DC_DC模块电源的选择与应用

DC_DC模块电源的选择与应用
DC_DC模块电源的选择与应用

DC/DC 模块电源以其体积小巧、性能卓异、使用方便的显著特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。很多系统设计人员已经意识到:正确合理地选用DC/DC 模块电源,可以省却电源设计、调试方面的麻烦,将主要精力集中在自己专业的领域,这样不仅可以提高整体系统的可靠性和设计水平,而且更重要的是缩短了整个产品的研发周期,为在激烈的市场竞争中领先致胜赢得了宝贵商机。那么,怎样正确合理地选用DC/DC 模块电源呢,笔者将从DC/DC 模块电源开发设计的角度,结合近年来爱浦公司模块电源推广使用过程中得到的用户信息反馈,谈一谈这方面的问题,以供广大系统设计人员参考。 DC/DC 模块电源的选择

选择使用DC/DC 模块电源除了最基本的电压转换功能外,还有以下几个方面需要考虑:

1. 额定功率

一般建议实际使用功率是模块电源额定功率的30~80%为宜(具体比例大小还与其他因素有关,后面将会提到。),这个功率范围内模块电源各方面性能发挥都比较充分而且稳定可靠。负载太轻造成资源浪费,太重则对温升、可靠性等不利。所有模块电源均有一定的过载能力,例如爱浦公司产品可达 120~150%,但是仍不建议长时间工作在过载条件下,毕竟这是一种短时应急之计。

2.封装形式

模块电源的封装形式多种多样,符合国际标准的也有,非标准的也有,就同一公司产品而言,相同功率产品有不同封装,相同封装有不同功率,那么怎么选择封装形式呢?主要有三个方面:① 一定功率条件下体积要尽量小,这样才能给系统其他部分更多空间更多功能;② 尽量选择符合国际标准封装的产品,因为兼容性较好,不局限于一两个供货厂家;③ 应具有可扩展性,便于系统扩容和升级。选择一种封装,系统由于功能升级对电源功率的要求提高,电源模块封装依然不变,系统线路板设计可以不必改动,从而大大简化了产品升级更新换代,节约时间。以爱浦公司大功率模块电源产品为例:全部符合国际标准,为业界广泛采用的半砖、全砖封装,与VICOR、 LAMBDA 等著名品牌完全兼容,并且半砖产品功率范围覆盖50~200W,全砖产品覆盖100~300W。

附表:

爱浦公司模块电源封装尺寸与兼容性 封

装尺寸

指标

2"×1"×0.4"2"×1.6"×0.4"2"×2"0.5" 2.4"×2.28"×0.5"

(半砖) 4.6"×2.4"×0.5"(全砖) 兼容性 符合国际标准符合国际标准 符合国际标准

符合国际标准 符合国际标准 功率范围

5~20W 12~20W 25~30W 50~200W 100~300W 输出路数 单、双路 单、双路 单、双、三路单路

单路 3.温度范围与降额使用

一般厂家的模块电源都有几个温度范围产品可供选用:商品级、工业级、军用级等,在选择模块电源时一定要考虑实际需要的工作温度范围,因为温度等级不同材料和制造工艺不同价格就相差很大,选择不当还会影响使用,因此不得不慎重考虑。可以有两种选择方法:

一是根据使用功率和封装形式选择,如果在体积(封装形式)一定的条件下实际使用功率已经接近额定功率,那么模块标称的温度范围就必须严格满足实际需要甚至略有裕量。二是根据温度范围来选,如果由于成本考虑选择了较小温度范围的产品,但有时也有温度逼近极限的情况,怎么办呢?降额使用。即选择功率或封装更大一些的产品,这样“大马拉小车”,温升要低一些,能够从一定程度上缓解这一矛盾。降额比例随功率等级不同而不同,一般50W以上为 3~10W/℃。总之要么选择宽温度范围的产品,功率利用更充分,封装也更小一些,但价格较高;要么选择一般温度范围产品,价格低一些,功率裕量和封装形式就得大一些。应折衷考虑。

4.工作频率

一般而言工作频率越高,输出纹波噪声就更小,电源动态响应也更好,但是对元器件特别是磁性材料的要求也越高,成本会有增加,所以国内模块电源产品开关频率多为在300kHz 以下,甚至有的只有100kHz左右,这样就难以满足负载变条件下动态响应的要求,因此高要求场合应用要考虑采用高开关频率的产品。另外一方面当模块电源开关频率接近信号工作频率时容易引起差拍振荡,选用时也要考虑到这一点。爱浦模块电源开关频率最高可达

500kHz,具有优良的输出特性。

5.隔离电压

一般场合使用对模块电源隔离电压要求不是很高,但是更高的隔离电压可以保证模块电源具有更小的漏电流,更高的安全性和可靠性,并且EMC特性也更好一些,因此目前业界普遍的隔离电压水平为1500VDC以上。

6.故障保护功能

有关统计数据表明,模块电源在预期有效时间内失效的主要原因是外部故障条件下损坏。而正常使用失效的机率是很低的。因此延长模块电源寿命、提高系统可靠性的重要一环是选择保护功能完善的产品,即在模块电源外部电路出现故障时模块电源能够自动进入保护状态而不至于永久失效,外部故障消失后应能自动恢复正常。模块电源的保护功能应至少包括输入过压、欠压、软启动保护;输出过压、过流、短路保护,大功率产品还应有过温保护等。

7.功耗和效率

根据公式 ,其中Pin、Pout、P耗分别为模块电源输入、输出功率

和自身功率损耗。由此可以看出,输出功率一定条件下,模块损耗P耗越小,则效率越高,温升就低,寿命更长。除了满载正常损耗外,还有两个损耗值得注意:空载损耗和短路损耗(输出短路时模块电源损耗),因为这两个损耗越小,表明模块效率越高,特别是短路未能及时采取措施的情况下,可能持续较长时间,短路损耗越小则因此失效的机率也大大减小。当然损耗越小也更符合节能的要求。

模块电源应用注意事项

1、极轻载使用

一般模块电源有最小负载限制,各厂家有所不同,普遍为10%左右,因为负载太轻时储能元件续流困难会发生电流不连续,从而导致输出电压不稳定,这是由电源本身的工作原理决定的。但是如果用户的确有轻载甚至空载使用的情况怎么办呢,最方便有效的方法是加一定的假负载,约为输出功率的2%左右,可以由模块厂商出厂前预置,也可以由用户在模块外安装适当电阻作为负载。值得注意的是如果选择前者,模块效率会有所降低。但是有的电路拓扑却没有最小负载限制。

2、多路输出功率分配

选择多路输出模块电源时要注意不同路输出之间的功率分配。以双路产品为例,一般有两种类型:一种是双路平衡负载的,即双路电流大小一样;另一种是不平衡负载的,即主、辅路负载电流不相同,主路大,辅路小。对于这种产品,建议选择辅路与主路功率之比为

1/5~1/2为宜,在此范围内辅路的电压稳定性才有保证(可在5%以内),否则辅路电压就会偏高或偏低。另一方面如果双路负载本来就不相同也尽量不要选用平衡负载型模块电源,因为此种电源专门针对对称负载设计,若负载不平衡辅路电压精度不高。

3、设法降低模块电源的温升

模块内部器件的工作温度的高低直接影响模块电源的寿命,器件温度越低模块寿命越长。在一定的工作条件下,模块电源的损耗是一定的,但是可以通过改善模块电源的散热条件来降低其温升,从而大大延长其使用寿命。比如:50W以上的模块电源必须安装散热器,散热器的表面积越大越有利于散热,且散热器的安装方向应尽量有利于空气的自然对流,功率在150W以上除安装散热器以外还可以加装扇强制风冷。此外在环境温度较高或空气流通条件较差的地方模块须降额使用以减小功耗从而降低温升,延长使用寿命。

4、合理安装减小机械应力

模块电源的引出方式均为金属针,模块电源与外接线路、金属针与模块电源内路电路均采用焊接方式连接。在一些特殊场合机械振动强度较大,尤其是大功率模块电源上还要加装散热器,这种情况更为严重。虽然模块电源内部一般灌封导热绝缘橡胶可以对元件起到较好的缓冲保护作用,但焊点有可能经受不住强烈振动应力而断裂,导致模块电源工作失效,这时必须在焊接的基础上再采取另外的固定和缓冲措施,比如可以用夹具或螺栓(对于有螺孔模块)将模块与机箱、大线路板等相对抗震性能好的部件固定,并且在它们中间垫一些弹性材料以缓冲振动产生的应力。

总之,模块电源和其它元器件一样只有精心选择、合理应用才能使其性能得到最大发挥,可靠性得到充分保障,模块电源也才会被更广泛地采用!

浪涌保护器的设计选型(新)

(1)考察建筑物所处地理位置及供电进线方式 首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。 推荐选择第一级浪涌保护器的最大通流量应大于以下标准值: 高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs) 郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs) 城市内(埋地进线):40KA(8/20μs) 第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs); 第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。 (2)检查建筑物内供电系统的类别 ?单相、三相及直流供电系统 在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC(48),FRD-40-2A-DC(48)。

首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。 其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P 电源防雷器,TN-S三相五线系统选择4P电源防雷器。 下面是防雷器的几个重要参数: (1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 (2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。 (3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 (4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。

思维导图的作用

思维导图的作用 思维导图的作用于生活和工作的各个方面,包括学习、写作、沟通、演讲、管理、会议等,运用思维导图带来的学习能力和清晰的思维方式会改善人的诸多行为表现:(1)成倍提高你的学习速度,更快地学习新知识与复习整合旧知识。(2)激发联想与创意,将各种零散的智慧、资源等融会贯通成为一个系统。(3)形成系统的学习和思维的习惯,你将能够达成众多你想达成的目标,包括:快速的记笔记,顺利通过考试,轻松的表达沟通、演讲、写作、管理等等!(4)向你喜欢的优秀人物学习,并超越你的偶像和对手。 思维导图教学必然是未来的教学工具。高级经理,惠普医疗产品,德国的思维导图在我们办公室内的重要性越来越明显。它在帮助我们打开思路上的作用是惊人的。我们使用思维导图安排会议议程,做头脑风暴,设计组织结构图,记笔记和写总结报告。这是一个通向未来的必备工具。美国“作为一个头脑风暴的工具,思维导图让我们感觉到想象力一下子打开了,新点子层出不穷,真是思如泉涌,这种感觉以前从来没有过,真是太棒了。,荷兰“思维导图可以让复杂的问题变得非常简单,简单到可以在一张纸上画出来,让你一下看到问题的全部。它的另一个巨大优势是随着问题的发展,你可以几乎不费吹灰之力地在原有的基础上对问题加以延伸。英国为什么需要参加思维导图培训而不是仅仅通过看书来学习这种奇妙的系统?(1)根据NLP(神经语言程式学)7/38/55的沟通法则:对于学习和沟通,文字的影响力才占7%,语音语调占38%,肢体动作占55%!这就是死读书为什么缺乏效果,为什么“读万卷书不如行万里路”的科学解释!(2)学习有三个层次:知道、悟到、做到,学习一种方法和系统的目的决不仅仅是知道,仅仅知道没有悟到是不牢靠的,仅仅悟到没有做到是没有实际意义的。

线路避雷器的选择与安装 图文 民熔

线路避雷器的选择与安装 目前.国外已广泛使用线路型合成绝缘氧化锌避雷器用于输电线路的防雷,取得了很好的效果。随着我们国家科技的不断发展和进步,我国也对线路避雷器开始了研制和开发,目前线路避雷器已经广泛地应用于电力部门。 在电力配电线路中,常用的避雷器有:阀型避雷器、管型避雷器、氧化锌避雷器等,低压配电系统提倡选用低压氧化锌避雷器。 氧化锌阀片在正常运行电压下,阀片的电阻很高。仅可通过微安级的泄漏电流。氧化锌避雷器具有优异的非线性伏安特性。残压随冲击电流波头时间的变化特性平稳,陡波响应特性好,没有间隙击穿特性和灭弧问题。其电阻片单位体积吸收能量大,还可以并联使用,所以在保护超高压长距离输电系统和大容量电容器组特别有利。 对于低压配电网的保护也很适合,是低压配电网的主要保护措施。 氧化锌避雷器介绍: 民熔 HY5WS-17/50氧化锌避雷器

10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

开关电源国内外研发状况及发展方向

国内外研发状况及发展方向 国内外开关电源的研发现状 自20世纪50年代,美国宇航局以小型化重量轻为目标而为搭载火箭开发首个开关电源以来,在半个多世纪的发展中,开关电源逐步取代了传统技术制造的相控稳压电源,并广泛应用于电子整机设备中。随着集成电路的发展,开关电源逐渐向集成化方向发展,趋于小型化和模块化。近20年来,集成开关电源沿两个方向发展。第一个方向是对开关电源的控制电路实现集成化。1977年国外首先研制成脉宽调制(PWM)控制器集成电路,美国Motorola公司、Silicon General 公司、Unitrode公司等相继推出一系列PWM芯片。近些年来,国外研制出开关频率达1MHz的高速PWM、PFM芯片。第二个方向是实现中、小功率开关电源单片集成化。1994年,美国电源集成公司(Power Integrations)在世界上率先研制成功三端隔离式PWM型单片开关电源,其属于AC/DC电源变换器。之后相继推出TOPSwitch、TOPSwitch-II、TOPSwitch-Fx、TOPSwitch-GX、PeakSwitch、LinkSwitch等系列产品。意-法半导体公司最近也开发出VIPer100、VIPer100A、VIPer100B等中、小功率单片电源系列产品,并得到广泛应用[1]。目前,单片开关电源已形成了几十个系列、数百种产品。单片开关电源自问世以来便显示出强大的生命力,其作为一项颇具发展前景和影响力的新产品,引起了国内外电源界的普遍关注。单片开关电源具有高集成度、高性价比、最简外围电路、最佳性能指标等特点,现己成为开发中小功率开关电源、精密开关电源及开关电源模块的优选集成电路。 与国外开关电源技术相比,国内从1977年才开始进入初步发展期,起步较晚、技术相对落后。目前国内DC/DC模块电源市场主要被国外品牌所占据,它们覆盖了大功率模块电源的大部分以及中小功率模块电源一半的市场。但是,随着国内技术的进步和生产规模的扩大,进口中小功率模块电源正在快速被国产DC/DC产品所代替。 开关电源的使用为国家节省了大量铜材、钢材和占地面积。由于变换效率提高,能耗减少,降低了电源周围环境的室温,改善了工作人员的环境。我国邮电通信部门广泛采用开关电源极大地推动了它在其它领域的广泛应用。值得指出的是,近两年来出现的电力系统直流操作电源,是针对国家投资4000亿元用于城网、农网的供电工程改造、提高输配电供电质量而推出的,它已开始采用开关电源以取代传统的相控电源。国内一些通信公司如中兴通讯等均已相继推出系列产品。目前,国内开关电源自主研发及生产厂家有300多家,形成规模的有十多家。国产开关电源已占据了相当市场,一些大公司如中兴通讯自主开发的电源系列产品已获得广泛认同,在电源市场竞争中颇具优势,并有少量开始出口。 开关电源的发展方向 目前市场上开关电源中功率管多采用双极型晶体管,开关频率可达几十千赫;采用MOSFET的开关电源转换频率可达几百千赫。为提高开关频率,必须采用高速开关器件。对于兆赫以上开关频率的电源可利用谐振电路,这种工作方式称为谐振开关方式。它可以极大地提高开关速度,理论上开关损耗为零,噪声也很小,这是提高开关电源工作频率的一种方式。采用谐振开关方式的兆赫级变换器已经实用化。开关电源的技术追求和发展趋势可以概括为以下四个方面。 一、小型化、薄型化、轻量化、高频化———开关电源的体积、重量主要是由储能元件(磁性元件和电容)决定的,因此开关电源的小型化实质上就是尽可

思维导图的优势及作用教学提纲

思维导图的优势与作用 一、思维导图的优势 您是否经常遇到过这样的情况: 1、您买了很多书,可惜很多都没有读?就是有幸读过也掌握不了多少? 2、走进书店发现新书、想买的书层出不穷,可是总担心买回去也没有时间消化? 3、如果在图书馆的书海中遨游,您是不是望书兴叹,游不了多久见没有时间了? 4、作为学生您是不是感觉学习教材都比较吃力,只有刻苦才能通过考试? 5、已经工作的您是不是感觉学习能力不如学生时代,在激烈的竞争面前感觉知识更新缓慢?

6、当您面对的无限丰富的知识、智慧和技能您是不是感到力不从心? 是我们的能力不够吗?是我们的大脑不好使?NO!!! 您的大脑是一个沉睡的巨人,心理学家告诉我们普通人终其一生才用了4-6%的大脑潜能。我们大脑的潜能绝大部分还在沉睡!我们的一生可能花费90%以上的学习时间学习各种各样的业务知识,也许只花了10%不到的时间学习训练学习的方法。 现在有一种方法可以全面解决这些问题,这就是思维导图!有没有听说过?我们都有体会,形象的、具体的、直观的事物要比抽象的语言容易记得多。美国图论学者哈里有一句名言:“千言万语不及一张图。”说的就是这种道理。俗话说:“百闻不如一见。”也是这个意思。 思维导图和传统的学习记忆方法相比有较大的优势。 1、使用思维导图进行学习,可以成倍提高学习效率,增进了理解和记忆能力。如通过使用关键字强迫我们在做笔记的时候就要思考句子的要点到底是什么,这使我们可以积极地倾听讲课者。而且思维导图还激发我们的右脑,因为我们在创作导图的时候还使用颜色、形状和想象力。根据科学研究发现人的大脑是由两部分组成的。左大脑负责逻辑、

防雷器的选型的知识汇总

防雷器的选型的知识汇总 (一) 防雷器,又称避雷器、浪涌保护器、电涌保护器、过电压保护器等,主要包括电源防雷器和信号防雷器,防雷器是通过现代电学以及其它技术来防止被雷击中的设备的损坏。避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管。基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”,防雷器的选择十分重要。⒈进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配。这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格。该处的雷电流为10/35μs电流波形。在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算。在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流。⒉在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷

电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。如内外两端阻抗一致,则电力线被分配到一半的直击雷电流。在这种情况下必须采用具有防直击雷功能的防雷器。 ⒊后续的*估模式用于*估LPZ1区以后防护区交界处的雷电流分配情况。由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算。一般要求用于后续防雷区的电源防雷器的通流能力在20kA(8/20μs)以下,不需采用大通流能力的防雷器。后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择。串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念(相对于传统的并式防雷器而言)。其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合。串并式防雷有如下特点:应用广泛。不但可以按常规进行应用,也适合保护区难以区别的场所。感生退耦器件在瞬态过电压下的分压、延迟作用,以帮助实现能量配合。减缓瞬态干扰的上升速率,以实现低残压与长寿命以及极快的响应时间。⒋防雷器的其它参数选择取决于各个被保护物所在防雷区的级别,其工作电压以安装在引电路中所有部件的额定电压为准。串并式防雷器还需注意其额定电流。⒌影响电子线雷电流分配的其它因素:变压器端接地电阻降低将使电子线中分配电流增大。供电线缆的长度的增加将使电力线中分配电流减少,并使几要导线中有平衡的电流分配。过短的电缆长度和过低的中性线阻抗将使电流不平衡,从而引起差模干扰。供电线缆并接多用户将降低有效阻抗,导致分配电流增大,在连成网状的供电状态下,雷临时性流主要流入电力线,这是多数雷损发生在电力线处的原因。 (二) 首先要搞清楚防雷器用在什么地方,按照三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在总配电柜安装第一级防雷器,选择相对通流容量大的电源防雷器(最大放电电流80KA~160KA视情况而定),然后在下属的区域配电箱处安装第二级电源防雷器

中国模块电源市场发展及预测

一、模块电源发展简述 1.模块电源技术简述 “电源”(Power Supply)的定义:电源是以电力电子学为核心技术的产品。“电源”是终端产品,“电力电子”是应用技术,“电源”产品是“电力电子”应用技术的具体产品体现。电力电子电源通常指采用电力电子技术的电源产品,是电力电子设备中重要组成成员。 模块电源或称电源模块(Power Module),是指可以直接焊装在印刷电路板上的、以模块方式体现的电源供应器。属于电源产品中的一大类别。 模块电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰。由于模块电源轻、小、薄的关键技术是高频化,因此国外各大模块电源制造商都十分重视新型高智能化元器件的应用,特别是改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料的应用设计上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能能力,而电容器的小型化也是一项推动模块电源高功率密度的关键因素。SMT技术的应用使得模块电源取得了长足的进展,在电路板两面布置元器件,以确保模块电源的轻、小、薄。模块电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为模块电源的主流技术,并大幅提高了模块电源的工作效率。对于高可靠性指标,美国的模块电源生产商通过降低运行电流、结温等措施以减少器件的应力,使得产品的可靠性大大提高。 模块电源技术领域是结合新型相关电力电子元器件与开关拓扑变换技术,两者相互促进推动着模块电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。模块电源可分为AC/DC和DC/DC两大类,DC/DC模块电源设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的广泛认可,但AC/DC模块电源因其自身的特性遇到较为复杂的技术和工艺制造问题,至今还没有大范围的普及应用。 电力电子技术的不断创新,使模块电源产业有着广阔的发展前景。要加快我国模块电源产业的发展速度,就必须走技术创新之路,走出有中国特色的产学研联合发展之路,为我国国民经济的高速发展做出贡献。 高功率密度是模块电源发展的总体趋势,一般采用模块电源组成分布式电源系统,设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对模块电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。 近几年由于数据业务的飞速发展和分布式供电系统的不断推广,模块电源的增幅已经超出了一次电源。随着半导体工艺、封装技术和高频软开关的大量使用,模块电源功率密度越来越大,转换效率越来越高,应用也越来越简单。 模块电源是目前设计人员的最好选择。以模块式电源取代分立元件设计方案,好比用微信息处理器件代替集成电路组件,它可更灵活、更快捷地完成系统的开发,缩短开发或更改设计所花费的时间,节省人力及技术投资。

一款高效率数字模块电源的设计研究_方超

图1基于UCD3138的数字电源硬件电路系统框图 本文以TI 公司的针对隔离式DC /DC 电源专用控制芯片 UCD3138作为研究对象,介绍了其数字控制特点,并以其为控制核心设计了一款36V~72V 直流输入,12V 直流输出,满载30A ,带同步整流的数字控制DC /DC 全桥变换器,峰值效率可达94%以上。 1UCD3138数字控制器的主要特点 UCD3138是TI 公司最新推出的隔离电源专用的数字控制 芯片,采用了将环路补偿控制与监控通信分离的优化硬件架构,解决了控制系统与通信系统抢用MCU 资源的矛盾。 UCD3138的内核上含有三个独立的数字控制环路外设,也被称为数字电源外设(DPP ),每个DPP 执行一个高速数字控制环路,此环路由一个专用的差分模数转换器(EADC )、一个基于双极点双零点数字补偿器PID 和具有250ps 脉宽分辨率的DPWM 输出组成。它们相互协作产生PWM 波输出,工作时无需微控制器参与,节省了MCU 的资源。 实时监控、配置外设与通信管理是由31.25MHz 、32位ARM7TDMI-S 精简指令微控制器实现的。它支持整合数字电源设计图形用户界面(GUI )。用户可利用GUI 开发界面,通过PMBUS 总线,与UCD3138互联,监控电源工作状态,配置外设寄存器,即可调整控制环路的PID 参数,也可调整输出电压,开关 频率等相应的寄存器,故可在降低成本与功耗的同时简化开发。 该控制器还包含12位、267ksps 、14通道的通用ADC ,定时器,中断控制,JTAG 调试和PMBus (电源业界的通讯标准)以及UART 通信端口。 UCD3138有40引脚和64引脚两个版本,功能差异不大, 只是功能外设的数量上有些增减,综合本设计的需求,本文选用 40引脚,6mm *6mm 大小的UCD3138RHA 作为主控芯片。2数字电源系统设计 本文的设计目标为36V~72V 直流输入,12V 直流输出,满载30A ,开关频率200kHz 带同步整流的数字控制DC /DC 全桥变换器。基于UCD3138的数字电源硬件电路系统框图如图1 所示,可分为功率回路和控制系统两部分。 2.1功率回路设计 主功率回路是全桥PWM DC /DC 变换器,主要由全桥式 逆变器、高频变压器、输出同步整流器和直流滤波器组成,属于一种直流-交流-直流变换器。综合考虑输入输出电压范围,变压器的匝比选为5:2:2。 (1)输出滤波电感设计 输出滤波电感的取值主要取决于输出电流纹波△I O ,一般取为最大输出电流的20%,故L 的取值应满足: L ≥U in N D (1-2D )T S △I O 其中,U in 为输入电压,N 为变压器原副边匝比,D 为占空比,T S 为功率管开关周期。最终择优选取L=2.2。 (2)输出电容设计 输出电容的容值主要影响到输出电压纹波△U O ,纹波大小应低于输出电压的0.5%,故C 应满足:C ≥LI O △I O O 式中,U O 、I O 分别为电源的输出电压、输出电流。同时,为降低输出电压中的低频和高频谐波,输出电容采用4个220μF 钽电容,6个47μF 瓷介电容并联。 (3)主功率管和同步整流管的选择 依据输入、输出电压、电流及开关频率等因素,在预留安全 一款高效率数字模块电源的设计研究 方 超 张 强 谢君甫(中航工业雷华电子技术研究所,江苏无锡214063) Digitally Controlled High Efficiency Modular Power Supply 摘要:数字控制的模块电源具有高效率、高功率密度等诸多优点,是当前电源技术的研究热点。分析了TI 公司最新推出的隔离型电源专用数字控制芯片UCD3138的特点,并以其为控制环路核心,设计了一款带同步整流的数字控制全桥DC / DC 变换器。最后搭建模块电源样机,验证了设计的有效性,电源峰值效率可达94%以上。 关键词:UCD3138,DC-DC 变换器,数字控制,同步整流 Abstract :This paper analys the features of highly integrated digital controller UCD3138for isolated power launched by TI recently.A digital controlled full-bridge DC /DC converter with synchronous rectifier based on UCD3138is designed.The real prototype is fabricated,and the experimental results verified the rationality of design method.High efficiency up to 94%can be obtained. Keywords :UCD3138,DC-DC converter,digital control,synchronous rectification 一款高效率数字模块电源的设计研究 148

避雷器参数及选型原则

金属氧化物避雷器的选择 避雷器是电力系统中主要的防雷保护装置之一,只有正确地选择避雷器,方能发挥其应有的防雷保护作用。 1、无间隙金属氧化物避雷器的选择 选择的一般要求如下: (1)、应按照使用地区的气温、海拔、风速、污秽以及地震等条件确定避雷器使用环境条件,并按系统的标称电压、系统最高电压、额定频率、中性点接地方式,短路电流值以及接地故障持续时间等条件确定避雷器的系统运行条件。 (2)、按照被保护的对象确定避雷器的类型。 (3)、按长期作用于避雷器上的最高电压确定避雷器的持续运行电压。 (4)、按避雷器安装地点的暂时过电压幅值和持续时间选择避雷器的额定电压。 (5)、估算通过避雷器的放电电流幅值,选择避雷器的标称放电电流。 (6)、根据被保护设备的额定雷电冲击耐受电压和额定操作冲击耐受电压,按绝缘配合的要求,确定避雷器的雷电过电压保护水平和操作过电压保护水平。 (7)、估算通过避雷器的冲击电流和能量,选择避雷器的试验电流幅值,线路放电耐受试验等级及能量吸收能力。 (8)、按避雷器安装处最大故障电流,选择避雷器的压力释放等级。 (9)、按避雷器安装处环境污染程度,选择避雷器瓷套的泄漏比距。

(10)、按避雷器安装的引线拉力、风速和地震等条件,选择它的机 械强度。 (11)、当避雷器不满足绝缘配合要求时,可采取适当降低其额定电 压或标称放电电流等级或提高被保护设备的绝缘水平等补救措施。2、主要特性参数选择 (1)、持续运行电压Uc 页16 共页1 第 中性点直接接地系统的相对地无间隙金属氧化物避雷器,其Uc可按不低于系统最高相电压选取。 在中性点非直接接地系统,如单相接地故障能在10s以内切除,其Uc仍可按不低于选取,但由于我国大部分中性点非直接接地系统中 允许带接地故障运行2h以上,因此Uc可按以下原则选取:10s及以内切除故障2h及以上切除故障3~10kV 1.0~1.1U,35~66kV Uc≥U LL至于10s~2h之间,可按2h以上选取,也可 参照避雷器的工频电压耐受特性曲线选取。 (2)、额定电压Ur Ur是指避雷器两端间的最大允许工频电压的有效值,是在60℃温度下注入规定能量后,能耐受额定电压Ur10s,随后在Uc下,耐受30min,能保持热稳定。 (3)、暂时过电压U T暂时过电压UT是确定避雷器额定电压之依据,在选择U时,主要考虑单T相接地,甩负荷和长线电容效应所引起的工频电压升高,幅值可按下列条件选取。 ①中性点非直接接地系统:

电源避雷器的选型

电源防雷器的选型 1、电源防雷器的分类 1)按产品性能分类: 电压开关型SPD——采用放电间隙技术,可最大限度的消除电网后续电流,疏导10/350μs的模拟雷电冲击电流,按照IEC61312-3的要求,一般用在LPZO B-LPZ1区中电源系统的防雷器。(亦称短路型SPD) 产品特点:雷电通流量大,无漏泄电流,多用于建筑物的总配电系统,实用于各种供电系统制式中。 电压限制型SPD——采用压敏器件,其可较大程度减低电网上的残压,疏导8/20μs的模拟雷电冲击电流,按照IEC61312-3的要求,一般用在LPZ1-LPZ2区中电源系统的防雷器。 产品特点:反应时间快,残压低,应用于TN制式保护效果较好。 (在TT制式中如有漏泄电流,可能引起地电位的升高) 复合型SPD——由电压开关型组件和电压限制型组件组合而成的防雷器。其特性随所加电压的特性可表现为电压开关型、电压限制型或两者特性皆有。(通常指相线与零线之间采用压敏防雷模块,而零线与地线之间采用放电间隙防雷模块(NPE模块)的防雷器) 产品特点:在接地阻抗高或地线接触不良的情况下,因防雷器接在相线与零线之间,而相线与零线回路阻抗主要是供电变压器和电缆,阻抗很低而故障电流很大,流经防雷器的电流可使前端保护断路器或熔断器动作,把防雷器与电网隔离。 2)按保护级别分类:防雷器按IEC分类方法,分为I、II、III级(顺序对应为B、C、D三级)B级(第I级)防雷器——适用于LPZO A区或LPZO B区与LPZ1区交界面处的等电位连接,能承受直击雷的能量和释放部分直接雷击电流的防雷器。 C级(第II级)防雷器——适用于LPZ1区与LPZ2区交界面处的等电位连接,能够释放由远距离或传导雷击以及开关转换而引起的电涌的防雷器。 D级(第III级)防雷器——适用于LPZ2区与其后续防雷区交界面处的等电位连接,为了保护线路末端的单个负载而设计的防雷器。 3)按电源特性分类:分为单相交流、三相交流和直流三种。 4)按外形结构分类:分为模块式、箱式、插座式和机架式。 5)按接线方式分类:分为串联型和并联型。 2、电源防雷器技术参数的选择 1)最大持续运行电压(Uc)的选择 限压型电源防雷器的最大持续运行电压Uc,是影响防雷器运行稳定性的关键参数。选型时除要符合相关标准要求外,还应考虑电网可能出现的正常波动及最高持续故障电压。 ★在纵向保护模式中(L~N;L~PE;N~PE)Uc标称值应≮1.15U*(U*为220V); ★在横向保护模式中(L~L)Uc标称值应≮线间电压的1.15倍。 按照IEC61643-2的说明,在TT交流供电系统中,相线对地线的最高持续故障电压,可能达到标称电压(U N)(交流电压220Urms)的1.5倍,即有可能达到330Urms。故此在电流不稳定的地方,建议选择电源防雷器的最大持续运行电压值Uc为385Urms的模块。 在直流电源系统中,并没有一个统一的最大持续运行电压值Uc与正常工作电压Un之比例,该比例一般可取1.5倍到2倍之间。 2)电压保护水平(Up)的选择 Us.max<Up<Uchoc (Us.max—电网的最高运行电压;Uchoc—被保护设备的冲击耐受电压)根据IEC60364-4,三相电网电压为230V/400V被保护设备冲击耐受电压(8/20μs)分为四类;

避雷器的选择方法

避雷器的选择方法 避雷器如何选择 (1)按额定电压选择:要求避雷器额定电压与系统额定电压一致。 (2)校验最大允许电压:核对避雷器安装地点可能出现的导线对地最大电压,是否不超过避雷器的最大工作电压。导线对地最大电压与系统中性点是否接地及系统参数有关: ①中性点不接地系统:导线对地最大电压为系统电压的1.1倍,所以一般没有问题。 ②中性点经消弧线圈或高阻抗接地系统:一般选择避雷器的最大工作电压等于线电压。 ③中性点直接接地系统:国产避雷器的中性点直接接地系统中其最大工作电压等于系统电压的0.8倍,所以按额定电压选择是没有问题的。 (3)校验工频放电电压: ①在中性点绝缘或经阻抗接地的系统中,工频放电电压应大于相电压的3.5倍。在中性点直接接地的系统中,工频放电电压应大于相电压的3倍。 ②工频放电电压应大于最大工作电压的1.8倍 防雷器,又称避雷器、浪涌保护器、电涌保护器、过电压保护器等,主要包括电源防雷器和信号防雷器,防雷器是通过现代电学以及其它技术来防止被雷击中的设备的损坏。避雷器中的雷电能量吸收,主要是氧化锌压敏电阻和气体放电管。 基于防雷器的防护想要取得理想的效果,应注重“在合适的地方合理地装设合适的防雷器”,防雷器的选择十分重要。 ⒈进入建筑物的各种设施之间的雷电流分配情况如下:约有50%的雷电流经外部防雷装置泄放入地,另有50%的雷电流将在整个系统的金属物质内进行分配。这个*估模式用于估算在LPAOA区、LPZOB区和LPZ1区交界处作等电位连接的防雷器的通流能力和金属导线的规格。该处的雷电流为10/35μs电流波形。在各金属物质中雷电流的分配情况下:各部分雷电流幅值取决于各分配通道有的阻抗与感抗,分配通道是指可能被分配到雷电流的金属物质,如电力线、信号线、自来水管、金属构架等金属管级及其它接地,一般仅以各自的接地电阻值就可以大致估算。在不能确定的情况下,可以认为接是电阻相等,即各金属管线平均分配电流。 ⒉在电力线架空引入,并且电力线可能被直击雷击中时,进入建筑物内保护区的雷电流取决于外引线路、防雷器放电支路和用户侧线路的阻抗和感抗。如内外两端阻抗一致,则电力线被分配到一半的直击雷电流。在这种情况下必须采用具有防直击雷功能的防雷器。 ⒊后续的*估模式用于*估LPZ1区以后防护区交界处的雷电流分配情况。由于用户侧绝缘阻抗远远大于防雷器放电支路与外引线路的阻抗,进入后续防雷区的雷电流将减少,在数值上不需特别估算。一般要求用于后续防雷区的电源防雷器的通流能力在20kA(8/20μs)以下,不需采用大通流能力的防雷器。 后续防雷区防雷器的选择应考虑各级之间的能量分配和电压配合,在许多因素难以确定时,采用串并式电源防雷器是个好的选择。串并式是根据现代雷电防护中许多应用场合、保护范围层次区分等特点提出的概念(相对于传统的并式防雷器而言)。其实质是经能量配合和电压分配的多级放电器与滤波器技术的有效结合。串并式防雷有如下特点:应用广泛。不但可

思维导图在语文教学中的优势

思维导图在语文教学中的优势 咸一中高一语文组朱静 通过开学初思维导图的培训和小组成员的讨论,在学习、研究和运用思维导图的过程中,我们深感其对提高学习效果有一定的积极作用,而且它在提升个人思维能力、记忆力等方面的作用也符合《全日制义务教育语文课程标准(实验稿)》(简称《义务》)与《普通高中语文课程标准(实验)》(简称《高中》)中有关“发展思维能力,激发想象力和创造潜能”的提法。因此,我们从以下几个方面总结出思维导图在语文教学中的优势。 一、思维导图在阅读教学中的使用 《义务》提出“在通读课文的基础上,理清思路,理解主要内容”;《高中》也提出“从整体上把握文本内容,理清思路,概括要点,理解文本所表达的思想、观点和感情。” 通常我们的语文阅读教学为了让学生理清文章的思路,理解主要内容,所采取的传统方法就是让学生在通读课文之后将课文划分成几大段落,然后概括段落大意,进而总结出文章的中心思想。不可否认,这种教学方法有其可取之处,但是它是建立在一种线性思维基础之上的思维过程,不符合人类思维的本来面目,这不仅影响了课堂教学的效率,更严重挫伤了学生学习的积极性。 在阅读教学中使用思维导图,不仅可以克服学生记忆方面的问题,还可以调动学生学习的积极性,更可以激发学生去更多的思考与课文内容有关的内容,从而拓宽文本的深度和广度。这一切的积极功效都来自于思维导图所拥有的激发放射新思维、提高注意力、延长记忆力的独特功效。 二、思维导图在写作教学中的使用 在语文教学中,写作一直是令学生、老师和家长最为头疼的一项内容,大家都在抱怨学生写不出东西。尤其是现在,学生越发缺少广泛的社会生活实践,每日只是在学校与家之间往返,更多的时间用在了虚拟世界,形成了思维单一等现象。 如何让学生不再惧怕作文?怎样才能让他们把自己的心里话与独特感受倾注于笔端或者采取其他工具将其表达出来呢? 思维图式之于写作教学同样具有较大的功效。在作文构思阶段,让学生使用思维导图整理有关材料。先将作文题目或主题以一合适的图形至于纸的中心位置,然后展开联想,思考与中心图有关的内容、材料,并对思维结果加以调整,最终形成一张作文的思维导图。在作文构思时,也可以几个同学组成一个学习小组,大家共同绘制作文的思维导图,这样更有利于激发学生写作的思维广度和写作的积极性。作文时,学生按照思维导图行文,这样可以做到有的放矢。 三、思维导图在口语交际教学中的使用 托尼·巴赞设计的思维导图,如今一个重要应用领域就是各类社会人士在进行主题演讲或即席演讲时使用。其原因有以下三点,首先,思维导图打破了演讲稿的线性模式,代之以形象的图形,把演讲者从宣读者的角色中解放了出来,将其至于真正演讲者的位置,听者也不会听到那些令人厌烦而枯燥的宣讲;其次,演讲者不必因不停低头看讲稿而与听众失去50%的交流机会,在演讲的表现力上打折扣;再次,思维导图用一种“全景图”的形式,可以方便演讲者在演讲过程中随时增加或者删除某些信息,更不会漏掉某些重要的信息。 《义务》和《高中》中都对口语交际提出了如下要求:“在交流过程中,注意根据需要调整自己的表达内容和方式,不断提高应对能力。”“口语交际的评

电源模块设计分析

电源模块设计分析 电源模块是可以直接贴装在印刷电路板上的电源供应器(参看图1),其特点是可为专用集成电路(ASIC)、数字信号处理器(DSP)、微处理器、存储器、现场可编程门阵列(FP GA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点(POL) 电源供应系统或使用点电源供应系统(PUPS)。由于模块式结构的优点甚多,因此高性能电信、网络联系及数据通信等系统都广泛采用各种模块。虽然采用模块有很多优点,但工程师设计电源模块以至大部分板上直流/直流转换器时,往往忽略可靠性及测量方面的问题。本文将深入探讨这些问题,并分别提出相关的解决方案。 图1,电源供应器 采用电源模块的优点 目前不同的供应商在市场上推出多种不同的电源模块,而不同产品的输入电压、输出功率、功能及拓扑结构等都各不相同。采用电源模块可以节省开发时间,使产品可以更快推出市场,因此电源模块比集成式的解决方案优胜。电源模块还有以下多个优点: ● 每一模块可以分别加以严格测试,以确保其高度可靠,其中包括通电测试,以便剔除不合规格的产品。相较之下,集成式的解决方案便较难测试,因为整个供电系统与电路上的其他功能系统紧密联系一起。 ● 不同的供应商可以按照现有的技术标准设计同一大小的模块,为设计电源供应器的工程师提供多种不同的选择。 ● 每一模块的设计及测试都按照标准性能的规定进行,有助减少采用新技术所承受的风险。 ● 若采用集成式的解决方案,一旦电源供应系统出现问题,便需要将整块主机板更换;若采用模块式的设计,只要将问题模块更换便可,这样有助节省成本及开发时间。

容易被忽略的电源模块设计问题 虽然采用模块式的设计有以上的多个优点,但模块式设计以至板上直流/直流转换器设计也有本身的问题,很多人对这些问题认识不足,或不给予足够的重视。以下是其中的部分问题: ● 输出噪音的测量; ● 磁力系统的设计; ● 同步降压转换器的击穿现象; ● 印刷电路板的可靠性。 这些问题会将在下文中一一加以讨论,同时还会介绍多种可解决这些问题的简单技术。 输出噪音的测量技术 所有采用开关模式的电源供应器都会输出噪音。开关频率越高,便越需要采用正确的测量技术,以确保所量度的数据准确可靠。量度输出噪音及其他重要数据时,可以采用图2 所示的Tektronix 探针探头(一般称为冷喷嘴探头),以确保测量数字准确可靠,而且符合预测。这种测量技术也确保接地环路可减至最小。 图2,测量输出噪音数字 进行测量时我们也要将测量仪表可能会出现传播延迟这个因素计算在内。大部分电流探头的传播延迟都大于电压探头。因此必须同时显示电压及电流波形的测量便无法确保测量数字的准确度,除非利用人手将不同的延迟加以均衡。 电流探头也会将电感输入电路之内。典型的电流探头会输入600nH 的电感。对于高频的电路设计来说,由于电路可承受的电感不能超过1mH,因此,经由探头输入的电感会影响di/dt 电流测量的准确性,甚至令测量数字出现很大的误差。若电感器已饱和,则可采用

浪涌保护器的设计选型(完整资料).doc

【最新整理,下载后即可编辑】 (1)考察建筑物所处地理位置及供电进线方式 首先要了解建筑物的环境及供电进线是架空或埋地,目的是选择浪涌保护器的通流容量。 推荐选择第一级浪涌保护器的最大通流量应大于以下标准值:高山站(架空进线):100KA(8/20μs)或12.5KA(10/350μs)郊区(架空进线):60KA(8/20μs)或12.5KA(10/350μs)城市内(埋地进线):40KA(8/20μs) 第二级浪涌保护器的最大通流量应选择大于20~40KA(8/20μs);第三级浪涌保护器要求的最大通流容量应大于10~20KA(8/20μs)。 (2)检查建筑物内供电系统的类别 ?单相、三相及直流供电系统 在220V单相供电系统中,只需选用两片保护模块组合。如FRD-20-2A,FRD-40-2A。 在380V三相供电系统中,则需根据不同的供电接地系统选择三片或四片保护模块组合。 在直流供电系统中,需要根据直流电压值来选择浪涌保护器,浪涌保护器的最大持续工作电压(Uc)值在直流电压值的1.5倍~2.2倍之间选取。一般只需选用两片保护模块组合,如FRD-20-2A-DC (48),FRD-40-2A-DC(48)。 首先要搞清楚防雷器用在什么地方,按照GB18802.1三级防雷保护原理,电源和设备所需要的保护措施被分为三个等级。在建筑物进线柜安装第一级防雷器,选择相对通流容量大的T1级电源防雷器,波形为10/350us,冲击放电电流Iimp为

12.5kA~50kA;然后在下属的区域配电箱处安装二级电源防雷器,波形8/20us,最大放电电流为Imax为40KA,最后在设备前端安装三级电源防雷器,波形为8/20us,最大放电电流20kA。 其次是供电系统的类别,建筑物内的供电系统是单相供电还是三相供电,单相供电系统需要选择2P电源防雷器,TT系统选择3P+1的电源防雷器,TN-C三相四线系统选择3P电源防雷器,TN-S三相五线系统选择4P电源防雷器。 下面是防雷器的几个重要参数: (1)标称电压Un:被保护系统的额定电压,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 (2)最大持续工作电压Uc:长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压值。 (3)标称通流容量In:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 (4)最大放电电流Imax:给保护器施加波形8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (5)冲击放电电流Iimp:给保护器施加波形10/350μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 (6)电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 加空开(或熔断器)的目的只是保护浪涌保护器不被持续由过电压导致的过电流损坏,所以你加的空开小于等于浪涌也可以,但要大幅高于浪涌保护器约几十毫安的额定放电电流(MOV 材质的浪涌保护器有弱放电现象

避雷器参数讲解(图文)民熔

避雷器参数 1.标称电压Un 被保护系统的额定电压相符,在信息技术 系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 2.额定电压Uc: 能长久施加在保护器的指定端,而不引起 保护器特性变化和激活保护元件的最大电压有 效值。 3.额定放电电流Isn: 给保护器施加波形为8/20μs 的标准雷电波冲击10 此时,保护器所耐受的最大冲击电流峋值。4.最大放电电流 Imax: 给保护器施加波形为8/20μs的标准雷电 波冲击1次时,保护器所耐受的最大冲击电流 峰值。

5电压保护等级上升:保护器在下列试验中的最大值:点火电压的1kV/ys斜率;额定放电电流的残余电压。 6响应时间TA:主要反映保护器中特殊保护元件的动作灵敏度和击穿时间。在一定时间内的变化取决于Du/dt或di/dt的斜率。 7数据传输速率vs:表示每秒传输的比特数,单位为BPS,是数据传输系统中正确选择防

雷装置的参考值,防雷装置的数据传输速率取决于系统的传输方式。 8插入损耗AE:在给定频率下插入保护器前后的电压比。 9回波损耗ar:表示保护设备(反射点)反射的前波所占的比例,是直接衡量保护设备是否与系统阻抗兼容的参数。 10最大纵向放电电流:当8/20us波形的标准雷电波对地一次时,保护器能承受的最大冲击电流的峰值。 11最大横向放电电流:在线路间施加波形为8/20μs的标准雷电波一次时,保护器能承受的最大冲击电流的峰值。 12线路阻抗UN为流过线路阻抗的总和。它通常被称为“系统电阻13峰值放电电流:有两种:额定放电电流LSN和最大放电电流Imax。 13泄漏电流:指在75或80额定电压UN 下流过保护器的直流电流。 从安全运行的角度看,避雷器额定电压的选择还应遵循以下原则:1)避雷器的额定电压应高于安装现场可能出现的工频暂态电压。

未来电源发展的趋势及成功之路(精)

未来电源发展的趋势及成功之路 展望21世纪,人们即将跨入一个崭新的信息传递、交换及指令的社会,工作、生活方式及至娱乐处于巨大的变革之中。通讯成为人与人交往必不可少的手段。通讯的多样化朝着快速、逼真、节省资源的方向发展。作为硬件环境,个人电脑和服务器将成为通讯网络必备的基本设施,2000年开关电源市场的热点在哪里?仍然在通讯设备,网络建设及计算机领域。产品走势日趋模块化、标准化,并以积木式结构组成分布式供电系统(POWER BUILDING BLOCKS & DISTRIBUTED POWER SYSTEM)。电源供应商将逐步走向产业化、专门化、朝垄断趋势发展。如何生存,并获取成功,是我们认真思考的问题。在这里,我们将与大家共同探讨以下几个问题。 1. 电源市场发展的焦点。 2. 电源技术发展的趋势。 3. 成功之路。 一、电源市场发展的焦点 2000年,资讯系统(INFORMATION SYSTEM )将成为经济增长的焦点。INTERET 网络的开发与建设、移动通讯的突起、多媒体, 有线电视网的继续发展,都以计算机为基础。市场关注的焦点,仍然在通讯及计算机产业。 国内个人电脑市场增长快得惊人,几乎每年翻一翻。服务器、工作站每年需求也有20%的增长,但目前大多数以引进为主。民主 产业如联想、方正、浪潮、海尔、长城等虽然在个人电脑市场已有长足的增长,但电源作为配套器件仍以引进为主。而服务器、工作 站也是从低端刚刚走向市场,预计从2000年起的增长如下表:

年 服务器/工作站用电源总产值(USD ) 低端300W ~400W 中端375W ~660W 高端700W ~800W 台数/增长率/总价值 台数/增长率/总价值 台数/增长率/总价值 2000 8.6M 50K/20%/3.5M 30K/15%/3.6M 10K/10%/1.5M 2001 10M 60K/20%/4.2M 34.5K15%/4.1M 11K/15%1.7M 2002 12M 72K/20%/5.0M 41.4K/15%/5.0M 13K/15%/2.0M 注:平均以USD0.2/W计算。 计算机产业的迅速发展,主要依赖于半导体制造商,如INTEL 我们看到处理器、I/O及存贮器的走势为: -供电电压变得愈来愈低 -产品生命周期变得愈来愈短 -时钟频率越愈来愈高

相关文档
最新文档