虑安全因素及对受电弓滑板的磨耗,我国高速铁路一般在保证跨中导线及定位点在最大风速下均不超过距受电弓中心300mm的条件下,确定跨距长度和拉出值的大小。

4.锚段长度:它的确定主要考虑接触导线和承力索的张力增量不宜超过10%,且张力补偿器工作在有效工作范围内。

高速铁路接触网的锚段长度与常规电气化铁路基本一样。

5.绝缘距离:参照电气化铁路接触网的绝缘配合标准。

6.吊弦分布和间距:吊弦间距指一跨内两相邻吊弦之间的距离,吊弦间距对接触网的受流性能有一定的影响,改变吊弦的间距可以调整接触网的弹性均匀度,但是,如果吊弦过密,将影响接触导线的波动速度,而对弹性改善效果不大,所以,确定吊弦间距时,既要考虑改善接触网的弹性,又要考虑经济因素。

吊弦分布有等距分布、对数分布、正弦分布等几种形式,为了设计、施工和维护的方便,吊弦分布一般采用最简单的等距分布。

7.接触导线预留弛度:指在接触导线安装时,使接触导线在跨内保持一定的弛度,以减少受电弓在跨中对接触导线的抬升量,改善弓网的振动。

对高速接触网,简单链形悬挂设预留弛度,弹性链形悬挂一般不设预留弛度。

8.锚段关节:锚段关节是接触网的张力的机械转换关节,是接触网的薄弱环节,其设计和安装质量对受流影响较大,高速接触网一般采用两种形式的锚段关节:①非绝缘锚段关节采用三跨锚段关节;②绝缘锚段关节采用五跨锚段关节。

安装处理上,尽量缩短接触导线工作支和非工作支同时接触受电弓滑板的长度,提高非工作支的坡度。

9.接触导线的张力:提高接触导线的张力,可以增大波形传播速度,改善受流性能,同时增加了接触网的稳定性。

导线张力的确定受导线的拉断力,接触网的安全系数等因素影响。

10.承力索的张力:受接触网的稳定性、载流容量、结构高度、支柱容量等因素影响,提高承力索的张力可以增加接触网的稳定性,但对弓网受流性能影响不大。

减少承力索的张力,有利于减少反射系数,承力索的张力受接触网的结构高度的限制,也就是在一定的结构高度上,要保持跨内最短吊弦的长度。

三、接触网的主要设备和零部件1、接触网的线材(1).接触导线接触导线是接触网中直接与机车受电弓作摩擦运动传递电能的线材,它对接触网——受电弓系统的受流性能的好坏产生至关重要的作用,受流系统的许多性能指标直接由接触导线决定,如:波动传播速度、接触导线的抬升量、接触导线的磨耗、安全系数。

表2-2-3给出了国外高速接触导线的比较。

高速铁路对接触导线的基本要求如下:○1机械强度高;○2)单位质量尽量小;○3导电性能好;○4良好的耐磨及耐腐蚀性能及高温软化特性,使用寿命长;○5摩擦性能与受电弓滑板相匹配。

表2-2-3 国外高速接触导线的比较随着运行速度的提高,为了提高抗拉强度,增大波动传播速度、耐磨性,国外有关国家对高速铁路的接触导线都趋向于研制铜合金导线或复合导线。

铜合金导线是在铜中加人其他金属元素,如镁、银,采用合金方法制成的。

复合导线是用铜与另一种机械强度高的金属制成的。

(2).承力索承力索是接触网承载接触导线,并传输电流的线材。

承力索的选用应符合下列条件:承力索的线胀系数与接触导线相匹配;机械强度高;耐疲劳、耐腐蚀性能好,耐温特性好;导电率高。

国外高速铁路使用的承力索性能如表2-2-4所示。

表2-2-4 国外高速铁路使用的承力索性能表我国电气化铁路接触网的承力索一般采用95mm2和70mm2的铜合金绞线,增加承力索的张力可以增强接触网的稳定性。

(3).弹性吊索对弹性链形悬挂,弹性吊索一般选用截面积为35mn2的青铜绞线,张力为2.8~3.5 kN。

2、高速铁路接触网的支持装置(1).支柱:由于高速铁路接触网的承力索和接触导线的张力增大,使作为接触网支撑的支柱受到较大的负荷,另外,还要考虑到接触网的稳定性问题。

高速铁路接触网支柱的选择,区间一般采用环形等径预应力混凝土支柱;桥上支柱采用热浸镀锌钢柱;软横跨硬横跨支柱;跨度小时用环形等径预应力混凝土支柱,跨度大时选用热浸镀锌钢柱。

(2).硬横跨:是用于站场或两股以上线路的接触网支持钢结构,一般用型钢焊接成梁式结构横跨于线路上空,用于支持接触悬挂。

这种刚性硬横跨的特点是,各股道上的接触网在机械上和电气上相互独立。

接触悬挂在硬横跨上采用吊柱旋转腕臂的支持结构,其结构特性与区间中间柱基本相同,组合定位装置与区间的接触悬挂完全相同。

硬横跨的优点是,机械上独立,结构稳定,抗风能力强,寿命长,在受流性能上与区间接触悬挂相同。

相关文档
最新文档