硅纳米线的生长与电学性质研究

合集下载

温石棉 硅纳米线

温石棉 硅纳米线

温石棉硅纳米线
温石棉和硅纳米线是两种不同的物质。

温石棉是一种天然纤维矿物,化学式为Mg6Si4O10(OH)8,因发现于加拿大温石棉矿而得名。

它具有耐酸碱、耐腐蚀、耐高温、耐高压、不燃不爆、无毒无味等特性,是水溶性纤维,被广泛应用于防火保温制品和橡胶制品中。

硅纳米线是一种新型的一维半导体纳米材料,线体直径一般在10nm左右,内晶核是单晶硅,外层有一SiO2包覆层。

由于自身所特有的光学、电学性质如量子限制效应及库仑阻塞效应引起了科技界的广泛关注,在微电子电路中的逻辑门和计数器、场发射器件等纳米电子器件、纳米传感器及辅助合成其它纳米材料的模板中的应用研究已取得了一定的进展。

硅纳米线径向p-i-n结电输运特性研究

硅纳米线径向p-i-n结电输运特性研究

硅纳米线径向p-i-n结电输运特性研究在光伏太阳能电池中,对于提高载流子的收集效率和光转换效率,硅纳米线径向p-i-n结是一种非常有潜力的结构。

然而,迄今为止,论文中报道的本征层厚度均小于50 nm,在此厚度下,本征层作为载流子主要收集区域的作用并未凸现出来。

在本文中,采取浓度为1016~1020 /cm3的杂质掺杂,以增厚的本征层(150 nm)为前提,利用泊松方程得到硅纳米线径向p(核区)-i(夹层)-n(壳层)结不同区域的电场及电势分布。

计算结果显示,p区和n区的电场分布是不均匀的,且随着本征层半径的增大,电场逐渐降低。

对于核区半径为50 nm的p-i-n结,当杂质浓度低于1017 /cm3时,核区被完全耗尽。

随着杂质掺杂浓度的增加,耗尽层厚度逐渐降低,本征区载流子的漂移速度逐渐增大并趋于饱和。

从电场强度、耗尽层厚度、载流子漂移速度三方面得到杂质最佳掺杂浓度为1018 /cm3。

通过比较本征层载流子的渡越时间和寿命,确定了材料允许的最大缺陷浓度。

关键词:径向p-i-n结,电场强度,耗尽层,漂移速度,最佳掺杂浓度第一章绪论1.1 引言目前,基于径向纳米线独特的光、电学性质,径向纳米线太阳能电池的高效光管理研究已经成为普遍重视的课题[1-6]。

相比于传统的平面pn结器件,径向纳米线阵列可以使光的吸收过程和载流子的分离过程相互独立,有利于实现低质量材料的应用,降低成本。

并且,在光学结构(阵列周期、直径、形状等)优化的情况下[7-9],纳米线阵列表现出较高的光管理能力,如较高的抗反射性。

纳米线阵列优异的光吸收特性已经被实验所证明[10,11]。

然而,在纳米线生长过程中,由于重n/p型的掺杂、催化剂(Au)的使用,掺杂区产生了大量的复合中心,载流子的收集效率仍然较低。

其解决办法之一为在pn结中引入本征层,使载流子的收集区域从p/n区转移到本征区。

虽然有论文[12-14]对径向纳米线p-i-n结的性能进行了分析,但由于本征层较薄(<50 nm),对于载流子的收集其并没有起到很好的作用。

硅纳米线的分子动力学模拟

硅纳米线的分子动力学模拟

硅纳米线的分子动力学模拟硅纳米线是一种非常重要的纳米材料,在纳米科技领域中有着广泛的应用,如电子学、光电子学和生物传感器等。

因此,研究硅纳米线的结构、性质和动力学行为对于深入理解其应用和生物效应具有重要意义。

本文将主要介绍硅纳米线的分子动力学模拟。

背景分子动力学模拟是一种计算方法,通过在计算机上模拟物质微观结构和运动,以研究它们的宏观性质。

分子动力学模拟在物理、化学、生物、材料科学等领域中已经广泛应用。

与实验相比,分子动力学模拟有如下的优势:1.可以控制条件。

实验状态受到许多限制,例如温度、压力、物质的纯度等,而分子动力学模拟可以在任何条件下进行,使得研究更加灵活和可控。

2.可以对分子的微观结构进行分析。

实验通常只能从宏观上观察样品的性质,而分子动力学模拟可以提供大量的微观信息,例如原子的位置、速度和能量等。

硅纳米线是由硅原子组成的一维纳米材料,在实验中通常是通过化学气相沉积法或物理气相沉积法制备。

考虑到硅纳米线的材料的难以提供充足的理论分析,分子动力学模拟成为了研究硅纳米线的重要工具之一。

模拟方法硅纳米线的分子动力学模拟需要考虑到许多因素,包括原子的相互作用、表面张力和应力等。

通常情况下,硅纳米线的模拟可以使用经典分子动力学来进行。

这个方法模拟所有原子之前的相互作用,包括键的形成、角度的变化和键长变化,通过功率法和NVD算法来计算。

在模拟之前,需要设定一定的模拟条件,如系统容积、温度、压力等。

硅纳米线通常在稳态条件下进行模拟,这意味着它的结构、性质和动力学行为不随时间变化。

在实际操作中,容器的边界是需要进行周期性的边界化,边界的作用是保证在模拟中的原子的对称性。

从头开始模拟需要大量的计算时间,所以在实际操作中使用了一些现成的模拟软件,例如LAMMPS 和GROMACS等,可以充分利用并行计算加速模拟。

这样就可以在较短时间内得到可靠的模拟结果。

结果与讨论分子动力学模拟的结果包括多个方面的内容,包括坐标和速度的变化、原子间的相互作用、能量、自由能和动力学性质等。

硅纳米线研究进展概述

硅纳米线研究进展概述

影 响, 硅纳米线的拉曼峰值相对单 晶硅有红移 , 同时呈 现 出明显
的不对称 。R n pn n og— i Wag等 比较 了不 同直径硅 纳米 线的 g 拉曼特征后发现随着硅纳米线直径 的减 小 , 拉曼 峰移 向低频带 ,
并且发生 了低频 不对称 宽化 。激光 辐射发 热 、 压应 力 和声子 限 制效应都能 使拉 曼峰频 移。M. . o s nioi J K nt t v a n c等 研究 了硅 纳米线 的量子限 制效应 与非谐 性之 间的关 系 , 现用激 光加 热 发 硅纳米线阵列 的部分 区域 , 会导致 一阶拉曼峰发 生位移 和加宽 ,
第4 0卷第 8期
21 0 2年 4月
广



Vo . 140 No. 8 Ap l 2 2 i r . 01
Gu n z o h mia n u t a g h u C e c lI d sr y
硅 纳 米 线研 究 进 展概 述 术
郑红梅 顾 家祯 袁志 山 , ,
1 4
广



21 0 2年 4月
中含有该金属元素 , 导致 纳米 线不 纯。
除 了受 硅 纳 米 线 结 构 的影 响 , 纳 米 线 的 电学 特 性 也 取 决 硅
2 拉 曼 特 征
受 到脆 弱 的结 构 形 态 、 子 限 制 效 应 、 面 氧 化 层 和 加 热 的 声 表
于其化学成分 。裴立宅等 发现对硅纳米线进行掺杂或减小硅 纳米线的直径可提 高载流 子浓度 及迁移 率 、 场发射 和 电子输 运
性能 。Pn i 等” i X e 引发 现掺杂 物在径 向分布不 均匀 , 取决 于 g 这 纳米线直径。C n aeK.C a adc hn等 对 刚制备 出的纳 米线进 行 锂化。锂化前 , 新的纳米线 的电阻 为 2 i, 5k) 电阻率 为 0 0 ・ . 2n c 锂化之后电阻为 8M t电阻率为 3n ・ m, m, f, c 电子输送特 性发 生巨大变化。z Y Z ag等 研究发现 了硅纳米线 掺杂 状态 .一 hn 和表面悬挂键 之间一 种新 的物理耦 合关 系 , 而 打开新 的机 遇 从 来发展纳米 自旋电子学 。

纳米材料电学性质的研究

纳米材料电学性质的研究

纳米材料电学性质的研究摘要:纳米体系中,电子波函数的相关长度与体系的特征尺寸相当,电子不再能够视为处于外场中运动的经典粒子,其波动性在电子输运过程中得到充分体现,因此表现出特殊的电子能态特性。

文中主要对半导体的电学性质归纳总结,如自由载流子的浓度与温度的关系、掺杂对能带结构和载流子浓度的影响、半导体的电导率如何依赖于载流子的浓度和迁移率等,以及纳米半导体的介电行为(介电常数、介电损耗)及压电特性等。

同时对硅纳米体系的电学性质做一些概况总结,并对其应用前景作进一步展望。

关键词:纳米材料、纳米半导体、电学性质、纳米硅体系一、绪论随着纳米科技的发展,高度集成化的要求及原件和材料微小化趋势下,纳米材料无疑将成为主角。

纳米半导体更是展现出诱人的应用前景。

纳米半导体粒子的高比表面、高活性、特殊的特性等使之成为应用于传感器方面最具前途的材料。

它对温度、光、湿气等环境因素是相当敏感的。

外界环境的改变会迅速引起表面或界面离子价态电子输运的变化;利用其电阻的显著变化可作成传感器,其特点是响应速度快、灵敏度高、选择性优良。

目前,该领域的研究现况是:(i)在纳米半导体制备方面,追求获得量大、尺寸可控、表面清洁、制备方法趋于多样化、种类和品种繁多。

(ii)在性质和微结构研究上着重探索普适规律。

(iii)研究纳米尺度复合,发展新型纳米半导体复合材料。

(iv)纳米半导体材料的光催化及光电转换研究。

二、纳米材料的电子能态特性2.1 纳米材料的电子结构纳米材料的尺寸在1nm~100nm之间,体系中只含有少数的电子,此时电子的结构与单个原子壳层结构十分类似,可以借助处理原子的电子结构模型粗略地求出。

如果将这一体系看成是一个势阱,则电子被限制在此势阱中。

显然电子可占据的能级与势阱的深度和宽度有关。

在强限制的情况下,即势阱很深时,纳米材料具有类原子的特性,可称为类原子材料。

它的基态与所包含的电子数目的奇偶性有关,从而影响到它的物理性质。

碳化硅纳米线的制备与性能研究进展

碳化硅纳米线的制备与性能研究进展

碳化硅纳米线的制备与性能研究进展×××××××××××××学校西安邮编×××摘要: SiC半导体材料的禁带宽度大、击穿电场高、热导率大、饱和漂移速度高等特点使其在高频、高温、高功率、抗辐射等方面有良好的性能,被认为是新一代微电子器件和集成电路的半导体材,因此研究SiC纳米线材料具有重要意义。

Summary: SiC semiconductor materials with the big breakdown electric field width, high, thermal conductivity, saturated drifting velocity higher characteristic in the high frequency and high temperature, high power, resist radiation and good performance, and is considered to be a new generation of microelectronics devices and integrated circuit of the semiconductor material, so the study of SiC nanowires material to have the important meaning.关键词:纳米线,SiC,场效应晶体管,薄膜晶体管,光催化降解Key words: Nanowires, SiC, field effect transistor, thin film transistor, photocatalytic degradation.1 纳米材料的性能纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1—100nm)或由它们作为基本单元构成的材料。

化学气相沉积法制备SiC纳米线的研究进展

化学气相沉积法制备SiC纳米线的研究进展

化学气相沉积法制备SiC纳米线的研究进展摘要:SiC纳米线具有优良的物理、化学、电学和光学等性能在光电器件、光催化降解、能量存储和结构陶瓷等方面得到广泛应用。

其制备方法多种多样其中化学气相沉积法(CVD)制备SiC纳米线因具有工艺简单、组成可控和重复性好等优点而备受关注。

近年来在化学气相沉积法制备SiC纳米线以及调控其显微结构方面取得了较多成果。

采用Si粉、石墨粉和树脂粉等低成本原料以及流化床等先进设备,通过化学气相沉积法制备出线状、链珠状、竹节状、螺旋状以及核壳结构等不同尺度、形貌各异的SiC纳米线并且有的SiC纳米线具有优良的发光性能、场发射性能和吸波性能等,为制备新型结构和形貌的SiC纳米线及开发新功能性的SiC纳米器件提供了重要参考。

目前,未添加催化剂时利用气相沉积法制备的SiC纳米线虽然纯度较高但存在产物形貌、尺度和结晶方向等可控性差;制备温度较高和产率相对较低的问题。

而添加催化剂、熔盐以及氧化物辅助可明显降低SiC纳米线的制备温度提高反应速率以及产率但易在SiC 纳米线中引入杂质。

将来应在提高SiC纳米线的纯度、去除杂质方面开展深入研究;还应注重低成本、规模化制备SiC纳米线的研究采用相应措施调控SiC纳米线的显微结构以拓宽SiC纳米线的应用领域。

本文综述了目前国内外采用化学气相沉积制备SiC纳米线的方法分析总结了无催化剂、催化剂、熔盐以及氧化物辅助等各种制备方法的优缺点并对未来的研究进行展望,期望为SiC纳米线的低成本、规模化制备和应用提供理论依据。

引言:SiC纳米线因具有小尺寸效应、量子尺寸效应、表面效应和宏观量子隧道效应等而表现出独特的电、磁、光、热等物理和化学性质。

同时SiC纳米线还具有优异的力学性能、抗腐蚀性、耐热性以及耐高温氧化性等,使其在复合材料和陶瓷材料的强化增韧中起重要作用调以及吸收性能好,可有效改善材料的场发射性能、催化性能、电化学性能及微波吸收性能等l1。

多功能性的SiC纳米线成为极具广泛应用潜力的理想新型材料。

硅纳米线的制备及其光学性质研究

硅纳米线的制备及其光学性质研究

硅纳米线的制备及其光学性质研究硅纳米线是一种直径在几纳米到几十纳米之间的纳米尺寸的硅材料,具有很好的机械、电子和光学性质。

因此,硅纳米线被广泛应用于光电器件、传感器、能源等领域。

本文将探讨硅纳米线制备方法及其光学性质研究的最新进展。

一、硅纳米线的制备方法目前,制备硅纳米线的方法主要有化学气相沉积法、溶胶-凝胶法、电化学法、物理气相沉积法等多种方法。

下面将介绍其中几种方法。

1. 化学气相沉积法化学气相沉积法是一种常用的制备硅纳米线的方法。

该方法是利用气相反应在高温条件下使硅源在载气中分解并在衬底上生长成硅纳米线。

其优点是操作简单、成本低,但是需要高温下进行反应,且硅纳米线的直径难以控制。

2. 溶胶-凝胶法溶胶-凝胶法是一种化学合成硅纳米线的方法,目前已被广泛应用于制备硅纳米线。

该方法是将硅源与溶剂混合,并通过加热和干燥将其固化成凝胶,再进行热处理,使凝胶转化为纳米尺寸的硅颗粒。

其优点是可以控制硅纳米线的直径,并且还可以控制硅纳米线的形态,比如,可以制备锥形、球形等形态的硅纳米线。

3. 电化学法电化学法是一种制备硅纳米线的常用方法,它是通过在电解液中让硅材料通过电解来制备硅纳米线。

电化学法可以制备出高质量、高密度、高可控性的硅纳米线,在光电器件、化学传感器等领域有着广泛的应用。

二、硅纳米线的光学性质研究硅纳米线具有独特的光学性质,如增强拉曼散射信号、表面等离子体共振等。

其光学性质与硅纳米线的直径、长度、形态等有关。

下面将介绍几种硅纳米线的光学性质研究。

1. 硅纳米线的表面等离子体共振硅纳米线的表面等离子体共振是指硅纳米线表面的自由载流子与光之间的相互作用。

当光照射到硅纳米线表面时,光子会产生激发,并形成表面等离子体共振的现象。

该现象可以应用于传感器、光电器件等领域。

2. 硅纳米线的增强拉曼散射硅纳米线的增强拉曼散射是指硅纳米线表面与分子之间的相互作用所产生的拉曼信号增强现象。

该现象可以用于化学传感器、分子识别等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅纳米线的生长与电学性质研究
硅纳米线是一种在纳米尺度下具有独特性质的材料,其具有高比表面积、优异
的电学特性、化学稳定性等特点,因此在纳米电子学、纳米光电子学、纳米生物学等领域具有广泛的应用前景。

目前,生长硅纳米线的方法主要有热化学气相沉积法、电化学沉积法、溶胶凝胶法等。

本文将着重讨论硅纳米线的生长与电学性质研究。

一、硅纳米线的生长
硅纳米线的生长方法具有多样性,其中以热化学气相沉积法(VLS法)最为常用。

该方法通过控制硅源气体的流量和温度,使硅源气体在金属催化剂表面进行化学反应,从而形成硅纳米线。

金属催化剂通常采用金、银、铜等,其中金是最常用的一种,因为它对硅的触媒作用最好。

硅源气体通常采用硅烷(SiH4)或三甲基
硅烷(Si(CH3)3H),在高温条件下分解成硅原子,随后在金属催化剂表面吸附,
形成硅纳米线。

之后,硅纳米线在适当的条件下继续生长,形成较长的硅纳米线。

除了VLS法,还有其他方法可以生长硅纳米线,如电化学沉积法(ECS法)。

在该方法中,电极上的金属催化剂首先被沉积,然后在硅源的作用下形成硅纳米线。

溶胶凝胶法(Sol-gel法)是另一种生长硅纳米线的方法,它通过控制溶液中硅前
体的浓度和温度等条件,将硅源沉积在基底上,从而形成硅纳米线。

二、硅纳米线的电学性质
硅纳米线的电学性质是其被广泛研究的一个方面。

硅纳米线的电学性质主要受
到其尺寸和形态等因素的影响。

通常情况下,硅纳米线在氧化处理后表现出的导电性能比未处理的硅纳米线要好。

这是因为氧化处理可以去除硅纳米线表面的有机盖层,从而暴露出更多的硅原子,提高导电性。

另一方面,硅纳米线在不同的外部环境下(如温度、湿度、气压等)表现出不
同的电学性质。

例如,在高温和低压下,硅纳米线的电学性能会得到改善。

而当硅纳米线暴露在潮湿环境下时,其表面的导电性会下降。

硅纳米线的导电性表现出很强的尺寸依赖性。

当硅纳米线的直径小于10 nm时,其电学性能表现出了量子尺寸效应。

这一效应使得硅纳米线的导电性能与其直径有关,并且随着硅纳米线直径的缩小而变差。

此外,硅纳米线的导电性能还受到其形态的影响。

例如,当硅纳米线采用多支形态时(即多个硅纳米线的束或垂直于基底),其导电性比单支硅纳米线要好。

三、结语
总之,硅纳米线作为一种具有高比表面积、优异的电学特性、化学稳定性的材料,正在吸引着越来越多的研究人员进行研究。

在生长硅纳米线的方法上,热化学气相沉积法是最常用的方法。

在电学性质方面,硅纳米线的导电性能表现出很强的尺寸依赖性和形态依赖性。

未来,随着对硅纳米线生长和电学性质的深入研究,相信硅纳米线在更广泛的应用领域中将会发挥出更大的潜力。

相关文档
最新文档