北师版小学五年级同步奥数
北师大版最新小学五年级数学奥数竞赛试卷及答案

北师大版最新小学五年级数学奥数竞赛试卷及答案一、拓展提优试题1.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.2.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.3.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.4.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.5.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.6.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.7.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.8.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.9.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.10.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.11.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.12.观察下表中的数的规律,可知第8行中,从左向右第5个数是.13.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.14.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.15.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.16.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的 倍.17.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了 千克面粉.18.观察下面数表中的规律,可知x = .19.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a ﹣b ×c 的值是 .20.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有 种.21.数一数,图中有多少个正方形?22.(15分)如图,正六边形ABCDEF 的面积为1222,K 、M 、N 分别AB ,CD ,EF 的中点,那么三角形PQR 的边长是 .23.已知13411a b -=,那么()20132065b a --=______。
北师大版最新小学五年级奥数知识点

北师大版最新小学五年级奥数知识点一、拓展提优试题1.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.4.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.5.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.6.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.7.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.8.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.11.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.12.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).13.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.14.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.15.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.16.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.17.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是.18.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC19.(7分)如图,按此规律,图4中的小方块应为个.20.用1、2、3、5、6、7、8、9这8个数字最多可以组成个质数(每个数字只能使用一次,且必须使用).21.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)22.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.23.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.24.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相距米25.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.26.有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.27.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.28.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.29.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.30.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个元,笔每支元.31.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.32.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.33.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.34.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;35.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.36.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.37.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.38.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.39.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.40.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.【参考答案】一、拓展提优试题1.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.2.解:220﹣83×2=220﹣166=54(元)54÷(2+7)=54÷9=6(元)答:网球每个6元.3.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.4.解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.5.解:△ABC的周长是16厘米,可得△AEF的周长为:16÷2=8 (厘米),△AEF和四边形BCEF周长和为:8+10=18(厘米),所以BC=18﹣16=2(厘米),答:BC=2厘米.故答案为:2.6.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.7.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:20168.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.9.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.10.解:(84×10﹣93)÷(10﹣1)=747÷9=83(分)答:其他9个人的平均分是83分.故答案为:83.11.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.12.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.13.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12014.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11815.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.16.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.17.解:依题意可知:3a+2与17是对立面,3a+2=17,所以a=5;7b﹣4与10是对立面,7b﹣4=10,所以b=2;a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;所以a﹣b×c=5故答案为:518.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.1619.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.20.解:可以组成下列质数:2、3、5、7、61、89,一共有6个.答:用1、2、3、5、6、7、8、9这8个数字最多可以组成 6个质数.故答案为:6.21.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.根据这两个范围可知可能是18、19、20、21的一个数.又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.只剩下18、19这两个数了.一个一个试,18×18×18=5832,18×18×18×18=104976;19×19×19=6859,19×19×19×19=130321;符合要求是18.故答案为:18.22.解:如图延长BA和EF交于点O,并连接AE,由正六边形的性质,我们可知S ABCM=S CDEN=S EF AK=六边形面积,根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,△AKP,△CMQ,△ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ,=,则=,=,由鸟头定理可知道3×KP×AP=RP×PQ,综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且S△APK ,=S△AKES△APK=S ABCDEF=47,所以阴影面积为47×3=141故答案为141.23.解:一个自然数N 恰有9个互不相同的约数,则可得N =x 2y 2,或者N =x 8,(1)当N =x 8,则九个约数分别是:1,x ,x 2,x 3,x 4,x 5,x 6,x 7,x 8,其中有3个约数A 、B 、C 且满足A ×A =B ×C ,不可能.(2)当N =x 2y 2,则九个约数分别是:1,x ,y ,x 2,xy ,y 2,x 2y ,xy 2,x 2y 2,其中有3个约数A 、B 、C 且满足A ×A =B ×C , ①A =x ,B =1,C =x 2,则x +1+x 2=79,无解. ②A =xy ,B =1,C =x 2y 2,则xy +1+x 2y 2=79,无解. ③A =xy ,B =x ,C =xy 2,则xy +x +xy 2=79,无解. ④A =xy ,B =x 2,C =y 2,则xy +x 2+y 2=79,解得:,则N =32×72=441.⑤A =x 2y ,B =x 2y 2,C =x 2,则x 2y +x 2y 2+x 2=79,无解. 故答案为441. 24.2800[解答] 设两地之间距离为S 。
(完整版)五年级下册同步奥数培优北师大版

目录第一讲分数乘法(乘法中的简算) (2)练习卷 (5)第二讲长方体和正方体(巧算表面积) (6)练习卷 (10)第三讲分数除法应用题……………………………………………11练习卷 (15)第四讲长方体和正方体(巧算体积) (16)练习卷 (20)第五讲较复杂的分数应用题(寻找不变量) (21)练习卷 (24)第六讲百分数(浓度问题) (25)练习卷 (28)综合演习(1).................................................................. 29 综合演习(2) (31)第一讲 分数乘法例题讲学例1 (1)1514×19 (2) 27×2611【思路点拨】 观察这两道题中数的特点,第(1)题中的1514比1少151,可以把1514看作1-151,然后和19相乘,利用乘法分配律使计算简便;同样,第(2)题中27与2611中的分母26相差1,可以把27看作(26+1),然后和2611相乘,再运用乘法分配律使计算简便。
1有关的两数之差或和;或者把一个数拆分成与分数分母相关的和或差,最后用乘法分配律使计算简便。
同步精练1. 3613×35 2. 2322×103. 8×15144. 253×1265. 17×12116. 262524⨯例2 120001999199820001999-⨯⨯+【思路点拨】 仔细观察分子、分母中各数的特点,我们就会发现,分子1999+2000×1998=1999+2000×(1999-1)=1999+2000×1999-2000=2000×1999-1,这样就把分子转化成与分母完全相同的式子,结果自然就好计算了,试试吧!特点一般都能化成分子、分母能约分的情况,然后使计算简便。
同步精练1. 186548362361548362-⨯⨯+2. 120112010200920112010-⨯⨯+例3651541431321211⨯+⨯+⨯+⨯+⨯ 【思路点拨】 在这道题中,每个分数的分子都是1,分母是两个连续的自然数的乘积。
北师大五年级奥数专题一:找规律

书之屋教育
找规律填数
图形规律周期规律数字规律培养学生通过观察、实验、猜测、推理等活动发现图形和数字简单的排列规律,加强对于一般性的数列规律的熟悉,虽然它有很多解,但主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归纳法的能力),为以后学好数列打下基础。
找规律的类型简直数不清。
有的是所给数字间有规律,有的是隔一个数字间有规律;还有的是相邻两个数字之间的差呈某种规律;规律可能有同加同减同乘一个数或一个数列,或者平方。
找规律题型介绍:
数列规律
对于数列中的规律,我们一般情况下观察前后两个数的变化情况,也可以联系第几个数的“几”去观察规律。
数组规律
对于数组中的规律,我们往往是寻找这一组中几个数之间的变化规律。
图形变化规律
图形的变化规律往往比较复杂,同学们要从大小、方向、位置等几个方面去观察图形计算规律
结合等差数列和基础的组合排列概念。
例题全解
例1 找出下面数列的规律,并根据规律在括号里填上合适的数。
(1)1,5,9,13,17,(),(), ??
(2)18,19,21,24,28,(),??
解:(1)先计算相邻的两个数的差,5-1=4,9-5=4,13-9=4,17-13=4。
由此可得相邻的两个数后一个都比前一个大4。
类型总结:等差数列型
(2)在这一组数列中每相邻两个数的差依次是1,2,3,4??,由此可以推算出28和括号里的数相差5。
类型总结:差为等差数列型
例2 先找出下面数列中的规律,并根据规律在括号内填上合适的数。
1。
北师大版最新小学奥数五年级巧算图文百度文库

北师大版最新小学奥数五年级巧算图文百度文库一、拓展提优试题1.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.2.如图,从A到B,有条不同的路线.(不能重复经过同一个点)3.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.4.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.5.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.8.用0、1、2、3、4这五个数字可以组成个不同的三位数.9.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.10.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.11.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.12.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.13.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.14.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).15.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC【参考答案】一、拓展提优试题1.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间甲(米)乙(米)时间甲(米)乙(米)0小时043小时7.5100.5小时 2.55 3.5小时10111小时 2.564小时10121.5小时57 4.5小时12.5132小时585小时12.5142.5小时7.59 5.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a(甲要休息,实际每小时走5a),乙的速度为每小时4a,因此要追8a.半小时内最多追3a,可以先从要追的8a中扣除3a,因为在此之前不可能追上(之前的距离差不止3a).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a,相当于每小时追a,可以用5a÷(5a﹣4a)=5(小时)计算.之后,甲半小时再走2a,乙再走5a,加上还差的3a,正好追上.因此,要追5.5小时,即330分钟.故答案为:330.2.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.3.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,所以两人在E点相遇时,甲行了:(100×4)×=240(米);乙行了:400﹣240=160(米);则EC=240﹣100×2=40(米),DE=160﹣100=60(米);三角形ADE的面积比三角形BCE的面积大:60×100÷2﹣40×100÷2=3000﹣2000,=1000(平方米).故答案为:1000.4.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.5.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.8.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.9.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.10.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.11.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.12.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a×b2×c6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.13.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12014.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.15.解:根据分析,S△BDC=S△EBC⇒S△DOB=S△EOC,∴S甲﹣S乙=(S甲+S△DOB)﹣(S乙+S△EOC)=5.04,又∵S△BDC :S△DEC=BC:DE=2:1即:S△BDC=2S△DEC∴S四边形DECB =3S△DEC;S△ADE=S△DEC∴S△ABC =S四边形DECB+S△ADE=4S△DEC,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.16。
北师大版五年级上册同步奥数专题集

北师大版五年级上册同步奥数专题集本内容适合六年级学生培优拔尖使用。
要求在掌握基础知识、训练基本技能、领悟基本思想、积累基本活动经验的同时,培养发现问题的能力、提出问题的能力、分析问题的能力、解决问题的能力。
同时,要求同学们具有数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析等素养。
教学内容难度适中,讲练结合,由浅入深,是学生提高数学水平的好资料。
在本次培训中,我们将紧扣教材,同时也做了适当的拓展延伸,将有效提高学生的研究兴趣、拓展知识面、提升研究能力。
一、小数除法第一讲:数字谜解决数字谜问题最重要的是找到突破口,需要一定的技巧。
一般来说,观察题目中给出的数字的位置,找出所有涉及这些已知数字的相关计算,根据运算法则、数的性质进行正确的推理和判断。
可从某个数的首位或末尾数字上寻找突破口。
王牌例题:例1】在方框中填上合适的数,使竖式成立。
试一试】如果把例题中的数字“8”改为4,你还能解答出本题吗?举一反三精练】在方框中填上合适的数,使等式成立。
二、二轴对称和平移第一讲:轴对称第二讲:平移三、三倍数与因数第一讲:找因数和倍数的方法第二讲:2、5、3的倍数特征第三讲:用分解法求非特征数的倍数第四讲:奇数与偶数第五讲:质数与合数四、多边形的面积第一讲:画一画第二讲:分一分第三讲:多边形面积计算的万能公式五、分数的意义第一讲:寻找单位“1”第二讲:最大公因数问题第三讲:最小公倍数问题第四讲:比较分数的大小六、组合图形的面积第一讲:组合图形的面积(一)第二讲:组合图形的面积(二)七、数学好玩第一讲:图形中的规律第二讲:尝试与猜测(一)第三讲:尝试与猜测(二)说明:老师在教学的过程中,根据学生的具体情况和教学进度灵活处理资料,要求讲清讲透,不能盲目地赶资料的进度。
为了丰富内容,绝大部分资料按120分钟/次编排,老师可以根据学生实际选取80分钟内容讲授,余下的部分作为同学们自由练用。
例2】补充竖式并求商被除数:0.72 除数:0.6商:1.2举一反三精练】1、已知被除数为630,商为21,求除数。
北师大版最新小学五年级数学奥数竞赛试卷及答案图文百度文库

北师大版最新小学五年级数学奥数竞赛试卷及答案图文百度文库一、拓展提优试题1.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.12533421542.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.3.甲乙两人分别从AB两地同时出发相向而行,当甲走到一半时,乙将速度提高一倍,结果两人在距离B地1200米处相遇,并且最后同时到达,那么两地相4.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.5.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.6.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.7.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.8.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.9.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.10.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.11.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.12.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.13.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.14.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.15.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.【参考答案】一、拓展提优试题1.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.故答案为150.2.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,①A=x,B=1,C=x2,则x+1+x2=79,无解.②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.故答案为441.3.2800[解答] 设两地之间距离为S。
【教材同步】春季学期五年级奥数教程下册【讲义】

春季学期北师大版数学五年级奥数讲义2020年3月制目录第一讲多边形的面积1.1面积计算1.2等积变形1.3列方程求面积第二讲二元一次方程组第三讲牛吃草问题第四讲分数的简算(加减法)第五讲分数的简算(乘法)第六讲分数除法应用题第七讲较复杂分数应用题第八讲浓度问题(百分数)第九讲长方体和正方体的表面积第十讲长方体和正方体的体积第十一讲应用题综合练习(一)第十二讲应用题综合练习(二)第一讲多边形的面积面积的计算[同步巩固演练]1、求下图中每个小图形的阴影部分的面积(单位:厘米)[能力拓展平台]1、已知三角形ABC的周长是20厘米,三角形内一点到三角形三条边的距离都是3厘米,求三角形的面积。
第1题2、如图,ABCG是4×7的长方形,DEFG是2×10的长方形,那么三角形BCM的面积与三角形DEM的面积之差是多少?(单位:厘米)第2题3、求阴影部分的面积(单位:厘米)4、长方形ABCD 的边上有二点E 、F 、AF 、BE 、BE 把长方形分成若干块,其中三个小块的面积标注在图上,求阴影部分面积。
第4题5、(第五届华杯赛试题)涂阴影部分的小正六角星形面积是16平方厘米,问大正六角星的面积是多少平方厘米第5题等积变形[同步巩固演练]1、如图所示,已知矩形ABCD 中,BE=21EC ,则△ABE 和△ABC 的面积之比是多少?第1题2、如图所示,梯形ABCD 中共有8个三角形,其中,面积相等的三角形有多少对?第2题3、如图,三角形ABC 的面积是18平方厘米,BD=2DC ,AE=EC ,则三角形BDE 的面积是多少平方厘米?第3题4、如图已知BC=6BD ,AB=5BE ,三角形BDE 的面积是1,则三角形ABC 的面积是多少?第4题5、如图ABCD 是平行四边形,AE=32AB ,则梯形EBCD 的面积是三角形AED 的面积是多少倍?6、如图所示,三角形ABC 中,BD=DC ,ED=2AE ,BF=FD ,三角形ABC 的面积是1,三角形DFE 的面积是多少?第6题[能力拓展平台]1、如图E 、F 分别为平行四边形ABCD 两条邻边的中点,若平行四边行的面积是1,则图中面积为41的三角形有多少个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言在琳琅满目的教辅类图书前——孩子的心声:奥数真难,大人们为什么总要我们学习奥数呢?家长的心声:太难的奥数,让孩子越来越没自信学习数学了。
教师的心声:现行的奥数比课本难多了,若有一套配合课本进度,并能提高学生抽象思维能力的奥数书,将能真正作为的延伸。
针对以上种种心声,将此作为课题来研究,在多所名校和社会信誉度较高的办学单位试行的基础生,推出了这套《同步奥数培优》,内容力求体现:配套现行教材以北师大版内容为知识体系,做到在已有知识基础上的拓展,重视知识的螺旋上升,在和教材同步的同时,培养学生的抽象思维能力。
【适当加入一些同学们感兴趣的内容】。
注重素质提高学好数学的前提是要有兴趣,这是编写此套丛书的出发点。
为了更全面综合地提高学生的数学素质,此书适合大多数学生的学习与使用。
强化数学的学习是思维的学习。
此套丛书在章节安排上,重视对学生系统思维的训练,能结合学生学习的特点,相对形成知识编排上的系统性。
即能以知识为章,以知识点为节,由浅入深,层层深入,使学生的认知相对完整。
本书将本着自学能会,教师能辅导、家长能参考的宗旨,全心全意为莘莘学子、为酷爱奥数的同学们而编,望你们用心学习,对以后的学习有所帮助,由于编写时间仓促,书中难免有些不妥之处,敬请广大同学们在使用过程中批评指正,以使本书更加完善。
《五年级奥数》编写组目录第一讲数的世界 (3)练习卷 (7)第二讲图形的面积(一) (8)练习卷 (14)第三讲认识分数 (18)练习卷 (22)第四讲分数加减法 (25)练习卷 (28)第五讲行程中的相遇(相遇问题) (30)练习卷 (34)第六讲公因数与公倍数 (35)祝您成功祝您成功第一讲数的世界(第一课时)【知识概述】在数的世界中,我们在自然数(零除外)的范围内研究倍数和因数,为此,0既不是偶数也不是奇数,也不是质数,也不是合数。
本单元有关性质和概念为:①个位上是0、2、4、6、8的数,且各个数位上的数字之和是3的倍数,这个数同时是2和3的倍数。
②个位上是0或5,且各个数位上的数字之和是3的倍数,这个数同时是3和5的倍数。
③个位上是0,且各个数位上的数字之和是3的倍数,这个数同时是2、3和5的倍数。
例题讲学例1从0、4、6、5四张卡片中,抽出3张卡片,使其同时满足下列所有条件。
1、是2的倍数2、是5的倍数3、是3的倍数4、最大的三位数这个数应是_________。
【思路分析】条件1、2、3其实就是满足2、5、3的倍数特征,第四个条件其实就是在符合的数中选择一个最大的数,这样其实就不太难了。
挑出的卡片首先必须有为0(满足2和5的倍数)放在各位上,然后再挑出卡片4和卡片5,使其数位上数字之和为3的倍数,然后再选出最大的一个,这个数是540。
同步精练1、有因数2、3、5的最小两位数是(),最小三位数是()。
最大三位数是()。
最小三位数是()。
2、在3□2□的□里填入合适的数字,使组成的四位数既是3的倍数又是5的倍数,这个数最大是()3、32□□0是有两个数字相同的五位数,它同时是2、3和5的倍数,这个五位数最小是()。
4、在222……2□中最小填(),就能使这个数是3的倍数。
2009个25、同时是2,3,5和9的倍数的最大两位数是(),最小的三位数是()。
数的世界(第二课时)知识概述:同学们都喜欢玩猜字游戏吧,今天我们一起来学习猜数字的游戏,游戏中其实就是让我们把各个概念综合运用,融会贯通,并加以分析,相信你在这一讲能成为猜字“天才”。
例题丽丽家的电话号码是abcdefgh八位数,其中a是最小的质数,b是10以内最大的合数,c是最小的奇数,d是3的最小倍数,e是一位数中的5的倍数,f和h都是10以内最大的质数,g是10以内的数,它既是2的倍数,又是3的倍数。
丽丽家的电话号码是多少?【思路点拨】解答这样的题目,首先要弄清合数与质数的概念,及最小的质数、最小的合数是几,并且要弄清在每一个数位上的数字只能是一位数,然后把每一位上的数字组合一起就找到了这个八位数。
__ __ __ __ __ __ __ __同步精练1、一个四位数,个位上的数既不是质数也不是合数并且不是0,十位上的数既是质数又是偶数,百位上的数是最小的合数,千位上的数既是奇数又是合数,这个四位数是多少?2、一个五位数,数的最高位是一位数中的最大的偶数,百位上的数字既是奇数又是合数,个位上的数字是最小的自然数,十位上的数字与千位上的数字都是质数,且积是10,这个五位数最大是多少?3、李小鹏是一个小学五年级的学生,他参加商丘市举行的奥数竞赛,同学问他比赛的成绩时,他说:“我这次的分数和名次、年龄都是质数,它们的乘积是2134.”你知道他的成绩和名次各是多少吗?数的世界(第三课时)【知识点与基本方法】数字的分类:我们把学过的整数按小到大的顺序写出来,可写成:0,1,2,3,4,5,6,...... 在学习中,我们经常把上述这些数按照是否是2的倍数来分成两大类,其中一类就是偶数,它们就是:2,4,6,......,另一类就是奇数,它们是:1,3,5,7,...如果一个非零自然数是2的倍数,那么我们说这个数是偶数,如果一个非零自然数不是2的倍数,那么它一定是奇数。
一个非零自然数是偶数还是奇数,是这个非零自然数自身的一种性质,这种性质叫做奇偶性。
我们来介绍一下奇数和偶数的四个最常见的性质:性质1:任何一个奇数不等于任何一个偶数,相邻的两个自然数相差1。
性质2:相邻的两个自然数总是一奇一偶性质3:相邻的两个偶数相差2,相邻的两个奇数相差2。
性质4:(1)偶数+偶数=偶数;例如:4+8=12 (2)奇数+奇数=偶数;例如:17+15=32 (3)偶数-偶数=偶数;例如:18-10=8 (4)奇数-奇数=偶数;例如:15-7=8(5)奇数+偶数=奇数;例如:21+6=27 (6)奇数-偶数=奇数;例如:27-10=17(7)偶数-奇数=奇数;例如:28-5=23 根据这性质,我们可以解决很多有趣的问题。
【例题精选】例1.1+2+3+4+....+100+101是奇数还是偶数?【思路点拨】这是一些连续自然数连加的形式,想:题目中共有50个偶数,51个奇数,可以先算出所有的偶数的和,因为不论多少个偶数相加,和总是偶数,然后再看剩下的还有多少个奇数?任意两个奇数相加的和是偶数,这51个奇数先连加50个,和一定是偶数,因为偶数个奇数相加的和是偶数,最后剩下一个奇数,这样就变成了“偶数+偶数+奇数”,再简化之就是“偶数+奇数=奇数”,所以最后的和是奇数。
同步精练:1、1+2+3+4+5+6+...+49+50的得数是奇数还是偶数?2、算式1×2+3×4+5×6+...+99×100的结果是奇数还是偶数?3、(500+501+502+...+597)-(251+252+...291)的结果是奇数还是偶数?数的世界(第四课时)例2 某学校一年级一班共有25名同学,教室座位恰好排成5行,每行5个座位.把每一个座位的前、后、左、右的座位叫做原座位的邻位.问:让这25个学生都离开原座位坐到原座位的邻位,是否可行?【思路分析】为了便于分析,我们可借助于下图,且用黑白染色帮助分析.我们把每一个黑、白格看作是一个座位.从图中可知,已在黑格“座位”上的同学要换到邻座,必须坐到白格上;已在白格“座位”上的同学要换到邻座,又必须全坐到黑格“座位”上.因此,要使每人换为邻座位,必须黑、白格数相等。
解:从上图可知:黑色座位有13个,白色座位有12个,13≠12,因此,不可能使每个座位的人换为邻座位。
例2的解法,采用了黑白两色间隔染(着)色的办法.因为整数按奇偶分类只有两类,所以将这类问题转变为黑白两色间隔着色,可以帮助我们较直观地理解和处理问题.让我们再看一道例题,再体会一下奇偶性与染色的关系。
例3在中国象棋盘任意取定的一个位置上放置着一颗棋子“马”,按中国象棋的走法,当棋盘上没有其他棋子时,这只“马”跳了若干步后回到原处,问:“马”所跳的步数是奇数还是偶数?解:在中国象棋中,“马”走“日”字,如果将棋盘上的各点按黑白二色间隔着色(如图),可以看出,“马”走任何一步都是从黑色点走到白色点,或从白色点走到黑色点.因此,“马”从一色点跳到另一同色点,必定要跳偶数步。
因此,不论开始时“马”在棋盘的哪个位置上,而且不论“马”跳多少次,要跳回原处,必定要跳偶数步。
同步精练1、从3,15,9,7,21,1,5,11,7中挑7个数,使得它们的和为50,能不能做到?说说你的理由2、电影厅每排有19个座位,共23排,要求每一观众都仅和它邻近(即前、后、左、右)一人交换位置.问:这种交换方法是否可行?练习卷一、选择题。
1、一个合数,它()A、没有因数B、只有两个因数C、至少有三个因数D、只有三个因数2、24÷2=12,下列说法错误的是()A、24是2的倍数B、12是24的因数C、2是24的因数D、2和12都是因数3、一个质数()因数A、没有B、有1个C、有2个D、只有2个4、所有的质数中,偶数()A、1个也没有B、只有1个C、有2个D、有很多个二、解决问题1、一个数既是90的因数,又是15的倍数,这个数可能是()。
2、有两个质数,它们的和是12,积是35,它们的差是( )。
3、在自然数1、7、9、8、13、51、93、91中,()是质数,合数有(),既是奇数又是合数的有()。
4、在555……5□中最大填(),就能使这个数是3的倍数。
2006个55、小英是一名五年级的学生,她很聪明,她对他的同学说:“我的年龄既是2的倍数,又是3的倍数,同时又是24的因数。
”猜猜小英的年龄有多大?6、算式10×11+12×13+14×15+...+99×100的结果是奇数还是偶数?7、三个连续奇数的和是201,求这三个奇数分别是多少?第二讲图形的面积(一)例1 一个平行四边形如下图所示,AE=10厘米,AF=15厘米,BC=18厘米。
则CD的长多是少厘米?D〖思路分析〗以BC为底时,AE是高,可求得平行四边形的面积。
以CD为底时,AF是高,用面积除以高AF,即可求出CD的长。
〖基本训练①〗一个平行四边形如下图所示, AM=15厘米,AN=15厘米,BC=8厘米。
则CD的长是多少厘米?DA D已知:AS=6厘米,BC=12厘米,AG=9厘米。
70厘米,AS=10厘米,AG=15D〖基本训练④〗如下图:已知AB=5厘米,CF=2.4厘米,AF=3厘米,BG=2.4厘米,求这个三角形的周长是多少。
〖基本训练⑤〗如下图:左边梯形和右边三角形的面积相等,已知梯形的上底和下底分别是4厘米和9厘米,高4厘米。