有机高分子材料介绍

合集下载

天然有机高分子材料

天然有机高分子材料

天然有机高分子材料
天然有机高分子材料是指来源于天然生物体的高分子化合物,具有天然、有机、可再生等特点。

这类材料在近年来备受关注,因其在环保、可持续发展和生物医学等领域的广泛应用前景而备受瞩目。

首先,天然有机高分子材料具有良好的生物相容性。

与合成高分子材料相比,
天然有机高分子材料通常具有更好的生物相容性,可以更好地与生物体相容,减少对生物体的刺激和损伤,因此在生物医学领域有着广泛的应用前景。

例如,天然有机高分子材料可用于制备生物医用材料、组织工程支架、药物缓释系统等,为医学领域带来了许多创新。

其次,天然有机高分子材料具有良好的可再生性。

天然有机高分子材料通常来
源于天然生物体,如植物、动物等,具有可再生的特点。

相比于石油等化石能源,天然有机高分子材料的可再生性使其在环保和可持续发展方面具有重要意义。

利用天然有机高分子材料可以减少对化石能源的依赖,降低对环境的影响,符合现代社会对可持续发展的要求。

另外,天然有机高分子材料具有丰富的来源和种类。

天然有机高分子材料来源
广泛,种类繁多,可以根据不同的需求选择合适的材料进行应用。

例如,天然橡胶、天然纤维素、天然蛋白质等都是常见的天然有机高分子材料,它们在纺织、包装、食品、医药等领域都有着重要的应用。

总的来说,天然有机高分子材料具有良好的生物相容性、可再生性和丰富的来
源种类,为其在生物医学、环保和可持续发展等领域的应用提供了广阔的空间。

随着人们对环保和可持续发展意识的增强,天然有机高分子材料必将在未来得到更广泛的应用和发展。

有机高分子材料分为

有机高分子材料分为

有机高分子材料分为有机高分子材料是一类具有高分子结构的有机化合物,具有较高的分子量和复杂的结构。

它们可以通过化学合成或天然聚合物的方法制备,广泛应用于塑料、橡胶、纤维、涂料、胶粘剂等领域。

有机高分子材料具有许多优良的性能,如机械性能、耐热性、耐化学性、绝缘性等,因此在各种工业和日常生活中得到了广泛的应用。

有机高分子材料可以根据其来源和性质分为天然高分子材料和合成高分子材料两大类。

天然高分子材料主要包括橡胶、纤维素、淀粉等,它们是从天然资源中提取或经简单加工得到的高分子材料。

合成高分子材料则是通过化学合成的方法制备得到的,如聚乙烯、聚丙烯、聚苯乙烯等。

这两类有机高分子材料在结构和性能上有很大的差异,但都具有重要的应用价值。

有机高分子材料具有许多优良的性能,其中机械性能是其最基本的性能之一。

高分子材料通常具有较高的强度和韧性,可以用于制备各种零部件和结构材料。

另外,有机高分子材料还具有较好的耐热性和耐化学性,可以在较宽的温度范围和各种化学介质中稳定使用。

此外,有机高分子材料还具有较好的绝缘性能,可以用于制备电气绝缘材料和电子器件。

有机高分子材料在工业生产中有着广泛的应用。

在塑料工业中,有机高分子材料可以用于制备各种塑料制品,如塑料包装材料、塑料管材、塑料薄膜等。

在橡胶工业中,有机高分子材料可以用于制备各种橡胶制品,如轮胎、橡胶密封件、橡胶管等。

在纺织工业中,有机高分子材料可以用于制备各种合成纤维,如涤纶、尼龙、腈纶等。

在建筑和汽车制造等领域,有机高分子材料也有着重要的应用。

有机高分子材料的发展也面临着一些挑战。

首先,有机高分子材料的可持续性和环保性日益受到关注。

传统的有机高分子材料通常是从石油等化石资源中提取或合成得到的,其生产和使用过程会产生大量的环境污染和资源消耗。

因此,开发可再生资源替代传统原料,研发环保型高分子材料成为当前的研究热点。

其次,有机高分子材料的性能和功能化也是当前研究的重点之一。

有机高分孑材料定义

有机高分孑材料定义

有机高分孑材料定义有机高分子材料是指由碳、氢、氧、氮等元素构成的高分子化合物,具有较高的分子量和一定的结晶性或无定形性。

这类材料具有良好的可塑性、耐热性、耐腐蚀性和机械强度,广泛应用于各个领域。

一、有机高分子材料的分类有机高分子材料根据其结构和用途可以分为以下几类:1.聚合物:由单体通过聚合反应而形成的大分子化合物,如聚乙烯、聚丙烯等。

2.共聚物:由两种或两种以上单体通过共聚反应而形成的大分子化合物,如苯乙烯-丁二烯共聚物。

3.交联聚合物:在聚合过程中引入交联剂使得链之间相互交联而形成三维网络结构的高分子化合物,如环氧树脂等。

4.复合材料:将不同种类或不同形态的材料组装在一起形成新材料,如玻璃纤维增强塑料。

5.功能性高分子:在普通高分子基础上引入某些特殊结构或功能单元而形成的高分子化合物,如聚酰亚胺。

二、有机高分子材料的性质有机高分子材料具有以下几种基本性质:1.可塑性:有机高分子材料易于加工成各种形状,如薄膜、管道、板材等。

2.耐热性:有机高分子材料的熔点较高,耐热温度可达数百摄氏度。

3.耐腐蚀性:大多数有机高分子材料具有良好的耐酸碱、耐溶剂等化学稳定性。

4.机械强度:由于其长链结构和三维网络结构,有机高分子材料具有较好的强度和硬度。

5.导电性:一些功能性高分子具有良好的导电性能。

三、有机高分子材料的应用由于其优良的物理化学性质和广泛适用范围,有机高分子材料在各个领域都得到了广泛应用:1.包装领域:聚乙烯、聚丙烯等塑料袋和容器广泛应用于食品、化妆品、药品等包装行业。

2.建筑领域:聚氯乙烯、聚苯乙烯等塑料材料广泛应用于隔音、保温、防水等方面。

3.汽车工业:聚酰亚胺等高性能塑料材料广泛应用于汽车零部件制造。

4.电子领域:聚酰胺、聚碳酸酯等高性能塑料材料广泛应用于电子器件制造。

5.医疗领域:聚乳酸等生物降解塑料材料广泛应用于医疗器械和医用耗材制造。

四、有机高分子材料的发展趋势有机高分子材料的发展趋势主要体现在以下几个方面:1.功能性高分子的开发和应用,如导电高分子、光学高分子等。

有机高分子材料的定义

有机高分子材料的定义

有机高分子材料的定义引言有机高分子材料是一种由碳、氢和其他不同元素组成的大分子化合物,具有丰富的结构和性质。

它们在各个领域中广泛应用,例如塑料制品、纺织品、药物、涂料和电子器件等。

本文将深入探讨有机高分子材料的定义、性质、合成方法和应用领域等方面。

有机高分子材料的性质有机高分子材料具有许多独特的性质,包括以下几个方面:高分子化合物有机高分子材料是由重复单元组成的高分子化合物。

重复单元通过共价键连接在一起,形成大分子链。

这种特殊的结构使有机高分子材料表现出良好的柔韧性和可塑性。

多样化的结构有机高分子材料的结构可以高度多样化,包括线性、支化、交联、共聚物和共价夹层等。

这些不同的结构赋予材料不同的物理、化学和机械性质,从而满足不同领域的需求。

可调控的性质通过控制合成方法、聚合度和分子结构等因素,可以调节有机高分子材料的性质。

例如,改变侧链的结构可以改变材料的亲水性或疏水性,从而调节其表面性质。

这种可调控性使有机高分子材料在不同应用中具有广泛的应用前景。

有机高分子材料的合成方法有机高分子材料的合成方法繁多,常见的包括以下几种:聚合反应聚合反应是最常用的有机高分子材料合成方法之一。

它通过将单体分子经过聚合反应连接成长链分子。

常见的聚合反应有自由基聚合、阴离子聚合、阳离子聚合和环氧树脂聚合等。

共聚物合成共聚物的合成是将不同单体分子一起聚合成一条链或交替聚合成间断分子链。

共聚物的合成方法丰富多样,例如自由基共聚、阴离子-自由基共聚和自由基-快速反应速率比较接近的两种单体共聚等。

接枝共聚合成接枝共聚合成是在一条长链上引入少量具有不同结构的分子根。

这种方法可以在一条链上引入其他特定功能的分子,从而赋予有机高分子材料特殊的性能。

有机高分子材料的应用领域由于有机高分子材料具有丰富的性质和可调控性,它们在各个领域中都有广泛应用:塑料制品有机高分子材料是制造塑料制品的主要原料。

根据不同的应用需求,选择不同的有机高分子材料可以制备出具有不同物理和机械性能的塑料制品,如聚乙烯、聚丙烯、聚苯乙烯等。

高一有机高分子材料知识点

高一有机高分子材料知识点

高一有机高分子材料知识点有机高分子材料是高一化学课程中的重要内容之一。

本文将从定义、分类、性质和应用等方面介绍有机高分子材料的知识点。

一、定义有机高分子材料是由碳、氢和其他元素(如氮、氧、硫等)组成的大分子化合物。

其分子量通常很大,可以达到数万甚至几百万。

二、分类有机高分子材料可以按照形状、结构和合成方法等不同的角度进行分类。

1. 形状分类有机高分子材料根据形状可以分为线性高分子、支化高分子和网络高分子。

线性高分子是由线性排列的单体重复单元组成;支化高分子在线性结构的基础上引入支链,增加了分子间的交联点;网络高分子是由三维交联结构构成,具有更高的机械强度。

2. 结构分类有机高分子材料可以根据其结构特点分为聚合物、共聚物和聚合物共混物等。

聚合物是由同种单体组成的,例如聚乙烯、聚丙烯等;共聚物由两种或多种不同的单体共同聚合而成,例如丙烯酸-丙烯腈共聚物;聚合物共混物是由两种或多种不同聚合物混合而成,例如聚苯乙烯与聚苯乙烯均聚物的共混物。

3. 合成方法分类有机高分子材料的合成方法多种多样,常见的有聚合反应、缩聚反应和交联反应等。

聚合反应是指通过将单体分子进行化学反应,使其相互连接形成高分子链。

缩聚反应是将两个或以上的小分子通过化学反应互相连接。

交联反应是指通过化学反应或物理交联手段,使高分子链之间产生交联,增加材料的稳定性和机械强度。

三、性质有机高分子材料的性质取决于其分子结构和合成方法等因素。

1. 物理性质有机高分子材料通常是非晶态或有序部分结晶态的。

其物理性质包括密度、硬度、弹性、熔点、玻璃化转变温度等。

不同的有机高分子材料具有不同的物理性质,如聚乙烯具有良好的韧性和柔软性,而聚苯乙烯则具有较高的硬度和脆性。

2. 化学性质有机高分子材料的化学性质表现为与其他物质的反应。

例如,聚氯乙烯在高温下可与溴发生取代反应,聚丙烯可以与氧气发生氧化反应,聚酯可以与醇类发生酯交换反应等。

四、应用有机高分子材料在生活和工业中有广泛的应用。

有机高分子材料概括

有机高分子材料概括

有机高分子材料概括有机高分子材料是一类由碳元素为主体组成的高分子化合物。

由于其分子结构能够灵活调控和设计,有机高分子材料具有多样的性能和应用领域。

本文将逐步回答有机高分子材料的定义、特点、分类以及其在不同领域的应用。

第一部分:有机高分子材料的定义有机高分子材料是由碳元素为主体并含有多个重复单元的高分子化合物。

由于碳元素形成强健的碳-碳键和碳-氢键,有机高分子材料具有高度的稳定性和化学活性。

与无机材料相比,有机高分子材料更容易制备和加工,也有更广泛的应用领域。

第二部分:有机高分子材料的特点1. 高分子结构:有机高分子材料由大分子链构成,有较高的分子量和长的分子链。

这使得有机高分子材料具有较高的韧性和拉伸性。

2. 可塑性和可调性:由于有机高分子材料的大分子链可以进行适当的修饰和调整,其性能可根据需求进行设计和改变。

3. 化学活性:有机高分子材料具有丰富的官能团,可以与其他化合物发生反应。

这使得有机高分子材料可以通过化学修饰或功能化来扩展其应用领域。

4. 丰富的材料性能:由于有机高分子材料可以通过调整分子结构和聚合方法来制备,其性能可以在一定范围内进行调控。

有机高分子材料可以具有优异的力学性能、导电性能、光学性能、热学性能等。

第三部分:有机高分子材料的分类根据聚合物化学结构和性质的不同,有机高分子材料可以分为以下几类:1. 聚烯烃类:如聚乙烯、聚丙烯等。

2. 聚酯类:如聚酯纤维、PET等。

3. 聚酰胺类:如尼龙、聚氨酯等。

4. 聚醚类:如聚乙二醇、聚酰亚胺等。

5. 聚氨酯类:如聚氨基甲酸酯、聚脲醛等。

6. 聚酚类:如环氧树脂、苯酚醛树脂等。

7. 聚合物共混物:由不同种类聚合物组成的复合材料,如聚丙烯/聚苯乙烯共混物。

第四部分:有机高分子材料的应用领域1. 塑料制品:有机高分子材料可用于制造各种工业塑料制品,如瓶盖、塑料袋、塑料容器等。

2. 纤维材料:有机高分子材料可用于制造纤维材料,如纺织品、合成纤维等。

新型有机高分子材料

新型有机高分子材料

新型有机高分子材料一、简介新型有机高分子材料是指近年来发展起来的一类具有特殊性能和应用潜力的高分子材料。

与传统的合成高分子材料相比,新型有机高分子材料在结构和性能上有所创新和突破,具有更高的分子量、更低的表面能和更好的力学性能等特点。

这些材料可以用于各种领域,包括材料科学、化学工程、能源存储和生物医学等。

二、种类和应用目前,新型有机高分子材料的种类繁多,包括聚合物、共聚物、聚合物混合物和凝胶等。

它们具有可调控的化学结构和物理性质,可以通过改变聚合度、共聚比例和交联度等方式来调节材料的性能。

下面介绍几种常见的新型有机高分子材料及其应用:1.聚合物聚合物是一种由重复单元组成的大分子,具有良好的延展性、柔韧性和可塑性。

其中,聚苯乙烯(PS)、聚乙烯(PE)和聚四氟乙烯(PTFE)等是应用最广泛的聚合物材料。

它们被广泛用于包装材料、电子部件、建筑材料和汽车零部件等。

2.共聚物共聚物是由两种或更多种单体按照一定的比例共聚而成的高分子材料。

其中,丙烯腈-丙烯酸酯共聚物(PAN-PMA)和苯乙烯-丙烯酸酯共聚物(PS-PMA)是常见的共聚物材料。

它们具有很强的耐高温性、抗氧化性和耐腐蚀性,适用于制备高温耐酸碱和耐腐蚀材料。

3.聚合物混合物聚合物混合物是不同种类聚合物按一定比例机械混合而成的材料。

它们继承了各自单一聚合物的性能,并具有更广泛的应用领域。

例如,聚酰亚胺和聚乳酸混合材料可以制备出具有优异力学性能和生物可降解性的医疗用途材料。

4.凝胶凝胶是一种源于凝聚相转变的胶态物质,具有高分子网络结构和大量孔隙空间。

其中,聚丙烯酸盐凝胶、聚乙烯醇凝胶和聚丙烯酰胺凝胶是常见的凝胶材料。

它们具有较高的吸水性、稳定性和柔软性,可以用于制备吸水剂、生物传感器和药物释放系统等。

三、发展趋势和应用前景新型有机高分子材料的研究和应用在世界范围内得到了广泛关注和重视。

在材料科学领域,人们致力于开发更多种类、更高性能的高分子材料,以满足不同领域对材料的需求。

建筑材料有机高分子材料

建筑材料有机高分子材料

②工程塑料 工程塑料一般指能承受一定外力作用,具有良好的机械性能和耐高、低温性 能,尺寸稳定性较好,可以用作工程结构的塑料,如聚酰胺、聚砜等。 在工程塑料中又将其分为通用工程塑料和特种工程塑料两大类。通用工程塑 料包括:聚酰胺、聚甲醛、聚碳酸酯、改性聚苯醚、热塑性聚酯、超高分子量聚 乙烯、甲基戊烯聚合物、乙烯醇共聚物等。特种工程塑料又有交联型和非交联型 之分。交联型的有:聚氨基双马来酰胺、聚三嗪、交联聚酰亚胺、耐热环氧树酯 等。非交联型的有:聚砜、聚醚砜、聚苯硫醚、聚酰亚胺、聚醚醚酮(PEEK)等。
有机高分子材料是指以有机高分子化合物为主要成分的材料。有机高分 子材料分为天然高分子材料和合成高分子材料两大类。木材、天然橡胶、棉 织品、沥青等都是天然高分子材料;而现代生活中广泛使用的塑料、橡胶、 化学纤维以及某些涂料、胶粘剂等,都是以高分子化合物为基础材料制成的, 这些高分子化合物大多数又是人工合成的,故称为合成高分子材料。
(3)常用的建筑塑料制品 建筑工程中塑料制品主要是用于装饰材料、给排水工裎、电气工程、防水工程、 保温隔热工程等建筑安装工程,以及其他用途的材料等。 ①塑料装饰板材
塑料装饰板,是用于建筑装修的塑料板。原料为树脂板、表层纸与底层纸、装 饰纸、覆盖纸、脱模纸等。将表层纸、装饰纸、覆盖纸、底层纸分别浸渍树脂,经干燥后组坯, 经热压后即为贴面装饰板。塑料贴面装饰板的类型分为:单面装饰板、双面装饰板、单面浮雕 装饰板、双面浮雕装饰板、底层纸中加有金属板的增强装饰板、底层纸中加有玻璃纤维布的装 饰板、铝板为基材装饰板、底层纸为基材铝箔装饰板、刨切单板混合结构的装饰板、人造板为 基材的装饰板等。塑料贴面装饰板采用特殊原纸和树脂制成,在制造过程中可以仿制各种人造 材料和天然材料的花纹图案,如桃花心木、花梨木、水曲柳、大理石、孔雀石、桔皮、皮革、 纤维织物等的纹理或设计其他不同图案。装饰板的品种多样,色调鲜艳,装饰性强,适用范围 较广。表层、装饰层使用的是氨基树脂,基层使用的是酚醛树脂,所以表面坚硬、耐磨损、耐 热。而且这种板材耐水性能好,密度大,尺寸稳定性好,能耐一般酸、碱、油脂及酒精的腐蚀。 装饰板具有韧性,可以弯曲成一定弧度,便于曲面的装饰,并易于与其他材料胶贴。装饰板具 有轻质高强的特点,静曲强度在800 kg/cm2以上,比重一般为1.0~1.4 g/cm3,略重于水, 而比铝约轻1/2,比钢铁约轻3/4,在使用方面可以代替某些轻金属和钢材,如车辆、船舶、 室内的装修等。代替金属和木材的数量,塑料装饰板的耐久性优于涂料,其使用寿命比油漆能 延长4~5倍。保养简单,易于清洁,维护费用较低。塑料装饰板的生产工艺简单,加工成型方 便,劳动生产率较高,创造价值较大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章有机高分子材料第一节概述有机高分子材料包括两种:天然高分子材料:木材、棉花、皮革等;有机聚合物合成材料:塑料、合成纤维、合成橡胶、涂料及粘合剂等。

有机高分子材料的特点:质地轻、原料丰富、加工方便、性能良好、用途广泛,因而发展速度很快。

且随着合成、加工技术的发展,耐高温、高强度、高模量和具有特定性能和功能的高分子材料也应运而生。

有机聚合物(有机玻璃、橡胶等等)具有与金属相反的物理性能:大部分是电和热的绝缘体不透明硬度低大部分不能禁受200℃以上的温度有机聚合物材料的加工工艺有机聚合物材料的加工工艺路线有机物原料或型材成形加工切削加工零件热处理、焊接等热压、注塑、挤压、喷射、真空成形等高分子材料的基本概念高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。

绝大部分原料单体为有机化合物。

在有机化合物中,除碳原子外,其他主要元素为氢、氧、氮等。

在碳原子与碳原子之间、碳原子与其它元素的原子之间能形成稳定的共价键。

由于碳原子是4价,所以可以形成为数众多、结构不同的有机化合物,已知的有机化合物的总数已接近千万,而且新的有机化合物还不断合成出来。

高分子的链结构高分子的聚合度及其计算立构规整性碳链高分子与杂链高分子共聚物高分子的相对分子质量与机械强度1、高分子的链结构一个大分子往往由许多相同的、简单的结构单元通过共价键重复连接而成,因此高分子又称为聚合物(polymer)。

也就是说高分子化合物是由许多结构单元相同的小分子化合物通过化学键连接而成的。

高分子的一个重要特点:当一个化合物的相对分子质量足够大,以至多一个链节或少一个链节不会影响其基本性能。

方括号内是聚氯乙烯结构单元,并简称结构单元。

许多重复单元连接成线型大分子,类似一条链子,因此有时又将重复单元称为链节。

由形成结构单元的小分子组成的化合物,称为单体,是合成高分子的原料。

式中括号表示重复连接,通常用n代表重复单元数,由又称聚合度。

聚合度是衡量高分子大小的指标。

2、高分子的聚合度及其计算由聚氯乙烯的结构式很容易看出,高分子的相对分子质量是重复单元的相对分子质量(M0)与聚合度( )(或重复单元数n)的乘积,即根据化合物的相对分子质量大小来划分高分子和小分子:相对分子质量小于1000的,一般为小分子化合物;而相对分子质量大于10000的,称为高分子或高聚物;处于中间范围的可能为高分子(低聚物),也可能为小分子。

3、立构规整性化学组成相同的高分子,链结构也相同,但立体构型不同,即原子或原子团在三维空间由化学键连结的排列不同,这种情况称为高分子的立体异构,简称立构异构。

立体异构分为两类:一是手性碳原子产生的光学异构体;二是分子中双键或环上的取代基空间排列不同的几何异构体。

对几何异构来说,有规几何异构包括顺式和反式两种,取代基处在双键同侧的为顺式,处在异侧的为反式。

高分子的立构规整性对材料性质极为重要顺式1,4-聚丁二烯室温下是一种橡胶,Tg=-108℃;反式1,4-聚丁二烯容易结晶,熔点148 ℃,弹性很差,是一种塑料。

•国际通用代号为BR,是目前仅次于丁苯橡胶的世界上第二大通用合成橡胶;•具有弹性好,耐磨性强和耐低温性能好,生热低,滞后损失小,耐屈扰性;•抗龟裂性及动态性能好等优点,可与天然橡胶、氯丁橡胶以及丁腈橡胶等并用;•在轮胎、抗冲击改性、胶带、胶管以及胶鞋等橡胶制品的生产中具有广泛的应用。

4、碳链高分子与杂链高分子高分子主链由碳原子组成,称为碳链高分子。

高分子主链上不仅含碳,还含有少量其它原子,称为杂链高分子。

如尼龙6,6,它是由-NH(CH2)6NH-和-CO(CH2)4CO-两种结构单元组成。

可将两种结构单元总数称为聚合度并记作,也可将重复单元数称为聚合度并记作,这是两种不同的表示法,显然5、共聚物两种或更多种的小分子一个接一个地连接成链状或网状结构而形成的高分子,称为共聚物(由两种或两种以上单体聚合而成的聚合物)。

例如由氯乙烯和醋酸乙烯酯共同聚合时,产物为:根据各种单体单元在分子链中的排列状况,可将共聚物分为无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物等6、高分子的相对分子质量与机械强度由高分子的相对分子质量高赋予的性质特点,主要是使高分子化合物具有一定的机械强度,可以作为结构材料使用。

高分子的平均相对分子质量单体聚合物反应的随机性使得分子的聚合度不同,因此高分子材料是由大小不同的高分子的同系物组成的。

测出的高分子相对分子质量实际上是大小不同的高分子混合物相对分子质量的统计平均值。

算出的聚合度也是统计平均聚合度。

不同大小的高分子所占的相对比例,即为该高分子试样的相对分子质量分布情况。

这种相对分子量不均一的特殊性质称为多分散性。

根据统计方法不同,平均相对分子质量可分:有数均相对分子质量3 、重均相对分子质量 1 、粘均相对分子质量2 等。

对于相对分子质量不均一的高分子试样来说,有高分子的分子量分布由于高分子材料的多分散性,平均分子量并不能完全表征其中各种分子的数量,因此还有分子量分布的概念。

目前常用的表示分子量分布的方法:(1)分子量分布指数DD值越大,表示分布越宽。

天然高分子的D值可达1,完全均一,合成高分子的D值一般在1.5~50之间。

(2)分子量分布曲线第二节高分子的合成、结构与性能一、高分子的合成由小分子单体通过化学方法得到高分子的过程称为聚合反应。

聚合反应可从不同的角度进行分类,按机理可分为逐步聚合和链式聚合。

1、逐步聚合反应逐步聚合过程中,高分子链逐步变大。

这类聚合反应包括:缩聚反应和某些非缩聚反应。

可供逐步聚合的单体类型很多,但都必须具备同一基本特点:同一单体上必须带有至少两个或更多可进行逐步聚合反应的官能团,且当只有反应单体的官能团数等于或大于2时才能生成大分子。

能发生逐步聚合反应的基团有:-OH、-NH2、-COOH、酸酐、-COOR、-COCl、—H、-Cl、-SO3、-SO2Cl等。

(1)缩聚反应缩聚反应兼有聚合成高分子和缩合出低分子物的双重意义,主产物称为缩合物。

例如聚碳酸酯(PC)的制备:共同特点:在生成聚合物分子的同时,伴随有小分子副产物的生成,如H2O, HCl, ROH等。

由于低分子副产物的析出,缩聚物的结构单元要比单体少一些原子,因此相对分子质量不再是单体相对分子质量的整数倍。

缩聚反应链的增长过程缩聚反应中,链的增长是由单体缩合生成二聚体、三聚体等,生成的这些低聚体不仅可与单体发生缩合反应而且相互之间还发生缩合反应,生成聚合度更高的聚合体,由此形成在缩聚反应中的单体与单体之间、单体与聚合物之间的低聚体与低聚体之间的混增长过程。

注意一个概念:一个参与反应的单体上所含的能参与反应的官能团数称为官能度。

缩聚反应的类型缩聚反应包括线型缩聚反应和体型缩聚反应。

线型缩聚反应:线型缩聚必有一种或两种双官能度单体。

聚合产物分子链只会向两个方向增长,生成线形高分子。

除具有逐步性的特征外,通常是可逆反应的。

如二元醇聚合生成聚醚体型缩聚反应:当体系中至少含有一种3官能度或以上的单体时,生成的逐步聚合产物是非线型的。

体系中使用一个双官能团单体和一种3官能团单体或一种4官能团单体进行缩聚,反应分别记作“2-3”或“2-4”体系,除了初期生成线缩聚物外,侧基也能缩合并生成支链,进一步形成立体型结构,称作体型缩聚反应。

这样的缩聚反应生成支化高分子后在合适的条件下聚合度迅速增长,最终能生成无限大的三维交联网络结构,即体形高分子。

注意:体形高分子只能被溶剂溶胀而不能被溶解,也不能受热熔融。

交联程度很高时完全不受溶剂的影响。

(2) 逐步开环已内酰胺水解开环聚合过程中高分子聚合度随时间的延续而逐渐增大,为逐步机理;但与缩聚有所不同,没有小分子水析出,初期单体转化率不高,反应体系中始终存在单体。

这些都是逐步开环聚合所特有的特征。

(3) 聚加成反应逐步聚合的特点1.低分子单体通过官能团间的缩合逐步形成大分子。

体系由单体和分子量递增的一系列中间产物组成。

2.每一步反应的速率和活化能基本相同。

3.反应初期大部分单体很快形成低聚物,短期内转化率很高。

随后低聚物相互反应,分子量缓慢上升。

4.大部分是平衡反应。

2、链式聚合A、自由基聚合自由基聚合是至今为止研究最为透彻的高分子合成反应。

其聚合产物约占聚合物总产量的60%以上。

特点:单体来源广泛、生产工艺简单、制备方法多样。

重要的自由基聚合产物:高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚(甲基)丙烯酸及其酯类、聚丙烯腈、聚丙烯酰胺、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等。

自由基聚合的基元反应自由基聚合是链式聚合的一种,至少由3个基元反应组成,它们是链引发反应、链增长反应和链终止反应。

此外,还可能伴有链转移等反应。

1)链引发反应形成单体自由基的反应。

引发剂、光能、热能、辐射能等均能使单体生成单体自由基。

由引发剂引发时,由两步反应组成:2)链增长反应链引发反应产生的单体自由基具有继续打开其它单体π键的能力,形成新的链自由基,如此反复的过程即为链增长反应。

两个基本特征:(1)放热反应,聚合热约55 ~95kJ/mol。

(2)链增长反应活化能低,约为20 ~34 kJ/mol,反应速率极高,在0.01 ~几秒钟内聚合度就可达几千至几万,难以控制。

3)链终止反应终止方式与单体种类和聚合条件有关。

一般而言,单体位阻大,聚合温度高,难以偶合终止,多以歧化终止为主。

例如:60℃以下苯乙烯聚合以几乎全为偶合终止,60℃以上歧化终止逐步增多。

60℃以下甲基丙烯酸甲酯聚合两种终止方式均有,60℃以上则以歧化终止逐步为主。

4)链转移反应链自由基从单体、溶剂、引发剂、大分子上夺取原子而终止,而失去原子的分子成为自由基继续新的增长,使聚合反应继续进行的过程,称为“链转移反应”。

自由基聚合反应的特征:聚合反应机理明显的包括引发、链增长、链终止、链转移等基元反应;链增长反应活化能低,增长速率极快,增长过程瞬时完成,相对分子质量高;引发剂逐步分解,单体被逐步引发聚合,转化率逐步增大;由于链终止的多样性和随机性,相对分子质量分布宽;少量阻聚剂足以使自由基聚合反应终止。

(2) 离子聚合离子聚合是又一类链式聚合。

它的活性中心为离子。

根据活性中心的电荷性质,可分为阳离子聚合和阴离子聚合。

多数烯烃单体都能进行自由基聚合,但是离子聚合却有极高的选择性。

原因是离子聚合对阳离子和阴离子的稳定性要求比较严格。

例如只有带有1,1-二烷基、烷氧基等强推电子的单体才能进行阳离子聚合;带有腈基、羰(tang)基等强吸电子基的单体才能进行阴离子聚合。

但含有共轭体系的单体,如苯乙烯、丁二烯等,则由于电子流动性大,既可进行阳离子聚合,也能进行阴离子聚合。

(1) 阳离子聚合能用于阳离子聚合的单体有烯类化合物、羰基化合物、含氧杂环化合物等,以烯类单体为重点。

相关文档
最新文档