数学必修三综合测试题(含答案)
高中数学人教A版必修三 第三章 概率 章末综合测评及答案

会,估计运动会期间不.下.雨.的概率. 【解】 (1)在容量为 30 的样本中,不下雨的天数是 26,以频率
估计概率,4 月份任选一天,西安市不下雨的概率为 2360=1153. (2)称相邻的两个日期为“互邻日期对”(如,1 日与 2 日,2 日与 3
日等).这样,在 4 月份中,前一天为晴天的互邻日期对有 16 个,其中 后一天不下雨的有 14 个,所以晴天的次日不下雨的频率为 78.
(2)该班成绩在[60,100]内的概率是 P(A∪B∪C∪D)=P(A)+P(B)
+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.
19.(本小题满分 12 分)小王、小李两位同学玩掷骰子(骰子质地均 匀)游戏,规则:小王先掷一枚骰子,向上的点数记为 x;小李后掷一 枚骰子,向上的点数记为 y.
【答案】 C
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在
题中横线上).
13.一个袋子中有 5 个红球,3 个白球,4 个绿球,8 个黑球,如
果随机地摸出一个球,记 A={摸出黑球},B={摸出白球},C={摸出
绿球},D={摸出红球},则 P(A)=________;P(B)=________;P(C∪D)
A,B,C 和 3 名女同学 X,Y,Z,其年级情况如下表:
一年级 二年级 三年级
男同学 A
=________.
【解析】 由古典概型的算法可得 P(A)=280=25,P(B)=230,P(C∪D)
=P(C)+P(D)=240+250=290.
【答案】
2 5
3 20
9 20
14.在区间(0,1)内任取一个数 a,能使方程 x2+2ax+12=0 有两
2019版高中人版A版数学必修三练习:综合检测试题 含答案

综合检测试题(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1。
下列说法正确的是( C )①必然事件的概率等于1;②互斥事件一定是对立事件;③球的体积与半径的关系是正相关;④汽车的重量和百公里耗油量成正相关.(A)①②(B)①③(C)①④(D)③④解析:互斥事件不一定是对立事件,②错;③中球的体积与半径是函数关系,不是正相关关系,③错;①④正确,选C.2.要从165名学生中抽取15人进行视力检查,现采用分层抽样法进行抽取,若这165名学生中,高中生为66人,则高中生中被抽取参加视力检查的人数为( B )(A)5 (B)6 (C)7 (D)8解析:165名学生中,高中生为66人,则高中生中被抽取参加视力检查的人数为66×=6,故选B。
3.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现用分层抽样抽取30人,则各职称人数分别为( B )(A)5,10,15 (B)3,9,18(C)3,10,17 (D)5,9,16解析:单位职工总数是150,所以应当按照1∶5的比例来抽取。
所以各职称人数分别为3,9,18.选B。
4.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,则抽得的第1张卡片上的数大于第2张卡片上的数的概率为( D )(A)(B)(C)(D)解析:如表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数.123451(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)(2,5)3(3,1)(3,2)(3,3)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,4)(4,5)5(5,1)(5,2)(5,3)(5,4)(5,5)总计有25种情况,满足条件的有10种,所以所求概率为=。
故选D.5.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为=0。
数学必修三考试题及答案

数学必修三考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = \sin(x) \)C. \( y = \cos(x) \)D. \( y = \frac{1}{x} \)答案:D2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:C3. 若\( a > 0 \)且\( b > 0 \),则下列不等式中正确的是:A. \( a + b > 0 \)B. \( ab > 0 \)C. \( \frac{a}{b} > 0 \)D. 以上都是答案:D4. 函数\( f(x) = x^3 - 3x \)的单调递增区间为:A. \( (-\infty, +\infty) \)B. \( (-\infty, -1) \cup (1, +\infty) \)C. \( (-1, 1) \)D. \( (-\infty, 1) \cup (1, +\infty) \)答案:B5. 已知\( \sin(\alpha) = \frac{1}{2} \),且\( \alpha \)为第一象限角,则\( \cos(\alpha) \)的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( -\frac{\sqrt{3}}{2} \)C. \( \frac{1}{2} \)D. \( -\frac{1}{2} \)答案:A6. 直线\( y = 2x + 1 \)与\( y = -x + 3 \)的交点坐标为:A. \( (1, 3) \)B. \( (-1, 1) \)C. \( (1, 1) \)D. \( (-1, 3) \)答案:A7. 已知等比数列\( \{a_n\} \)的首项为1,公比为2,其前n项和为:A. \( 2^n - 1 \)B. \( 2^n \)C. \( 2^{n+1} - 1 \)D. \( 2^{n+1} \)答案:C8. 函数\( f(x) = \ln(x) \)的定义域为:A. \( (-\infty, 0) \)B. \( (0, +\infty) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)答案:B9. 已知\( \tan(\theta) = 2 \),则\( \sin(\theta) \)的值为:A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{\sqrt{1+4}} \)D. \( \frac{1}{\sqrt{1+4}} \)答案:C10. 函数\( f(x) = x^2 - 4x + 4 \)的最小值为:A. 0B. 1C. 4D. -4答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 6x + 8 \)的顶点坐标为\( \boxed{(3, -1)} \)。
(人教版B版2017课标)高中数学必修第三册第八章综合测试02含答案解析

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第八章综合测试A 卷一、单项选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.22cos 75cos 15cos 75cos 15︒+︒+︒︒的值是( ) A .54B .62C .32D.213+2.已知锐角α满足3cos 65π=,则sin 3π=( ) A.1225B.1225±C.2425D.2425±3.已知OA =(2,8),OB =(7−,2),则13AB =( )A.(3,2)B.103C.32−−(,)D.544.已知平面向量a =(2,1−),b =(1,3),那么a b +等于( )A.5D.135.设向量a ,b 均为单位向量,且1a b +=,则a 与b 的夹角为( ) A.3πB.2π C.23π D.34π 6.若1a b ==,a b ⊥,且()()234a b ka b +⊥−,则k =( ) A.6−B.6C.3D.3−7.2sin cos sin y x x x =+可化为( )A.1242y x π⎡⎤=−+⎢⎥⎣⎦ B.1242y x π⎡⎤=+−⎢⎥⎣⎦C.1sin 242y x π⎡⎤=−+⎢⎥⎣⎦D.32sin 214y x π⎡⎤=++⎢⎥⎣⎦8.若平面向量()12a =−,与b 的夹角是180︒,且3b =,则b 的坐标为( ) A.(3,6−)B.(3−,6)C.(6,3−)D.(6−,3)9.若α为锐角,3sin tan ααβ=,则tan 2β等于( ) A.34B.43C.34−D.43−10.在ABC △中,若()2BC BA AC AC +⋅=,则ABC △的形状一定是( ) A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形二、多项选择题(本大题共2小题,每小题5分,共10分) 11.设向量a =(1,0),11,22b =⎛⎫⎪⎝⎭,则下列结论中正确的是( )A.a b >B.1·2a b =C.a b −与b 垂直D.a b ∥12.的是( ) A.2sin15cos15︒︒ B.22cos 15sin 15︒︒− C.212sin 15−︒D.22sin 15cos 15︒︒+三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.若向量a =(1,2),b =(1,1−),则2a b +与a b −的夹角等于________。
新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
(人教b版)数学必修三练习:第2章综合测试题(含答案)

第二章综合测试题时间120分钟,满分150分。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列哪种工作不能使用抽样方法进行( ) A .测定一批炮弹的射程B .测定海洋某一水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况 [答案] D[解析] 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A 、B 、C 都是从总体中抽取部分个体进行检验,选项D 是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法.故选D.2.高一·一班李明同学进行一项研究,他想得到全班同学的臂长数据,他应选择的最恰当的数据收集方法是( )A .做试验B .查阅资料C .设计调查问卷D .一一询问[答案] A[解析] 全班人数不是很多,所以做试验最恰当.3.设有一个回归方程为y ^=2-2.5x ,变量x 增加一个单位时,变量y ( ) A .平均增加1.5个单位 B .平均增加2个单位 C .平均减少2.5个单位 D .平均减少2个单位 [答案] C[解析] 因为随变量x 增大,y 减小,x 、y 是负相关的,且b ^=-2.5,故选C. 4.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .30B .25C .20D .15[答案] C[解析] 松树苗与树苗总数比为4 000=,要抽取容量为150的样本,设抽取松树苗的棵数为x ,则x=2,解得x =20.5.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,按下述三种方法抽取:①将160人从1至160编上号,然后用白纸做成1~160号的签160个放入箱内拌匀,然后从中抽取20个签,与签号相同的20个人被选出;②将160人从1至160编上号,按编号顺序分成20组,每组8人,即1~8号,9~16号,…,153~160号.先从第1组中用抽签方法抽出k 号(1≤k ≤8),其余组的(k +8n )号(n =1,2,…,19)亦被抽出,如此抽取20人;③按=的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用随机数表法从各类人员中抽取所需的人数,他们合在一起恰好抽到20人.上述三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序是( ) A .①、②、③ B .②、①、③ C .①、③、② D .③、①、②[答案] C[解析] ①是简单随机抽样;②是系统抽样;③是分层抽样,故选C.6.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A .65B .65C . 2D .2[答案] D[解析] ∵a +0+1+2+35=1,∴a =-1,故S 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.7.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92[答案] A[解析] 将这组数据从小到大排列,得87,89,90,91,92,93,94,96.故平均数x -=87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5,故选A.8.对变量x ,y 有观测数据理据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.由散点图可以判断变量x 与y 负相关,u 与v 正相关.9.已知样本容量为30,在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率和频数分别是( )A .0.4,12B .0.6,16C .0.4,16D .0.6,12[答案] A[解析] 因为各小长方形的高的比从左到右依次为,所以第2组的频率为0.4,频数为30×0.4=12.10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高y (单位:cm)对年龄x (单位:岁)的回归直线方程y =73.93+7.19x ,用此方程预测儿子10岁时的身高,有关叙述正确的是( )A .身高一定为145.83 cmB .身高大于145.83 cmC .身高小于145.83 cmD .身高在145.83 cm 左右[答案] D[解析] 用回归直线方程预测的不是准确值,而是估计值.当x =10时,y =145.83,只能说身高在145.83 cm 左右.11.设矩形的长为a ,宽为b ,其比满足b a =5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A .甲批次的总体平均数与标准值更接近B .乙批次的总体平均数与标准值更接近C .两个批次总体平均数与标准值接近程度相同D .两个批次总体平均数与标准值接近程度不能确定 [答案] A[解析] 本小题主要考查学生的知识迁移能力和统计的有关知识. x -甲=0.598+0.625+0.628+0.595+0.6395=0.617,x -乙=0.618+0.613+0.592+0.622+0.6205=0.613,故选A.12.某示范农场的鱼塘放养鱼苗8万条,根所这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,试估计鱼塘中鱼的总质量约为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg[答案] A[解析] 平均每条鱼的质量为x -=40×2.5+25×2.2+35×2.840+25+35=2.53(kg),所以估计这时鱼塘中鱼的总质量约为80000×95%×2.53=192 280(kg).二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.) 13.一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.[答案] 12[解析] ∵2898=27,即每7人抽取2人,又知女运动员人数为98-56=42,∴应抽取女运动员人数为42×27=12(人).分层抽样中抓住“抽样比”是解决问题的关键.14.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为________和________.[答案] 24 23[解析] x -甲=110(10×2+20×5+30×3+17+6+7)=24,x -乙=110(10×3+20×4+30×3+17+11+2)=23.15.如图所示,在某路段检测点,对180辆汽车的车速进行检测,检测结果表示为如下频率分布直方图,则车速不小于90km/h 的汽车约有________辆.[答案] 54[解析] 频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=180×0.3=54.16.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:[答案] 25[解析] x 甲=6+7+7+8+75=7,x 乙=6+7+6+7+95=7.∴s 2甲=(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)25=25,s 2乙=(7-6)2+(7-7)2+(7-6)2+(7-7)2+(7-9)25=65,则两组数据的方差中较小的一个为s 2甲=25.三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)下面的抽样方法是简单随机抽样吗?为什么? (1)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回,再拿一件,连续玩了5件;(3)从200个灯泡中逐个抽取20个进行质量检查. [解析] (1)不是简单随机抽样,因为这不是等可能抽样. (2)不是简单随机抽样,因为它是有放回的抽样.(3)是简单随机抽样,因为它满足简单随机抽样的几个特点.18.(本题满分12分)已知某班4个小组的人数分别为10,10,x,8,这组数据的中位数与平均数相等,求这组数据的中位数.[解析] 该组数据的平均数为14(28+x ),中位数一定是其中两个数的平均数,因为x 不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序为x,8,10,10,其中位数为12(10+8)=9.若14(x +28)=9,则x =8,此时中位数为9.(2)当8<x ≤10时,原数据按从小到大顺序排列为8,x,10,10,其中位数为12(x +10),若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内,∴舍去.(3)当x >10时,原数据为8,10,10,x ,其中位数为12(10+10)=10.若14(x +28)=10,则x =12,∴此时中位数为10. 综上所述,这组数据的中位数为9或10.19.(本题满分12分)一箱方便面共有50包,从中用随机抽样方法抽取了10包称量其重量(单位:g)结果为:60.5 61 60 60 61.5 59.5 59.5 58 60 60(1)指出总体、个体、样本、样本容量; (2)指出样本数据的众数、中位数、平均数; (3)求样本数据的方差.[解析] (1)总体是这50包方便面所有的包重,个体是这一箱方便面中每一包的包重,样本是抽取的10包的包重,样本容量为10.(2)这组样本数据的众数是60,中位数为60,样本平均数x -=110×(60.5+61+60+60+61.5+59.5+59.5+58+60+60)=60.(3)样本数据的方差为 s 2=110[(60.5-60)2+(61-60)2+(60-60)2+(60-60)2+(61.5-60)2+(59.5-60)2+(59.5-60)2+(58-60)2+(60-60)2+(60-60)2]=0.8.20.(本题满分12分)对划艇动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度(m/s)的数据如下:甲:27,38,30,37,35,31; 乙:33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀.[解析] x -甲=16(27+38+30+37+35+31)=1986=33,s 2甲=16[(27-33)2+(38-33)2+…+(31-33)2] =16×94≈15.7; x -乙=16(33+29+38+34+28+36)=1986=33,s 2乙=16[(33-33)2+(29-33)2+…+(36-33)2] =16×76≈12.7. ∴x -甲=x -乙,s 2甲>s 2乙.说明甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.21.(本题满分12分)有一容量为50的样本,数据的分组以及各组的频数如下: [12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4.(1)列出样本的频率分布表; (2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[15.5,24.5)内的可能性约是多少? [解析] (1)频率分布表为:(2)(3)数据落在[15.5,24.5)内的可能性为:8+9+1150=0.56.22.(本题满分14分)某个体服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系如表所示:已知:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487.(1)求x -、y -; (2)画出散点图;(3)求纯利y 与每天销售件数x 之间的回归直线方程; (4)若该周内某天销售服装20件,估计可获纯利多少元.[解析] (1)x -=3+4+5+6+7+8+97=6,y -=66+69+73+81+89+90+917≈79.86.(2)散点图如图所示(3)由散点图知,y 与x 有线性相关关系,设回归直线方程为y ^=b ^x +a ^.∵∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487,x -=6,y -=5597,∴b ^=3487-7×6×5597280-7×36=13328=4.75,a ^=5597-6×4.75≈51.36,∴回归直线方程为y ^=4.75x +51.36.(4)当x =20时,y ^=4.75×20+51.36≈146.因此本周内某天的销售为20件时,估计这天的纯收入大约为146元.。
高中数学人教A版必修3综合测试题及答案 9

必修3综合模块测试(人教A 版必修3)卷 Ⅰ(选择题,共60分)一、选择题:本大题共12小题,在下列每小题给出的四个结论中有且只有一个是正确的,请把正确的结论填涂在答题卡上.每小题5分,共60分 1.下列给出的赋值语句中正确的是:( )A.x+3=y-2B.d=d+2C.0=xD.x-y=5 2.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构 3. 将389化成四进位制数的末位是 A 、0 B 、1 C 、2 D 、34. 当3a =时,右边的程序段输出的结果是 A 、9 B 、3 C 、10 D 、65.下面程序框图的基本结构中,当型循环结构指的是A B C D6.右面框图表示计算1×3×5×7×…×99的算法 在空白框中应填入A .2i i =+B .21i i =-C .21i i =+D .1i i =+7. 一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为 ( )A. 3B. 4C. 5D. 68.一个容量为20的样本数据,分组后组距为10,区间与频数分布如下:(]10,20,2; (]20,30,3; (]30,40,4; (]40,50,5;(]50,60,4; (]60,70,2. 则样本在(],50-∞上的频率为 ( )A.120 B. 14 C.12 D.7109.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( ) A. 对立事件B. 互斥但不对立事件C. 不可能事件D. 以上都不对10. 从区间()0,1内任取两个数,则这两个数的和小于56的概率是A 、35B 、45C 、1625D 、257211.如图,在正方形中撒一粒豆子,则豆子落在正方形内切圆内部的概率为A .4πB .44π-C .41π-D .4π12.同时上抛三枚硬币,落地后,三枚硬币图案两正一反的概率是A .34 B .14 C .38 D .12二、填空题(每小题4分,共16分)13. 某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做 牙齿健康检查。
(完整版)数学必修三综合测试题[含答案解析],推荐文档
![(完整版)数学必修三综合测试题[含答案解析],推荐文档](https://img.taocdn.com/s3/m/7be48c3df8c75fbfc67db2c9.png)
求每班学号为 14 的同学留下进行交流,这里运用的是( )
A. 分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样
3.某单位有职工 160 人,其中业务员有 104 人,管理人员 32 人,后勤服务人员 24 人,现
用分层抽样法从中抽取一容量为 20 的样本,则抽取管理人员( )
A.3 人
B.4 人
C.7 人
A. 1
B. 1
C. 1
1
D.
104
103
102
10
10. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为 3.2,全年比
赛进球个数的标准差为 3;乙队平均每场进球数为 1.8,全年比赛进球个数的标准差为
0.3.下列说法正确的个数为( )
①甲队的技术比乙队好 ②乙队发挥比甲队稳定
③乙队几乎每场都进球 ④甲队的表现时好时坏
)
A、2
B、4
C、7
D、8
6. 抽查 10 件产品,设事件 A:至少有两件次品,则 A 的对立事件为 ( )
A.至多两件次品
B.至多一件次品
C.至多两件正品
D.至少两件正品
7. 取一根长度为 3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 1 m 的
概率是.( )
A. 1
B. 1
C. 1
⑵投中小圆与中圆形成的圆环的概率是多少? ⑶投中大圆之外的概率又是多少?
学习指导参考资料
完美 WORD 格式编辑 学习指导参考资料
完美 WORD 格式编辑
数学必修三模块测试 A
一、选择题:
1—5 BDBDC
二、填空题: 17 、 24
6—10 BBBBD 11—16 DABBBA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修三综合测试题
一、选择题
1.算法的三种基本结构是( )
A .顺序结构、模块结构、条件分支结构
B .顺序结构、条件结构、循环结构
C .模块结构、条件分支结构、循环结构
D .顺序结构、模块结构、循环结构
2. 一个年级有12个班,每个班有学生50名,并从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是( )
A.分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样
3. 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( )
A.3人
B.4人
C.7人
D.12人
4.一个容量为20的样本数据,分组后组距与频数如下表.
则样本在区间(-∞,50)上的频率为( )
A.0.5
B.0.25
C.0.6
D.0.7
5、把二进制数)2(111化为十进制数为 ( )
A 、2
B 、4
C 、7
D 、8 6. 抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 ( )
A.至多两件次品
B.至多一件次品
C.至多两件正品
D.至少两件正品
7. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率是.( )
A.21
B.31
C.4
1 D.不确定 8.甲、乙2人下棋,下成和棋的概率是21,乙获胜的概率是3
1,则甲不胜的概率是( ) A. 21 B.65 C.61 D.3
2 9.某银行储蓄卡上的密码是一种4位数号码,每位上的数字可在0到9中选取,某人只记得密码的首位数字,如果随意按下一个密码,正好按对密码的概率为( )
A . 4101 B. 3101 C.2
101 D.101 10. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.下列说法正确的个数为( )
①甲队的技术比乙队好 ②乙队发挥比甲队稳定
③乙队几乎每场都进球 ④甲队的表现时好时坏
A.1
B.2
C.3
D.4
11.已知变量a ,b 已被赋值,要交换a, b 的值,应采用下面( )的算法。
A. a=b, b=a B a=c, b=a, c=b C a=c, b=a, c=a D c=a, a=b, b=c
12.从10个篮球中任取一个,检验其质量,则应采用的抽样方法为( )
A 简单随机抽样
B 系统抽样
C 分层抽样
D 放回抽样
13.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,
现抽取30人进行分层抽样,则各职称人数分别为( )
A 5,10,15
B 3,9,18
C 3,10,17
D 5, 9, 16
14.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,
C=“三件产品不全是次品”,则下列结论哪个是正确的( )
A A,C 互斥
B B,
C 互斥 C 任何两个都互斥
D 任何两个都不
15.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过三次而接通电话
的概率为( )
A 9/10
B 3/10
C 1/8
D 1/10
16. 回归方程y
ˆ=1.5x -15,则 A.y =1.5x -15 B.15是回归系数a
C.1.5是回归系数a
D.x =10时,y =0
二、填空题
17.两个数168,120的最大公约数是__________。
18.阅读右面的流程图,输出max 的含义____________。
19.已知},......,,{321n x x x x 的平均数为a ,标准差是b,则23 ..., ,23 ,2321+++n x x x 的平均数是_____。
标准差是________.
20.对一批学生的抽样成绩的茎叶图如下:
则
表示的原始数据为 .
21.在边长为25cm 的正方形中挖去腰长为23cm 的两个等腰直角三角形(如图),现有均匀
的粒子散落在正方形中,问粒子落在中间带形区域的概率是 .
22.下列是容量为100的样本的频率分布直方图,试根据图形中的数据填空。
(1)样本数据落在范围〔6,10〕内的频率为 ;
14〕内的频率为 ;
〕内的概率为 。
8 9 2
1 5 3
3 9 8
4 1 6
5 5 4 3 2 0.090.080.03
23.由经验得知,新亚购物广场付款处排队等候付款的人数及其概率如下:
求:(1)至多2人排队的概率;
(2)至少2人排队的概率。
+++++的程序框图,写出对应的程序。
24.画出1234 (100)
25. 抛掷两颗骰子,求:(1)点数之和出现7点的概率;
(2)出现两个4点的概率.
26.如图在墙上挂着一块边长为16cm的正方形木板,上面画了大、中、小三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m处向此木板投镖,设击中线上或没有投中木
板时都不算,可重新投一次.
问:⑴投中大圆内的概率是多少?
⑵投中小圆与中圆形成的圆环的概率是多少?
⑶投中大圆之外的概率又是多少?
数学必修三模块测试A
一、选择题:
1—5 BDBDC 6—10 BBBBD 11—16 DABBBA
二、填空题:
17、 24 18、 a.b.c 中的最大者 19、a+2 、 b
20、 35 21、96
625 22、0.32 0.40 0.12
三、解答题:
23. 解:记“付款处排队等候付款的人数为0、1、2、3、4、5人以上”的事件分别为A 、B 、
C 、
D 、
E 、
F ,则由题设得P (A )=0.1,P (B )=0.16, P (C )=0.30, P (D )=0.3 0, P (E )=0.1, P (F )=0.04.
(1)事件“至多2人排队”是互斥事件A 、B 、C 的和A+B+C ,其概率为
P (A+B+C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56,至多2人排队的概率为0.46。
(2)“至少2人排队”的对立事件是“至多1人排队”。
而“至多1人排队”为互斥事件A 、B 的和A+B ,其概率为P (A+B )=P (A )+P (B )=0.1+0.16=0.26,因此“至少2人排队”的概率为1-P (A+B )=1-0.26=0.74.
24.框图:略 程序:
25.解:作图,从下图中容易看出基本事件空间与点集S={(x ,y )|x ∈N ,y ∈N ,1≤x ≤6,1≤y ≤6}中的元素一一对应.因为S 中点的总数是6×6=36(个),所以基本事件总数
n=36.
(1)记“点数之和出现7点”的事件为A ,从图中可看到事件A 包含的基本事件数共6个:
(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P (A )=6
1366=. (8分)
(2)记“出现两个4点”的事件为B ,则从图中可看到事件B 包含的基本事件数只有1个:
(4,4).所以P (B )=36
1. 26. 解:镖投在板上任何位置的可能性相等,故概率与面积应成正比,设所求概率分
1p ,2p , 3p 于是有:
64
9256361ππ===正方形大圆
s s p 64
52562025616362ππππ==-=-=正方形中园大圆s s s p 161256162563ππ-=-=
-=正方形中园
正方形s s s p。