集合的含义与基本运算测试卷

合集下载

集合考试题及答案

集合考试题及答案

集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。

以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。

求A∩B。

答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

集合B包含所有的偶数。

A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。

题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。

求C∪D。

答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

集合D包含所有的正整数,即D={1, 2, 3, ...}。

C与D的并集是包含C和D所有元素的集合,但去除重复元素。

因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。

求E∩F。

答案:集合E包含所有的奇数,集合F包含所有3的倍数。

E与F的交集是同时满足奇数和3的倍数的元素。

这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。

题目四:集合G={x | x²=1},求G。

答案:集合G包含满足x²=1的所有x值。

解这个方程,我们得到x=1或x=-1。

因此,G={1, -1}。

题目五:集合H={x | x²-4=0},求H。

答案:集合H包含满足x²-4=0的所有x值。

解这个方程,我们得到x²=4,所以x=2或x=-2。

因此,H={2, -2}。

总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。

集合数学题

集合数学题

集合数学题一、集合的基本概念1. 已知集合A = {xx^2 - 3x+2 = 0},求集合A。

- 解析:- 对于方程x^2 - 3x + 2=0,分解因式得(x - 1)(x - 2)=0。

- 解得x = 1或x = 2。

- 所以集合A={1,2}。

2. 设集合B={x∈ Z2< x<3},求集合B。

- 解析:- 满足-2< x<3的整数x有-1,0,1,2。

- 所以集合B ={-1,0,1,2}。

3. 若集合C={m,m + 1},且1∈ C,求m的值。

- 解析:- 因为1∈ C,当m = 1时,集合C={1,2}满足条件。

- 当m+1 = 1,即m = 0时,集合C={0,1}也满足条件。

- 所以m = 0或m = 1。

二、集合间的关系4. 已知集合A={1,2,3},集合B={1,2},判断B与A的关系。

- 解析:- 因为集合B中的所有元素都在集合A中。

- 所以B⊂ A(B是A的子集)。

5. 设集合M={xx = 2k,k∈ Z},集合N={xx = 4k,k∈ Z},判断N与M的关系。

- 解析:- 对于集合N中的元素x = 4k,因为4k=2×(2k),且2k∈ Z。

- 所以集合N中的元素都在集合M中,但集合M中有元素不在集合N中(如2 = 2×1,1∈ Z,但2不能表示成4k的形式)。

- 所以N⊂ M。

6. 已知集合A={xx^2 - 1 = 0},集合B={- 1,1},判断A与B的关系。

- 解析:- 对于集合A,解方程x^2 - 1=0,即(x + 1)(x - 1)=0,解得x=-1或x = 1。

- 所以A = B。

三、集合的运算7. 已知集合A={1,2,3},集合B={2,3,4},求A∩ B。

- 解析:- A∩ B是由既属于集合A又属于集合B的元素组成的集合。

- 所以A∩ B={2,3}。

8. 设集合M={xx>1},集合N={xx<3},求M∪ N。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题(每题2分,共10分)1. 集合A={1, 2, 3},B={2, 3, 4},那么A∩B(A与B的交集)是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}2. 如果集合C={x | x是偶数},那么5属于C吗?A. 是B. 否3. 集合D={x | x是小于10的自然数},D的元素个数是多少?A. 5B. 9C. 10D. 无穷多4. 集合E={x | x^2 - 5x + 6 = 0},E中元素的个数是?A. 0B. 1C. 2D. 35. 对于集合F={1, 2, 3},其幂集P(F)包含多少个元素?A. 3B. 4C. 7D. 8二、填空题(每题3分,共15分)6. 集合A={x | x是小于5的正整数},用描述法表示A为________。

7. 集合G={1, 2, 3},那么G的补集(相对于自然数集N)是________。

8. 若集合H={x | x是大于1且小于10的整数},H的并集(与集合G={2, 3, 4, 5})是________。

三、解答题(每题5分,共20分)9. 给定集合I={1, 2, 3, 4, 5},J={4, 5, 6, 7},求I∪J(I与J的并集)。

10. 集合K={x | x是偶数且x<10},L={x | x是3的倍数且x<10},求K∩L(K与L的交集)。

11. 如果集合M={x | x是大于0且小于10的整数},求M的子集个数。

12. 集合N={x | x是2的幂次方},求N的前5个元素。

答案一、选择题1. B. {2, 3}2. B. 否3. C. 104. C. 25. D. 8二、填空题6. A={1, 2, 3, 4}7. G的补集是{x | x属于自然数集N且x≠1, 2, 3}8. H∪G={1, 2, 3, 4, 5}三、解答题9. I∪J={1, 2, 3, 4, 5, 6, 7}10. K∩L={6}11. M的子集个数是2^5=3212. N的前5个元素是{1, 2, 4, 8, 16}这份测试题覆盖了集合的基本操作,包括交集、并集、补集、子集和幂集等概念,适合作为集合理论的复习材料。

数学集合的含义与表示测试题

数学集合的含义与表示测试题

数学的含义与表示测试题数学集合的含义与表示测试题一、选择题(每小题5分,共20分)1.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|45}可以用列举法表示.A.只有①和④ B.只有②和③C.只有② D.以上语句都不对【解析】 {0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的`无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】 B3.已知集合A={xN*|-55},则必有()A.-1A B.0AC.3A D.1A【解析】∵xN*,-55,x=1,2,即A={1,2},1A.故选D.【答案】 D4.定义集合运算:A*B={z|z=xy,xA,yB}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0 B.2C.3 D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a21,即a1,故实数a不能取的值的集合是{1,-1}.【答案】 {1,-1}6.已知P={x|2<x<a,xN},已知集合P中恰有3个元素,则整数a=________.【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】 6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{xQ|26},无限集.(3)用描述法表示该集合为M={(x,y)|y=-x+4,xN,yN}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5A且5B,求a的值.【解析】因为5A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,xR}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,方程ax2-3x-4=0有两个不等的实数根,a0,=9+16a>0,即a>-916.a>-916,且a0.(2)当a=0时,A={-43};当a0时,若关于x 的方程ax2-3x-4=0有两个相等的实数根,=9+16a=0,即a=-916;若关于x的方程无实数根,则=9+16a<0,即a<-916;w故所求的a的取值范围是a-916或a=0.。

集合的含义与表示练习题

集合的含义与表示练习题

集合的含义与表示练习题一、选择题1. 下列何者是集合的定义?A. 一些相同或相类似的元素的聚集。

B. 一些不同的元素的聚集。

C. 一些有序的元素的聚集。

D. 一些无序的元素的聚集。

2. 以下哪个符号表示“属于”关系?A. ∩B. ∪C. ∈D. ⊆3. 若集合A={1,2,3},则A的基数为:A. 3B. 6C. 1D. 04. 下列哪个运算符表示两个集合的交集?A. ∩B. ∪C. ∈D. ⊆5. 若集合A={a,b,c},集合B={b,c,d},则A∪B等于:A. {a,b,c,d}B. {a}C. {b,c,d}D. {b,c}二、填空题1. 若集合A={1,2,3},集合B={2,3,4},则A∩B={ }。

2. 集合A的幂集的基数为{ },其中集合A的基数为4。

3. 若集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={ }。

三、解答题1. 请定义集合的并集、交集和补集,并举例说明。

2. 若集合A={a,b,c,d,e},集合B={c,d,e,f,g},找出满足以下条件的集合:a) A∪B的基数为6;b) A∩B的基数为2。

四、应用题1. 某班级有50名学生,其中30人会打篮球,20人会踢足球。

已知篮球队员中有10人同时会踢足球,问有多少人既会打篮球又会踢足球?2. 在某个购物网站上,有1000个用户喜欢购买手机,700个用户喜欢购买电脑,已知用户中有300人同时喜欢购买手机和电脑,问有多少人既喜欢购买手机又喜欢购买电脑?以上是关于集合的含义与表示的练习题,希望能帮助你更好地理解和掌握集合的概念与运算。

答案如下:一、选择题1. A2. C3. A4. A5. A二、填空题1. {2,3}2. 163. {1,2,3,4,6,8}三、解答题1. 并集:集合A∪B是包含A和B中所有元素的集合。

例如,A={1,2,3},B={2,3,4},则A∪B={1,2,3,4}。

交集:集合A∩B是包含A和B中共有元素的集合。

集合基础知识和单元测试卷(含答案)

集合基础知识和单元测试卷(含答案)

集合基础知识和单元测试卷(含答案)集合单元测试卷重点:集合的概念及其表示法;理解集合间的包含与相等的含义;交集与并集,全集与补集的理解。

难点:选择恰当的方法表示简单的集合;理解空集的含义;理解交集与并集的概念及其区别联系。

基础知识:一、理解集合中的有关概念1)集合中元素的特征:确定性,互异性,无序性。

集合元素的互异性:例如下列经典例题中的例2.2)常用数集的符号表示:自然数集N;正整数集Z+、N+;整数集Z;有理数集Q;实数集R。

3)集合的表示法:列举法,描述法,区间法,集合构造法。

注意:区分集合中元素的形式及意义,例如:2A={x|y=x^2+2x+1};B={y|y=x^2+2x+1};C={(x,y)|y=x+2x+1};D={x|x=x^2+2x+1};E={(x,y)|y=x^2+2x+1,x∈Z,y∈Z};4)空集是指不含任何元素的集合。

({}、∅和{∅}的区别;与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。

注意:条件为A⊆B,在讨论的时候不要遗忘了A=∅的情况。

二、集合间的关系及其运算1)元素与集合之间关系用符号“∈”来表示。

集合与集合之间关系用符号“⊆”来表示。

A;A ⊆ A;并集A∪B={x|x∈A或x∈B};交集A∩B={x|x∈A且x∈B};补集CA={x|x∉A};2)对于任意集合A,B,则:①A∩B=B∩A;A∪B=B∪A;A∩B=A∪B②A∩CA=∅;A∪CA=U③(C∪A)∩(C∪B)=C∪(A∩B);(C∩A)∪(C∩B)=C∩(A∪B)④A∩B=A⇔A⊆B;A∪B=A⇔B⊆A三、集合中元素的个数的计算:1)若集合A中有n个元素,则集合A的所有不同的子集个数为2^n,所有真子集的个数是2^n-1,所有非空真子集的个数是2^n-1.2) A∪B中元素的个数为A和B中元素个数之和减去A∩B中元素的个数。

已知集合A为自然数集合中所有满足6-x是8的正约数的数,求A的所有子集。

集合测试题及答案

集合测试题及答案# 集合测试题及答案一、选择题1. 集合A={1, 2, 3},集合B={2, 3, 4},求A∪B(A并B)的结果。

A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}答案:C2. 如果集合C={x | x > 5},集合D={x | x < 10},求C∩D(C交D)的结果。

A. {x | x > 5 且 x < 10}B. {x | x > 10}C. {x | x < 5}D. 空集答案:A3. 集合E={x | x是偶数},集合F={x | x是奇数},E和F的补集分别是:A. E的补集是F,F的补集是EB. E的补集是奇数,F的补集是偶数C. E的补集是奇数,F的补集是偶数,但不是互为补集D. E和F没有补集答案:A二、填空题4. 集合G={1, 2, 3, 4, 5},如果从G中移除元素2和4,结果为______。

答案:{1, 3, 5}5. 集合H={x | x是小于20的自然数},H的元素个数为______。

答案:19三、简答题6. 解释什么是子集,并给出一个例子。

答案:子集是指一个集合的所有元素都是另一个集合的元素。

例如,集合{1, 2}是集合{1, 2, 3}的子集。

7. 描述什么是集合的幂集,并给出一个集合的幂集的例子。

答案:幂集是指一个集合所有可能子集(包括空集和集合本身)的集合。

例如,集合{1}的幂集是{∅, {1}}。

四、计算题8. 集合I={a, b, c},求集合I的所有子集。

答案:∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}9. 如果集合J={1, 2, 3},求集合J的所有非空子集。

答案:{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}五、证明题10. 证明:如果集合A是集合B的子集,集合B是集合C的子集,那么集合A也是集合C的子集。

集合简单的练习题

集合简单的练习题题目一:集合的定义与性质1. 假设集合A={1,2,3,4,5},请列举出A的所有子集。

2. 用集合的形式表示以下集合:a) 所有小于10的正整数。

b) 所有女性学生。

c) 所有大于0小于1的实数。

3. 已知集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的交集和并集。

题目二:集合的运算1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的差集。

2. 已知集合A={2,4,6,8},集合B={1,3,5,7},求A与B的并集。

题目三:集合的特殊运算1. 设集合A={x | x是偶数且1 ≤ x ≤ 10},请列举出A的所有元素。

2. 设集合B={x | x是奇数或x是负数},请列举出B的所有元素。

3. 设集合C={x | x是素数且x < 20},请列举出C的所有元素。

题目四:集合的关系1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否是B的子集。

2. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否与B相等。

3. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A与B是否有交集。

题目五:特殊集合1. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={2,4,6,8},求A的补集。

2. 设全集为U={a,b,c,d,e,f,g,h,i,j},集合A={a,b,c,f,g},集合B={a,c,d,g,i},求A与B的并集的补集。

答案:题目一:1. 集合A的所有子集为:{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3, 5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2, 4,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}2. 集合的表示形式:a) {1,2,3,4,5,6,7,8,9}b) {女性学生的姓名}c) {x | 0 < x < 1, x为实数}3. A与B的交集为{4,5},并集为{1,2,3,4,5,6,7,8}题目二:1. A与B的差集为{1,2,3}2. A与B的并集为{1,2,3,4,5,6,7,8}题目三:1. A={2,4,6,8,10}2. B={x | x为奇数,x为负数}3. C={2,3,5,7,11,13,17,19}题目四:1. A是B的子集。

集合测试题及答案

集合测试题及答案一、选择题1. 以下哪个选项不是集合的基本概念?A. 元素B. 子集C. 并集D. 函数2. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的交集是什么?A. {1}B. {2, 3}C. {1, 2, 3}D. {2, 3, 4}3. 如果集合A={1, 2, 3},那么A的幂集有多少个元素?A. 3B. 4C. 7D. 84. 集合A={1, 2, 3},集合B={3, 4, 5},A与B的差集是什么?A. {1, 2}B. {1, 2, 3}C. {3, 4, 5}D. {4, 5}5. 对于任意集合A,以下哪个命题是正确的?A. A是A的子集。

B. A是A的真子集。

C. A是A的交集。

D. A是A的并集。

二、填空题6. 集合的三要素包括:________、________、________。

7. 如果集合A={x | x > 0},那么A的补集在实数集R中表示为________。

8. 集合A={1, 2, 3},集合B={2, 3, 4},A与B的并集是________。

三、简答题9. 请解释什么是集合的笛卡尔积,并给出两个集合A={1, 2}和B={a, b}的笛卡尔积。

10. 请描述如何确定一个元素是否属于一个集合。

四、计算题11. 给定集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},请计算A∪B∩C。

12. 如果集合D={x | x^2 - 5x + 6 = 0},请找出D的所有元素。

答案:一、选择题1. D2. B3. D4. A5. A二、填空题6. 确定性、无序性、互异性7. R - A = {x | x ≤ 0 或 x > 0 且x ≠ 1, 2, 3}8. {1, 2, 3, 4}三、简答题9. 集合的笛卡尔积是指两个集合中元素的有序对的集合。

对于A和B,笛卡尔积是A×B = {(1, a), (1, b), (2, a), (2, b)}。

(完整版)集合的概念及表示练习题及答案

新课标集合的含义及其表示姓名:、选择题:1.下面四个命题:(1)集合N中的最小元素是1:( 2)若a N,则a N (3) x2的解集为{2 , 2} ; ( 4) 0.7 Q,其中不正确命题的个数为 ( )4xA. 0B. 1C.2D.32.下列各组集合中,表示同一集合的是A. M 3,2 , N 2,3B. 3,2 , N 2,3C. M x, y x y 1 , N y 1D. M 1,2 ,N 1.23.下列方程的实数解的集合为-的个数为(1) 4x2 9y2 4x 12y 5 0;(2)6x20;⑶ 2x 1 23x 2 0;(4)6x2A.1B.2C.3D.44.集合A x 1 0 ,B 6x 10 0 , x Q 4x 5 解集含有3个元素;(3) 0 (4)满足1 x x的实数的全体形成的集合。

其中正确命题的个数是( )A.0B. 1C. 2D.3二. 填空题:一,2x 4 08. 用列举法表示不等式组2x 4 0的整数解集合为1 x 2x 19. 已知集合A x x N,里I N用歹0举法表示集合A为6 x10. 已知集合A a-_41有惟一解,乂列举法表示集合A为x a三、解答题:11. 已知A= 1,a,b , B a, a2,ab,且A=B,求实数a,b ;12. 已知集合A xax2 2x 1 0, x R , a为实数(1)若A是空集,求a的取值范围(2)若A是单元素集,求a的值(3)若A中至多只有一个元素,求a的取值范围D xx为小丁2的质数,其中时空集的有A. 1 个B.2个C.3 个D.4 个5.下列关系中表述正确的是A. 0 x20B. 0 0,0C. 0D. 06.A. 下列表述正确的是(0 B. 1,2 2,1 C. D. 07. 卜面四个命题:(1)集合N中的最小元素是 1 : (2)方程13.设集合M a a x2 y2,a Z(1)请推断任意奇数与集合M的关系(2)关丁集合M你还可以得到一些什么样的结论参考答案:DBBBDBCa>1(2) a=0or1 (3) a=0-一一…- 178. 1,0,1,2 9 0,2,3,4,5 ; 10, 一,2,2 11,a= -1,b=0 ; 12, (1)4or a 113 (1)任意奇数都是集合M的元素(2)略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(考试时间:2012年9月25日) 集合的含义和基本运算测试题
时间:60分钟 满分:100分
姓名: 班级 成绩:
一、选择题(每小题5分,共40分)
( )1 .设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q={3,4,5},则P∩(C U Q)=
A .{1,2,3,4,6}
B .{1,2,3,4,5}
C .{1,2,5}
D .{1,2}
( )2 .已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
则()()U U C A C B ⋂=
A .{5,8}
B .{7,9}
C .{0,1,3}
D .{2,4,6}
( )3 .设集合{}{}21,0,1,|M N x x x =-==,则M N ⋂=
A .{}1,0,1-
B .{}0,1
C .{}1
D .{}0 ( )4 .已知集合{}
{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为
A .1
B .2
C .3
D .4 ( )5 .已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含
元素的个数为
A .3
B .6
C .8
D .10
( )6 .若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为
A .5
B .4
C .3
D .2
( )7 .已知集合{{},1,,A B m A B A ==⋃=,则m =
A .0
B .0或3
C .1
D .1或3
( )8 .已知全集U=R ,集合{}{}
21,B=02A x x x x =-<≤≤≤集合,那么集合A
∩R C B = {}A 22x x -<≤ B.
{}01x x ≤≤ C. {}20x x -<<
{}D 201x x x -<<>或
二.填空题:(每小题5分,共20分) 1. 已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B = 则k =______.
2. 设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则=)()(B C A C U U _______.
3.集合{}{}21,1,,A x x B x ax B A a ====⊆=若那么 。

4. {}{}1,3A B=1,3B A =-⋃-集合,若,那么满足条件的集合有 个。

三.解答题:(共40分)
1. (12分)(1)已知集合⎭
⎬⎫⎩⎨⎧
∈-∈=N x N x A 68|,试用列举法表示集合A 。

(2)已知集合{}{}22M=60,30M N x x x N x x x --==-= 求。

2.(8分)已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,且B ≠∅,求m 的取值范围。

3.(10分)设全集{}
{}(){}U U 20A C B =35C A B=7,11,U = 不大于的质数,且(),, (){}U U C A C B =2,17
(),A,B.求集合并画出Venn 图。

4.(10分)已知全集{}{}()()U U U=R A=23,15,C A C B ,x x B x x -≤<=<≤ ,集合求 ()()U U C A B,C B A. ()U C A B 。

相关文档
最新文档