高等代数一元多项式例题
多项式试题

《高等代数》(上)题库第一章多项式填空题(1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数是。
(1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或p(x)|g(x)。
(1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。
(1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b。
(1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。
(1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。
(1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。
(1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为f(x)= 。
(1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根是。
(1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。
(1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。
(1.3)12、如果f(x)|g(x),g(x)|h(x),则。
(1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。
(1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。
(1.3)15、若f(x)|g(x),f(x)| h(x),则。
(1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。
(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。
(1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。
(1.7)19、α是f(x)的根的充分必要条件是。
(1.7)20、f(x)没有重根的充分必要条件是。
高等代数_李海龙_习题第2章多项式

第二章 多项式2.1 一元多项式的定义和运算1. 设f (x ),g (x )和h (x )是实数域上的多项式.证明:若f (x )2 = x g (x )2+x h (x )2,那么 f (x ) = g (x ) = h (x ) = 0.证明概要:比较等式两边的次数可证.2. 求一组满足上一题中等式的不全为零的复系数多项式f (x ),g (x )和h (x ). 解:取f (x ) = 2ix ,g (x ) = i (x +1),h (x ) = x-1即可. 或取f (x ) = 0,g (x ) = 1,h (x ) = i 即可. 3. 证明:(1)(1)(1)1(1)2!!(1)()(1)!nnx x x x x n x n x x n n ---+-+-+---=-证明提示:用数学归纳法证之.2.2 多项式的整除性1. 求f (x )被g (x )除所得的商式和余式:(i) 14)(24--=x x x f ,13)(2--=x x x g(ii) 13)(235-+-=x x x x f ,23)(3+-=x x x g解:(i) 35)(,2)(2--=--=x x r x x x q(ii) 56)(,2)(22++=+=x x x r x x q2. 证明:kx f x )(|必要且只要)(|x f x证明:充分性显然.现证必要性.反证法:若x 不整除)(x f ,则c x xf x f +=)()(1,且0≠c .两边取k次方得k k c x xg x f +=)()(,其中0≠kc .于是x 不整除)(x f k .矛盾.故必要性成立.3. 令)(),(),(,)(2121x g x g x f x f 都是数域F 上的多项式,其中0)(1≠x f 且)()(21x g x g |)()(21x f x f ,)(1x f |)(1x g .证明:)(2x g |)(2x f .证明:反复应用整除定义即得证.4. 实数m,满足什么条件时多项式12++mx x 能够整除多项式q px x ++4?解:以12++mx x 除q px x ++4得一次余式.令余式为零得整除应满足的条件:当且仅当m m p 23-=且12-=m q 时,12++mx x |q px x ++4.5. 设F 是一个数域,F a ∈.证明:a x -整除nn a x -.解:因为1221()()n n n n n n x a x a x ax a x a -----=-++⋅⋅⋅++6. 考虑有理数域上多项式 1)1)(2()1()(-+++++=n k n k x x x x fn k x x )1()2(++⋅⋅⋅+,这里n 和k 都是非负整数.证明:1+k x |1)1()()1(++++-n k x x f x .解:因为 1(1)()(1)k n x f x x ++-++1[2(1)]()(1)k n x x f x x ++=-+++nk x x )1()2(1+=+7. 证明:1-d x 整除1-nx 必要且只要d 整除n .证明:若d |n ,令md n =,则=-=-1)(1m d n x x )1(-dx ·)1)()((21++⋅⋅⋅++--dm d m d x x x .所以1-d x |1-n x .下面证必要性:反证法,若d 不整除n ,令r qd n +=,0≠r ,且0<r <d .于是111)1(-+-=-=-=-+rr r qdr qdrqd nx x x xx xxx)1()1(-+-=rqdr x xx .因1-qd x 可被1-d x 整除,故)1(-qdrx x 可被1-d x 整除.即1-r x 是1-n x 被1-d x 除所得的余式.因r <d ,0≠r .所以与1-n x 可被1-dx 整除相矛盾.2.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:(i)32103)(,343)(23234-++=---+=x x x x g x x x x x f ;(ii) i x i x i x i x x f ----+-+-+=1)21()42()22()(234;x i x x g -+-+=1)21()(2.解: (i) 3),(+=x g f ; (ii)i x i x g f -+-+=1)21(),(2.2. 设)()()(1x f x d x f =,)()()(1x g x d x g =.证明:若)())(),((x d x g x f =,且)(x f 和)(x g 不全为零,则1))(),((=x g x f ,反之,若1))(),((=x g x f ,则)(x d 是)(x f 与)(x g 的一个最大公因式.解:由本节定理2.3.2及2.3.3得证(常当作定理).3. 令)(x f 与)(x g 是][x F 的多项式,而a ,b ,c ,d 是F 中的数,并且0≠-bc ad .证明:))(),(())()(),()((x g x f x dg x cf x bg x af =++.证明:设)()()(1x bg x af x f +=)()()(1x dg x cf x g +=,=)(x d))(),((x g x f .易知)(x d |)(x f ,)(x d |)(x g ,从而)(x d |)(1x f ,)(x d |)(1x g .即)(x d 是)(1x f ,)(1x g 的一个公因式.再设)(x ϕ是)(1x f ,)(1x g 的任一公因式.则由定义知)(x ϕ|)(1x f ,)(x ϕ|)(1x g ,由)(x f ,)(x g 之所设及0≠-bc ad ,可解得)()()(11x g bcad b x f bcad d x f ---=)()()(11x g bcad a x f bcad c x g ----=从而可知)(x ϕ|)(x f ,)(x ϕ|)(x g .既)(x ϕ是)(x f 、)(x g 的一个公因式,所以)(x ϕ|)(x d .由定义知))(),(()(11x g x f x d =.4. 证明:(i) h g f ),(是fh 和gh 的最大公因式;(ii) ( f 1 , g 1 )( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ) 此处f ,g ,h 都是F [x ]的多项式. 证明:(i) 设( f , g ) = d , 则d | f ,d | g .所以dh | fh ,dh | gh .又有u ,v 使uf + vg = d .于是ufh + vgh = dh .所以dh 是fh ,gh 的一个最大公因式.(ii)设( f 1 , g 1 ) = d 1,( f 2 , g 2 ) = d 1,则d 1d 2同时整除f 1f 2,f 1g 2,g 1f 2,g 1g 2.d 1d 2是它们的一个公因式,另设ϕ是f 1f 2,f 1g 2,f 2g 1,g 1g 2的任一公因式,那么就有ϕ| ( f 1f 2 , f 1g 2 ),( f 1f 2 , f 1g 2 ) = f 1( f 2 , g 2 ) = f 1d 1.ϕ| ( f 2g 1 , g 1g 2 ),( f 2g 1 , g 1g 2 ) = g 1 ( f 2 , g 2 ) = g 1d 2.所以ϕ| ( d 2g 1 , f 1d 2 ),而( d 2g 1 , f 1d 2 ) = d 2 ( f 1 , g 1 ) = d 1d 2.既ϕ| d 2d 1.故有( f 1 , g 1 ) ( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ).5. 设432()242f x x x x x =+---,432()2f x x x x x =+--2-都是有理数Q 域上的多项式.求u (x ),][)(x Q x v ∈使得))(),(()()()()(x g xd f x v x g x u x f =+. 解:u (x )=-x-1,v (x )=x +2.6. 设(f , g )=1.令n 是任意正整数,证明:( f , g n) = 1.由此进一步证明,对于任意正整数m ,n ,都有( f m , g n ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,则vg = 1- uf ,两边n 次方得v n g n = ( 1- uf )n = 1+ u 1f .所以v n g n = ( 1- uf )n = 1 + u 1f - u 1f + v n g n = 1.从而 -u 1f + v n g n = 1,( f , g n ) = 1.固定g n,同理可证( f m, g n) = 1.7. 设( f , g ) = 1.证明:( f , f + g ) = ( f + g , g ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,进而有( u – v ) f + v ( g + f ) = 1, 所以( f , g + f ) = 1.同理( g + f , g ) = 1利用互素性质得( f g , f + g ) = 18. 证明:对于任意正整数n 都有( f , g )n = ( f n , g n ).证明:设( f , g )=d ,则f = df 1 ,g = dg 1,且( f 1 , g 1 ) = 1由上面第6题知 ( f 1n , g 1n) = 1,从而存在u ,v 使uf 1n+ vg 1n= 1.所以uf 1nd n+ vg 1nd n= d n,既uf n+ vg n= d n.又d n|f n,d n |g n .所以( f , g )n = d n = ( f n , g n ).9. 证明:若是f ( x )与g ( x )互素,并且的次数都大于0.那么定理2.3.3里的可以如此选取,u ( x )次数低于g ( x )的次数,v ( x )次数低于f ( x )的次数,并且这样的u ( x )与v ( x )是唯一的.证明:因为, 所以有u 1 ( x ),v 1 ( x )使u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,因))((x f ∂︒> 0,))((x g ∂︒> 0.所以f ( x )不整除v 1 ( x )及g ( x ) 不整除 u 1 ( x ).现以f ( x )除v 1( x ),得商式为q 1 ( x ),余式为v ( x ),则有v 1 ( x ) = f ( x ) q 1 ( x ) + v ( x ),其中))((x v ∂︒< ))((x f ∂︒.同理有u 1 ( x ) = g ( x ) q 2 ( x ) + u ( x ).其中))((x u ∂︒< ))((x g ∂︒.代入u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,得( g ( x ) q 2 ( x ) + u ( x ) ) f ( x ) + ( f ( x ) q 1 ( x ) + v ( x ) ) g ( x ) = 1.整理得u ( x ) f ( x ) + v ( x ) g ( x ) + [ q 1 ( x ) + q 2 ( x ) ] f ( x ) g ( x ) = 1.因为))()((x f x u ∂︒< ))()((x g x f ∂︒,))()((x g x v ∂︒< ))()((x g x f ∂︒,所以必有q 1 ( x ) + q 2 ( x ) = 0.即u ( x ) f ( x ) + v ( x ) g ( x ) = 1,且满足))((x u ∂︒< ))((x g ∂︒,))((x v ∂︒< ))((x f ∂︒.下面证唯一性 设另有u 2 ( x ) , v 2 ( x ) 满足u 2 ( x ) f ( x ) + v 2(x ) g (x ) = 1,及))((2x u ∂︒<))((x g ∂︒,))((2x v ∂︒<))((x f ∂︒.则有 ( u ( x ) - u 2 ( x ) ) f ( x ) = ( v 2 ( x ) – v ( x )) g ( x ).故f ( x )| ( v 2 ( x ) - v ( x ) ) g ( x ).又( f ( x ) , g ( x ) ) = 1,从而.如果v 2 ( x ) -0)(≠x v ,其次数一定低于f ( x )的次数,故只有v 2 ( x ) - v ( x ) = 0.既v 2 ( x ) = v ( x ).同理u ( x ) = u 2 ( x ).10.决定k ,使2(6)42x k x k ++++与2(2)2x k x k +++的最大公因式是一次的.解:设=24)6(2++++k x k x , g (x )= k x k x 2)2(2+++,以g ( x ) 除 f ( x ) 得余式4x +2k + 2.由题意4x + 2k + 2 | g ( x ),由此推出k = 1或k = 3.11.证明:如果 ( f ( x ) , g ( x ) ) =1,那么对于任意正整数m ,( f ( x m ) , g ( x m ) ) =1 证明:因为 ( f ( x ) , g ( x ) ) =1,所以u ( x ),v ( x ),满足u ( x ) f ( x ) + v ( x ) g ( x ) = 1.从而u ( x m) f ( x m) + v ( x m) g ( x m) = 1,此即是 ( f ( x m) , g ( x m) ) =1.12.设f ( x ) , g ( x )是数域F 上的多项式.f ( x )与g ( x )的最小公陪式指的是F [x ]中满足以下条件的一个多项式m ( x ):(a) f (x ) | m (x ) 且 g (x ) | m (x );(b) h (x )∈F [x ] 且 f (x ) | h (x ),g (x ) | h (x ),那么m (x ) | h (x ).(i) 证明: F [x ]中任意两个多项式都有最小公倍式,并且除了可能的零次因式差别外,是唯一的.(ii)设f (x ), g (x )都是最高次项系数是1的多项式.令[ f (x ), g (x )]表示 f (x )与g (x )的最高次项系数是1的那个最小公倍式.证明: f (x ) g (x )= (f (x ) , g (x )) [ f (x ), g (x )].证明:(i) 若f (x ) , g (x )有一个为0,则它门的最小公倍式是0.现设f (x )0≠, g (x )0≠.以d (x )记(f (x ) , g (x )).则f (x ) = d (x ) f 1(x ),g (x ) = d (x )g 1(x ),且(f 1(x ) , g 1(x )) =1.现证)()()(x d x g x f 是f (x ),g (x )的一个最小公倍式.首先由)()()(x d x g x f = f 1(x ) g (x )= f (x )g 1(x ),知其是f (x )与g (x )的一个公倍式.另设M (x )是f (x )与g (x )的任一公倍式,则有M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )及M (x )=g (x )t (x )= d (x ) g 1 (x )t (x ),消去d (x ),得f 1(x ) s (x ) = g 1 (x )t (x ).又(f 1(x ) , g 1(x )) =1,由此可得g 1 (x )|s (x ),令s (x )= g 1 (x ) s 1(x ).代入M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )得M (x )= d (x ) f 1 (x )g 1 (x )s 1(x )=s 1(x ))()()(x d x g x f .即)()()(x d x g x f | M (x ),即)()()(x d x g x f 是f (x ) , g (x )的一个最小公倍式.从而存在性得证.现证唯一性:若m 1(x ),m 2(x )都是f 1(x ) , g 1(x )的最小公倍式,由定义得m 1(x )|m 2(x )及m 2(x )|m 1(x ).所以m 1(x ),m 2(x )只相差一个常数因子.(ii)由(i)的证明,知当f 1(x ) , g 1(x )的最高次项系数都是1时,有f (x ) g (x )= (f (x ) , g (x )) [f (x ) , g (x )].13.设g (x )|)()(1x f x f n ⋅⋅⋅,并且(f i (x ), g (x )) =1, i =1,1,,2-⋅⋅⋅n . 证明 g (x ) | f n (x ). 证明:令11()()()n h x f x f x -= ,由(f 1(x ), g (x ))=1. ( f 2(x ), g (x ))=1,所以(f 1(x ) f 2(x ),g (x ))=1,进而可证得(h (x ), g (x ))=1又g (x ) | h (x )f n (x ),所以g (x ) | f n (x ).14.设][)(,),(1x F x f x f n ∈⋅⋅⋅.证明:(i) ()(,),(1x f x f n ⋅⋅⋅)=(()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)), 1≤k ≤n -1.(ii))(,),(1x f x f n ⋅⋅⋅互素的充要条件是存在多项式][)(,),(1x F x u x u n ∈⋅⋅⋅使得1)()()()(11=+⋅⋅⋅+x u x f x u x f n n证明:(i) 设d (x ) = ( ()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)),有d (x ) |()(,),(1x f x f k ⋅⋅⋅), d (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步有d (x ) | f i (x ), i =1,n ,,2⋅⋅⋅.另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,h (x ) |()(,),(1x f x f k ⋅⋅⋅) 及h (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步h (x ) | ( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = d (x ).所以( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = ()(,),(1x f x f n ⋅⋅⋅).(ii)充分性:若有)(,),(1x u x u n ⋅⋅⋅使+⋅⋅⋅+)()(11x u x f1)()(=x u x f n n ,另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,则有h (x )|1.从而)(,),(1x f x f n ⋅⋅⋅互素.必要性:若(f 1(x ), f 2(x ))= d 2(x ),则由定理2.3.2有u 11(x ) ,u 12(x ) ,使u 11(x )f 1(x )+ u 12(x ) f 2(x )= d 2(x ),则由定理2.3.2可以假设对于s -1个多项式是成立的.即当d s-1(x ) = ()(,),(11x f x f s -⋅⋅⋅)时,有u 11(x ,),⋅⋅⋅u 1s-1(x ),使得∑-=111)()(s i i ix f x u=d s-1(x ).则对于s 个多项式来说,由()(,),(1x f x f s ⋅⋅⋅)= (()(,),(11x f x f s -⋅⋅⋅), f s (x ))= ( d s-1(x ) , f s (x )).知有p (x ), q (x )使p (x )d s-1(x ) + q (x ) f s (x ) = ( d s-1(x ) , f (x )),以d s-1(x )的上述表示式代入,则得∑-=111)()(s i i ix f x u+ q (x ) f s (x ) = ( d s-1(x ) , f (x )),.即有p (x )u 11(x ,),⋅⋅⋅p (x )u 1s-1(x ) , q (x ),使∑-=111)())()((s i i ix f x ux q +p (x ) f s (x ) = ()(,),(1x f x f s ⋅⋅⋅)()(,),(1x f x f s ⋅⋅⋅)=1时,令p (x )=1,s =n 其中u 1(x )= p (x ) u 11(x ,),⋅⋅⋅u 1s (x ) = p (x )u 1s (x ) 则本题必要性得证. 15.设][)(,),(1x F x f x f n ∈⋅⋅⋅.令I ={+⋅⋅⋅+)()(11x g x f f n (x ) g n (x )|][)(x F x g i ∈, 1≤i ≤n } .比照定理1.4.2,证明:)(,),(1x f x f n ⋅⋅⋅有最大公因式.[提示:如果)(,),(1x f x f n ⋅⋅⋅不全为零,取d (x )是中次数最底的一个多项式,则d (x )就是)(,),(1x f x f n ⋅⋅⋅的一个最大公因式.] 证明:如果0)()(1==⋅⋅⋅=x f x f n ,则0就是它们的最大公因式.如不全为0,则I 中 有非零多项式.设d (x )是I 中次数最低的一个多项式.以d (x )除f (x ),得.其中r 1=0,或∂︒( r 1 (x ))< ∂︒( d (x )).由于r 1 (x )= f 1(x )- q 1 (x )d (x ),可以推得r 1 (x )∈I ,而d (x )是I 中次数最底的,故r 1 (x ) =0.所以d (x )|f 1(x ),同理d (x )|f 2(x )⋅⋅⋅,,d (x )|f n (x ).即d (x ) 是)(,),(1x f x f n ⋅⋅⋅的一个公因式,又因是它们的组合,故d (x ) 就是)(,),(1x f x f n ⋅⋅⋅的最大公因式.2.4 多项式的分解1. 在有理数域上分解以下多项式为不可约因式的乘积:(i) 3x 2+1; (ii) x 3-2x 2-2x +1.解: (i) 不可约. (ii) (x +1) (x 2-3x +1)2. 分别在复数域,实数域和有理数域上分解多项式x 4+1为不可约因式的乘积.解:在复数域上有x 4+1= (x +22(1+i )) (x +22(1+i )) (x -22(1-i )) (x -22(1-i ));在实数域上有x 4+1=( x 2+2x +1) (x 2-2x +1);在有理数域上x 4+1 不可约3. 证明:g (x )2|f (x )2,当且仅当g (x )|f (x ).证明:充分性显然.现证必要性,即若g (x )2|f (x )2,那么g (x )|f (x ).若f (x )= g (x ) =0,则有g (x )|f (x ).如果f (x ), g (x )不全为0,令d (x )=(f (x ), g (x )).则f (x )=d (x )f 1(x ), g (x )=d (x )g 1(x ),且(f 1(x ), g 1(x ))=1.那么f (x )2=d (x )2f 1(x )2, g (x )2=d (x )2g (x )2,故由g (x )2|f (x )2,可得g 1(x )2|f 1(x )2,故g 1(x )|f 1(x )2,又(f 1(x ) , g 1(x ) ) =1,根据互素多项式的性质知g 1(x )|f 1(x ),从而g 1(x ) = c f 1(x ), (c 为非零常数).于是g (x )|f (x ).4. (i)求f (x )= x 5-x 4-2x 3+2x 2+x -1在Q (x )内的典型分解式;(ii)求f (x )= 2x 5-10x 4+16x 3-16x 2+14x -6在R (x )内的典型分解式. 解: (i) f (x )= (x-1)3(x +1)2 ; (ii) f (x )= 2(x-1)2(x-3)(x 2+1)5. 证明:数域F 上一个次数大于零的多项式f (x )是F [x ]中某一不可约多项式的幂的充分必要条件是对于任意g (x )∈F [x ],或者(f (x ), g (x )) =1,或者存在一个正整数m 使得f (x )|g (x )m . 证明:必要性:设f (x ) = p m (x ) ( p (x )不可约) ,则对于F [x ]中的任意g (x ),只有两种可能:(p (x ),g(x ))=1或 p (x )|g(x ).在前一情形有( f (x ),g (x ) )=1,在后一情形有p m (x ) |g m (x ),即f (x ) |g (x )m .充分性:设f (x )=1()i sri i a p x =∏为其典型分解式.令g (x )=p 1(x ).若 s >1,则(p (x ), g (x ))≠1,且f (x )不整除g (x )m,即条件成立时,必有s =1,即f (x )= 11()rap x .6. 设p (x )是F [x ]中一个次数大于零的多项式.如果对于任意f (x ), g (x )∈F [x ],只要p (x )|f (x )g(x )就有p (x )| f (x )或p (x )| g(x ),那么p (x )不可约.证明:反证法,若)(x p 可约,设)()()(21x p x p x p =,其中)(),(21x p x p 的次数都低于)(x p 的次数.由)()(|)(21x p x p x p ,根据条件可得出)(|)(1x p x p 或)(|)(2x p x p ,这是不可能的.2.5 重因式1. 证明下列关于多项式的导数的公式: a) )(')('))'()((x g x f x g x f +=+; b))(')()()('))'()((x g x f x g x f x g x f +=提示:设10()n n f x a x a x a =+++ ,10()mm g x b x b x b =+++ 利用本教材中对导数的定义证之.2. 设)(x p 是)(x f 的导数)('x f 的1-k 重因式.证明: a) )(x p 未必是)(x f 的k 重因式;b))(x p 是)(x f 的k 重因式的充分必要条件是)(|)(x f x p证明:a) 设4)(3+=x x f ,则x 是x x f 3)('=的二重因式,但不是)(x f 的因式,更不是)(x f 的三重因式.b) 必要性显然;充分性,设)(x p 是)(x f 的s 重因式,则)(x p 是)('x f 的1-s 重因式.11-=-k s 即得出.3. 证明有理系数多项式!!21)(2n xxx x f n++++= 没有重因式.证明:因为)!1(!21)('12-++++=-n xxx x f n ,有1),'(=f f .4. a,b 应该满足什么条件,下列的有理系数多项式才能有重因式?a) b ax x ++33b) b ax x ++44提示:由多项式有重因式的充要条件是它与它的导数不互素可得.a) 0423=+b a ; b)02734=-b a .5. 证明:数域F 上的一个n 次多项式)(x f 能被它的导数整除的充分必要条件是:nb x a x f )()(-=,这里a,b 是F 中的数.证明:若nb x a x f )()(-=,则1)()('--=n b x an x f ,0>n ,所以)(1)(')(a x nx f x f -⋅=,)(|)('x f x f .必要性:设)(x f 的典型分解式为)()()(11x p x ap x f tm t m =,其中)(x p i 都是不可约多项式,则)()()()('1111x x p x p x f tm t m ϕ--= .由)(|)('x f x f ,知c x =)(ϕ(常数),但))((1))('(x f x f ∂︒=+∂︒.故知t =1,且n x p =∂︒))((1.即nb x a x f )()(-=.2.6 多项式函数 多项式的根1.设f (x )=2x 5-3x 4-5x 3+1.求f (3),f (-2). 解: f (3) =109; f (-2) =-71.2.数环R 的一个数c 说是f (x )∈R(x )的一个k 重根,如果f (x )可以被(x -c )k整除,但不能被(x -c )k +1整除.判断5是不是多项式f (x )=3x 5-224x 3+742x 2+5x +50的根.如果是的话,是几重根?提示:用3次综合除法得:5是f (x ) 的二重根. 3.设2x 3-x 2+3x -5=a (x -2)3+b (x -2)2+c (x -2)+d .求a,b,c,d . 提示:应用综合除法得:a =2, b =11, c =23, d =13. 4.将下列多项式f (x )表成x-a 的多项式. a) f (x )= x 5,a =1; b) f (x )=x 4-2x 2+3,a =-2. 解:用综合除法求出:a) f (x )= x 5=(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1)+1; b) f (x )=x 4-2x 2+3=(x +2)4-8(x +2)3+22(x +2)2+24(x +2)+11. 5.求一次数小于4的多项式,使f (2)=3,f (3)=-1,f (4)=0,f (5)=2.解:f (x )= -32x 3+217x 2-6203x +426.求一个2次多项式,使它在x =0,,2ππ处于函数 sin x 有相同的值.结果:24()()f x x x ππ=--7.令f (x ) , g (x ),是两个多项式,并且f (x 3) +x g (x 3)可以被x 2+x +1.证明: f (1) = g (1) =0.证明: 因x 2+x +1| f (x 3) +x g (x 3).故x 2+x +1=0的根必为f (x 3) +x g (x 3)的根.而x 2+x +1=0的两个根是2,231ωωi+-=.但3ω=1.故有2(1)(1)0(1)(1)0f g f g ωω+=⎧⎨+=⎩,解此方程组得:f (1) = g (1) =0.8.令c 是一个复数,且是Q [x ]中一个非零多项式的根.令J ={ f (x )∈Q [x ] | f (c ) = 0}.证明:a)在J 中存在唯一的高次项系数是1的多项式p (x ),使得J 中每一多项式f (x )都可以写成p (x )q (x )的形式,这里q (x )∈Q [x ].b) p (x )在Q [x ]中不可约.如果c =32+,求上述的p (x ).证明: a) 因c 是Q [x ]中一个非零多项式的根,则J 中存在次数大于零的多项式,即令A ={ m |f (x )∈J ,∂︒( f (x ))=m }非空. A 中必有最小数设为n (n >0).其对应的多项式若为f (x ),令p (x )=1a f (x ), (a 0是f (x )的最高次项系数),则11()n n n p x x a xa -=+++ .现证当f (x ) ∈J 时,必有f (x ) =p (x )q (x ).对于任意的f (x )∈J ,由p (x )的取法知∂︒( f (x )) ≥∂︒(p (x )).以p (x )除f (x )得f (x )=p (x )q (x )+r (x ),其中r (x )=0或∂︒( r (x )) <∂︒(p (x )).由于r (c )=f (c )-p (c )q (c )=0,故知r (x )∈J . 由p (x )的取法知r (x )的次数不可能小于p (x )的次数.故只有r (x )=0,即f (x ) = p (x )q (x ).再证的唯一性.设另有p 1(x )具有上述性质,则p (x )| p 1(x )且p 1(x ) | p (x ).所以p 1(x ) = c p (x ).又首项系数都为1,故c =1,即p 1(x ) = p (x ).b) 反证法:设p (x )可约,令p (x )=p 1(x ) p 2(x ),知p 1(x )与p 2(x )的次数都小于p (x )的次数.又p (c )=p 1(c )p 2(c )=0,知p 1(c )=0或p 2(c )=0从而p 1(c )或p 2(c ) ∈J ,这与p (x )是J 中次数最低的多项式相矛盾.故p (x )不可约.若c =32+,则p (x )=(x -32+)(x +32+)(x -32-) (x +32-).9.设C [x ]中多项式f (x )≠0且f (x )| f (x n),n 是一个对于1的整数.证明: f (x )的根只能是零或单位根.证明: 因f (x )| f (x n),所以f (x n)= f (x )g (x ), g (x )∈C [x ].如果c 是f (x )的根,即f (c )=0则f (nc)=f (c )g (c )=0, f (2nc)= f (nc) g (nc)=0,, f (knc)= f (1-k nc) g (1-k nc)=0.由于, f (x )在C 中至多有n 个不同的根,故有i <j ,使jnc =inc ,所以c =0或1.即c =0或c 是单位根.2.7 复数和实数域上多项式1.设n 次多项式n n na x a x a x f +++=-10)( 的根是n αα,,1 .a) 求以n c c αα,,1 为根的多项式,这里c 是一个数;b) 以na 1,,11 α(假定0,,1≠n αα )为根的多项式.解:a) 若c =0,则n c c αα,,1 都为0,则g (x )= x n即是.若c ≠0,则令g (x )=)(1)(10n n na x a x a cc x f +++=- 为所求.b) 令g (x )= f (x 1)x n =nn n n x a x a x a +++--110 ,则g (x )是以na 1,,11α为根的多项式.2.设f (x )是一个多项式,用)(x f 表示把f (x )的系数分别换成它们的共轭数后所得多项式.证明:a) 若是g (x )|f (x ),那么)(x g |)(x f ;b) 若是d (x )是f (x )和)(x f 的一个最大公因式,并且d (x )的最高次项系数是1,那么d (x )是一个实系数多项式.证明: a) 因为g (x )|f (x ),所以f (x )= q (x )g (x ), )(x f =)(x q )(x g 从而)(x g |)(x f .b) 若d (x )=(f (x ),)(x f ),则有u (x ), v (x )使的u (x )f (x )+ v (x ))(x f =d (x ),所以)(x d =)(x u )(x f +)(x vf f (x ),另一方面,由d (x )|f (x ), d (x )|)(x f ,可得)(x d |f (x ),)(x d |)(x f ,所以)(x d =(f (x ), )(x f ).从而d (x )=)(x d ,即d (x )是实系数多项式.3.给出实系数四次多项式在实数域上所有不同类型的典型分解式. 解:共9种:a (x +b )4; a (x +b 1)(x +b 2)3; a (x +b 1)2(x +b 2)2;a (x +b 1)(x +b 2)(x +b 3)2; a (x +b 1)(x +b 2)(x +b 3)(x +b 4); a (x 2+px +q )2; a (x 2+p 1x +q 1)(x 2+p 2x +q 2) ; a (x +b )2(x 2+px +q );a (x +b 1)(x +b 2)(x 2+px +q ) . (其中二次式x 2+px +q 不可约).4.在复数和实数域上分解x n-2为不可约因式的乘积.解: 在复数域上: x n -2=(x -n2)(x -)2()21--n nnx εε ,其中22cossini nn ππε=+; 在实数域上:当n 为奇数, x n-2=(x -n2)(x 2-222(1)cos(2n x nnππ-+-+ ;当n 为偶数, x n - 2=(x -n 2)(x +n 2)(x 222(2)cos(cosn x nnππ-+- )4n+.5.证明:数域F 上任意一个不可约多项式在复数域内没有重根.证明:设p (x )是F 上不可约多项式,因多项式的最大公因式不因数域扩大而改变, 所以在复数域内仍有(p (x ),'p (x ))=1,故p (x )在复数域内没有重根.2.8 有理数域上多项式1.证明以下多项式在有理域上不可约: a) x 4-2x 3+8x -10; b) 2x 5+18x 4+6x 2+6 c) x 4-2x 3+2x -3d) x 6+x 3+1提示:用艾森斯坦判断法. a)取p =2; b)取p =3; c)令x =y +1, 则f (x )=g (y )=y 4+2y 3-2, 取 p =2得g (y )不可约,即f (x )不可约;d)令x =y +1,则f (x )=g (y )=(y +1)6+(y +1)3+1=y 6+6y 5+15y 4+21y 3+18y 2 +9y+3,取p =3,得g (y )不可约,即f (x )不可约. 2利用艾森斯坦判断法,证明:若是t p p p ,,,21 是t 个不相同的素数,而n 是一个大于1的整数,那么ntp p p 21是一个无理数.证明:考虑多项式x n-t p p p ,,,21 ,因t p p p ,,,21 互不相同,取p=p 1满足艾森斯坦判断法,知x n -t p p p ,,,21 在有理数域上不可约, 因n<1无有理根,.因而.3.设f (x )是一个整数系数多项式,证明:若是f (0)和f (1)都是奇数,那么f (x )不能有整数根. 证明:设α是f (x )的一个整数根.则f (x )=(x -a )f 1(x ).由综合除法知f 1(x )也是整系数多项式.所以f (0)= -a f 1(0), f (1)=(1-a ) f 1(1),这是不可能的.因为α与1-α中有一个是偶数.从而f (0)与f (1)至少有一个是偶数,与题设矛盾.故f (x )无整数根.4.求以下多项式的有理数根: a) x 3-6x 2+15x -14; b) 4x 4-7x 2-5x -1;c) x 5-x 4-25x 3+2x 2-21x -3.解: a)有理单根-2; b)二重有理根-21; c)有理单根-1,2.2.9 多元多项式1.写出一个数域F 上三元三次多项式的一般形式.解:f =000a +∑=++1k j i kj i ijkzy x a+∑=++2k j i kj i ijkzy x a+∑=++3k j i kj i ijkzy x a其中,a ijk ∈F.2.设 f (n x x ,,1 )是一个r 次齐次多项式.t 是任意数.证明:f (n tx tx ,,1 )=t r f (n x x ,,1 ).证明:可设),,(1n x x f ∑=++=ri i i i i i i i n nnxx x a12121.于是 ),,(1n tx tx f ∑=++=ri i i i i i i i n nntx tx tx a12121)()()(∑=+++++=r i i i i i i i i i i i n nnnxx x ta1212121∑=++=ri i i i i ri i i n nnxx x t a12121∑=++=ri i i i i i i i rn nnxx x at12121rt=),,(1n x x f3. 设f (n x x ,,1 )是数域F 上一个n 元齐次多项式,证明:如果f (n x x ,,1 )=g (n x x ,,1 )h (n x x ,,1 ),则g ,h 也是n 元齐次多项式.证明:反证法,设g ,h 至少有一个不是n 元齐次多项式,不妨设是h ,则s g g g g +++= 21,1≥s ,i g 是齐次多项式,t h h h h +++= 21,1>t ,jh 是齐次多项式,并且假设)()()(21s g g g ∂︒>>∂︒>∂︒ ,)()()(21t h h h ∂︒>>∂︒>∂︒ .则111112()()s t s tf ghg gh h g h g h g h ==++++=+++其中t s h g h g ,11都不能消去,与f 是齐次多项式矛盾.故,g h 都是齐次多项式. 4.把多项式x 3+y 3+z 3+3xyz 写成两个多项式的乘积. 原式=(x +y +z )3-3(x +y +z )(xy +yz +xz )= (x +y +z ) [(x +y +z )2-3 (xy + yz +xz )] = (x +y +z ) (x 2+y 2+z 2-xy -yz -zx ).5.设F 是数域. f ,g ∈F [n x x ,,1 ]是F 上n 元多项式. 如果存在h ∈F [n x x ,,1 ]使得f =gh ,那么就说g 是f 的一个因式.或者说g |f .a) 证明,每一f 都可以被零次多项式c 和cf 整除c ∈F , c ≠0.b) f ∈F [n x x ,,1 ]说是不可约的,如果除了a)中那种类型的因式外f 没有其它因式,证明在F [x ,y ]里多项式x ,y ,x +y ,x 2-y 都不可约.c) 举反例证明,当n ≥2时,类似于一元多项式的带余除法不成立.d) f ,g ∈F [n x x ,,1 ]说是互素的,如果除了零次多项式外,它们没有次数大于零的公因式.证明x ,y ∈F [x ,y ]是互素的多项式.能是否找到u (x ,y ), v (x ,y ) ∈F [x ,y ],使得x u (x ,y )+y v (x ,y )=1?证明: a)因为0c ≠,所以1111,,(,,),(,,)[n n c cf x x f x x F cc∈ 1,,]nx x ,而11111(,,)[(,,)][(,,)]n n n f x x c f x x cf x x cc==所以|c f ,11(,,)|(,,)n n cf x x f x x .b) 现证对于1[,,]n F x x ,任意一次多项式不可约.设f 是1[,,]n F x x 的一次多项式.若f gh =,由次数定理有1= ()()()fgh ∂︒=∂︒+∂︒.因而g 与h 中有一个是0次多项式,故f 不可约.所以,,x y x y +都不可约.因2x y -是一个非齐次的二次多项式,如可约,只能是2x y -=()()x ay x b ++.比较()()x a y x b ++与2x y -的系数有:0,0b a ==,且1ab =-,这是不可能的,故2x y -不可约.c)例:若(,),(,)f x y x g x y y ==,若存在(,),(,)x y r x y ϕ使(,)(,)x x y y r x y ϕ=+,应有(,)0r x y =或c (常数).这是不可能的.即对于二元多项式.带余除法定理不成立. d)因为x 的因式只有常数c 与cx ,而x 不是y 的因式,故x 与y 的公共因式只有常数c (且0c ≠),故x 与y 互素.因对任意(,),(,)u x y v x y ,(,)(,)xu x y yv x y +没有零次项,所以找不到(,),(,)u x y v x y 使(,)(,)xu x y yv x y +=1.2.10 对称多项式1. 写出某一数环R 上三元三次对称多项式的一般形式. 结果: a 300(x 3+y 3+z 3)+a 210(x 2y +x 2z +y 2x +y 2z +z 2x +z 2y )+a 200(x 2+ y 2+z 2)+a 110(xy +xz +yx )+a 100 (x+y+z )+a 111(xyz )+a 000其中,a ijk ∈F.2.令R [n x x ,,1 ]是数环R 上n 元多项式环, S 是由一切n 元对称多项式组成的R [n x x ,,1 ]的子集.证明存在R [n x x ,,1 ]到S 的一个双射.证明:设1,,n σσ 是1,,n x x 的初等对称多项式.对任意11(,,)[,,]n n f x x R x x ∈ 规定1:(,,)|n f x x τ→ 1(,,)n f σσ ,则1(,,)n f σσ 是S 中唯一确定的多项式.既τ是R [n x x ,,1 ]到S 的映射, 对任意的1(,,)n g x x S ∈ ,由对称多项式的基本定理,有唯一的1(,,)n h σσ 使11(,,)(,,)n n h g x x σσ= .这里1(,,)n h x x [F ∈ 1,,]n x x ,故111((,,))(,,)(,,)n n n h x x h g x x τσσ== .故τ是满射.如果11(,,)(,,)n n f x x g x x ≠ 那么11(,,)(,,)n n f g σσσσ≠ ,所以τ是单射.从而是R [n x x ,,1 ]到S 的一个双射3.把下列多元多项式表成初等对称多项式的多项式: a)∑231x x; b)∑41x; c)32221x x x∑;解: a) 2212213424σσσσσσ--+;b) 42211221344244σσσσσσσ-++-; c) 2314535σσσσσ-+;4.证明:如果一个三次多项式x 3+ax 2+bx +c 的一个根的平方等于其余两个根的平方和那么这个多项式的系数满足以下关系: 2324)22(2)2(c ab a b a a +-=-.证明:设,,αβγ是32x ax bx c -++的三个根.则由条件知(,,f αβγ=222()αβγ--222()βγα--222()γαβ--=0,把(,,)f αβγ用初等对称多项式表出,得(,,)f αβγ=64223211212131233688168σσσσσσσσσσσ-++-+=4211(σσ-32211232)2(22)σσσσσ-++-.因123,,a b c σσσ=-=-=,用它们代入上式得(,,)f αβγ=42(a a -322)2(22)b a ab c -+++=0所以42(a a 322)2(22)b a ab c -=++.5.设n αα,,1 是某一数域F 上多项式x n +a 1x n -1++ a n -1x +a n 在复数域内的全部根.证明:2,,n αα 的每一个对称多项式都可以表成F 上关于1α的多项式.证明:设f (2,,n αα )是关于2,,n αα 的任意一个对称多项式.由对称多项式的基本定理有211(,,)(',,')n n f a a g σσ-= ,其中'i σ(1,2,,1i n =- )是nαα,,2的初等对称多项式.由于111'a σσ=-,11''i i i a σσσ-=-(2,,1i n =- ) 其中i σ是n αα,,1 的初等对称多项式.又(1)ii i a σ=-(1,2,,1i n =- ),是数域F 中的数,将它们代入上式可知, 'i σ是1a 与中的数11,,n αα- 的一个多项式,不妨记为i p (11,,n αα- )='i σ(1,2,,1i n =- ),再将它们代入f g=式右端,即证明f (nαα,,2)可表为1a 与11,,n αα- 的多项式.由11,,n αα- 是F 中的数,即f (nαα,,2)是F 上关于1a 的多项式:1()G a .。
高等代数考研真题第一章多项式

且f(x)在有理数域上不可约。
第一章多项式1 (清华2 000— 20分)试求7次多项式f(X ),使f(M 1能被(X -1)4整除,而f(X )-1能被(X 1)4整除。
2、 (南航 2001 — 20 分)(1) 设 x —2px+2 I x +3x +px+q ,求 p,q 之值。
(2) 设f(x) , g(x), h(x) € R[x],而满足以下等式2(x +1)h(x)+(x -1) f(x)+ (x -2) g(x)=02(x +1)h(x)+(x+1) f(x)+ (x+2) g(x)=02 2证明:x +1 I f(x) , x +1 I g(x)3、 (北邮2002 —12分)证明:x d - 1 I x "- 1的充分必要条件是d I n (这里里记号 d I n 表示正整数d 整除正整数n )。
4、 、(北邮 2003 —15分)设在数域 P 上的多项式 g 1(x), g 2(x) , g 3(x) , f(x),已知 g 1(x) I f(x),g 2(x) I f(x) , g 3(x) I f(x),试问下列命题是否成立,并说明理由:(〔)如果 g 1(x) ,g 2(x) , g 3(x)两两互素,则一定有 g 1(x) , g 2(x) , g 3(x) I f(X )(2)如果g1(x) , g 2(x) , g 3(x)互素,则一定有 g 1(x)g 2(x)g 3(x)I f(X )5、 (北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p I ab 则p I a 或p I b 。
6、 (大连理工2003 —12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幕主充分必要条件是,对任意的多项式g(x) , h(x),由f(x) I g(x) h(x)可以推出f(x) I g(x),或者对某一正整数 m , f(x) I h m(x)。
高等代数一元多项式

证设
f(x) = anxn + an−1xn−1 + · · · + a0, g(x) = bmxm + bm−1xm−1 + · · · + b0,
其中 an ̸= 0, bm ̸= 0. 则 ∂(f(x)) = n, ∂(g(x)) = m.
. .. . . ..
次数公式
(1) 在考虑多项式 f(x) 和 g(x) 的和时,不妨设 n ≥ m 且令 bm+1 = bm+2 = · · · = bn = 0,则
f(x)
+
g(x)
=
∑n (ai
+
bi)xi.
i=0
从而 ∂(f(x) + g(x)) ≤ n = max(∂(f(x)), ∂(g(x))). (2) f(x)g(x) 的首项是 anbmxn+m,显然 anbm ̸= 0,因之,f(x)g(x) ̸= 0 而且它的次数就是 n + m.
. .. . . ..
多项式的运算律
1 加法交换律:f(x) + g(x) = g(x) + f(x). 2 加法结合律:(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)). 3 乘法交换律:f(x)g(x) = g(x)f(x). 4 乘法结合律:(f(x)g(x))h(x) = f(x)(g(x)h(x)).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
次数公式
一元多项式习题及解答

习 题 一A 组1.判别{},a a b =+∈QQ 是否为数域解 是.2. 设32()1f x x x x =+++,2()32g x x x =++,求()()f x g x +,()()f x g x -,()()f x g x . 解32()()243f x g x x x x +=+++, 3()()21f x g x x x -=--,5432()()46652f x g x x x x x x =+++++.3.设19932199431995()(54)(421)(8112)f x x x x x x =----+,求()f x 的展开式中各项系数的和.解 由于()f x 的各项系数的和等于(1)f ,所以199319941995(1)(54)(421)(8112)1f =----+=-.4. 求()g x 除以()f x 的商()q x 与余式()r x . (1) 322()31,()321f x x x x g x x x =---=-+;(2) 42()25,()2f x x x g x x x =-+=-+.解 (1) 用多项式除法得到23232227321313923374133714739926299x x x x x x x x x x x x x x -+-----+----+---所以,17262(),()3999q x x r x x =-=--. (2) 用多项式除法得到24243232322222512225245257x x x x x x x x x x x x x x x x x x x x -+-++--+--+-+--+-+--+所以,2()1,()57q x x x r x x =+-=-+.5.设,a b 是两个不相等的常数,证明多项式()f x 除以()()x a x b --所得余式为()()()()f a f b af b bf a x a b a b--+--. 证明 依题意可设()()()()f x x a x b q x cx d =--++,则(),().f a ca d f b cb d =+⎧⎨=+⎩ 解得()()()()(),()()).c f a f b a b d af b bf a a b =--⎧⎪⎨=--⎪⎩故所得余式为()()()()f a f b af b bf a x a b a b--+--. 6. 问,,m p q 适合什么条件时,()f x 能被()g x 整除 (1) 3()f x x px q =++,2()1g x x mx =+-; (2) 42()f x x px q =++,2()1g x x mx =++.解 (1) 由整除的定义知,要求余式()0r x =.所以先做多项式除法,233222221(1)(1)()x mx x px q x mx mx xmx p x q mx m xmp m x q m +-++-+--+++--++++-要求2()(1)()0r x p m x q m =+++-=, 所以2(1)0,0p m q m ++=-=.即21,p m q m =--=时,可以整除.(2) 方法同上.先做多项式除法,所得余式为22()(2)(1)r x m p m x q p m =--++--,所以22(2)0,10m p m q p m --=+--=,即01m p q ==+,或22,1p m q -==时,可以整除.7. 求()f x 与()g x 的最大公因式: (1) 43232()341,()1f x x x x x g x x x x =+---=+--;(2) 4332()41,()31f x x x g x x x =-+=-+;(3)42432()101,()61f x x x g x x x =-+=-+++.解 (1) 用辗转相除法得到3243232432222211134124312213841231223313122244331441x x x x x x x x xx x x x x x xx x x x x x x x xx x x -++--+---+++--------+-----------用等式写出来,就是2()()(231)f x xg x x x =+---,21133()(231)2444g x x x x x ⎛⎫⎛⎫=-+----+ ⎪ ⎪⎝⎭⎝⎭,284332313344x x x x ⎛⎫⎛⎫---=+-- ⎪⎪⎝⎭⎝⎭,所以()(),()1f x g x x =+.(2) 同样地,3243324323232221103141139123331021133101020313991611274413299162563331649216495391625627256x x x x x x x x x x x xx x x x x x x x x x x x x xx x -+-+-+-+--+-++--+--+-+----+---+-+-+-所以()(),()1f x g x =.(3) 同样用辗转相除法,可得()2(),()1f x g x x =--.8. 求(),()u x v x 使()()()()()(),()u x f x v x g x f x g x +=: (1) 432432()242,()22f x x x x x g x x x x x =+---=+---:(2) 43232()421659,()254f x x x x x g x x x x =--++=--+:(3) 4322()441,()1f x x x x x g x x x =--++=--.解 (1) 利用辗转相除法,可以得到3()()(2)f x g x x x =+-, 32()(1)(2)(2)g x x x x x =+-+-,322(2)x x x x -=-.因而,()2(),()2f x g x x =-,并且()()23(),()2()(1)(2)()(1)()() (1)()(2)(),f xg x x g x x x x g x x f x g x x f x x g x =-=-+-=-+-=--++所以()1,()2u x x v x x =--=+(2) 利用辗转相除法,可以得到2()2()(639)f x xg x x x =-+-,211()(639)(1)33g x x x x x ⎛⎫=-+--+-- ⎪⎝⎭,2(639)(1)(69)x x x x -+-=--+.因而,()(),()1f x g x x =-,并且()()2211(),()1(639)()3311()2()()331122()1(),3333f x g x x x x x g x f x xg x x g x x f x x x g x ⎛⎫=-=-+--+- ⎪⎝⎭⎛⎫=--+- ⎪⎝⎭⎛⎫⎛⎫=-++-- ⎪ ⎪⎝⎭⎝⎭所以21122(),()13333u x x v x x x =-+=--.(3) 利用辗转相除法,可以得到2()(3)()(2)f x x g x x =-+-,()(1)(2)1g x x x =+-+.因而()(),()1f x g x =,并且()232(),()1()(1)(2)()(1)(()(3)())(1)()(32)(),f xg x g x x x g x x f x x g x x f x x x x g x ==-+-=-+--=--++--所以32()1,()32u x x v x x x x =--=+--.9. 设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 利用辗转相除法,可以得到2()()(1)(2)f x g x t x t x u =+++-+,222222212()(1)(2)[(1)(2)]()(1)(2)1(1)(1)(1)t t t u t t u t t g x x t x t x u x t t t t ⎡⎤⎛⎫-+-++-+--⎡⎤=+++-+++ ⎪⎢⎥⎣⎦++++⎝⎭⎣⎦由题意,()f x 与()g x 的最大公因式是一个二次多项式,所以22222()(1)(2)0,(1)[(1)(2)]0,(1)t t u t t t u t t t ⎧+-++-=⎪+⎪⎨+--⎪=⎪+⎩解得0,4u t ==-.10. 设()242(1)1x Ax Bx -++,求A 和B .解 用2(1)x -去除()f x 421Ax Bx =++,得余式1()(42)13r x A B x A B =++--,由题意要求知1()0r x =,即420,130,A B A B +=⎧⎨--=⎩解得1,2A B ==-.11. 证明:如果()(),()1f x g x =,()(),()1f x h x =,那么()(),()()1f x g x h x =. 证明 由条件可知,存在1()u x 和1()v x 使得11()()()()1u x f x v x g x +=,存在2()u x 和2()v x 使得22()()()()1u x f x v x h x +=.用()h x 乘以第一式得11()()()()()()()u x f x h x v x g x h x h x +=,代入第二式得[]2211()()()()()()()()()1u x f x v x u x f x h x v x g x h x ++=,即[]21212()()()()()[()()]()()1u x u x v x h x f x v x v x g x h x ++=,所以()(),()()1f x g x h x =.12. 证明:如果()f x 与()g x 不全为零,且()()()()()(),()u x f x v x g x f x g x +=,那么()(),()1u x v x =.证明 由于()()()()()(),()u x f x v x g x f x g x +=,()f x 与()g x 不全为零,所以()(),()0f x g x ≠.两边同时除以()(),()0f x g x ≠,有()()()()()()1(),()(),()f x g x u x v x f x g x f x g x +=,所以()(),()1u x v x =.13. 证明:如果()(),()()d x f x d x g x ,且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由题意知()d x 是()f x 与()g x 的公因式.再由条件设()()()()()d x u x f x v x g x =+. 又设()h x 为()f x 与()g x 的任一公因式,即()(),()()h x f x h x g x ,则由上式有 ()()h x d x .故而()d x 是()f x 与()g x 的一个最大公因式.14. 证明:()()()(),()()(),()()f x h x g x h x f x g x h x =,其中()h x 的首项系数为1.证明 显然()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个公因式.下面来证明它是最大公因式. 设(),()u x v x 满足()()()()()(),()u x f x v x g x f x g x +=,则()()()()()()((),())()u x f x h x v x g x h x f x g x h x +=.由上题结果知,()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式,又首项系数为1,所以()()()(),()()(),()()f x h x g x h x f x g x h x =.15. 设多项式()f x 与()g x 不全为零,证明()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫=⎪ ⎪⎝⎭.证明 设()()(),()d x f x g x =,则存在多项式(),()u x v x ,使()()()()()d x u x f x v x g x =+.因为()f x 与()g x 不全为零,所以()0d x ≠.上式两边同时除以()d x ,有()()()()1()()(),()(),()f x g x u x v x f x g x f x g x =+,故()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫=⎪ ⎪⎝⎭成立.16.分别在复数域、实数域和有理数域上分解41x +为不可约因式之积. 解 在实数域上的分解式为()()4222221(1)211x x x x x +=+-=+++.在复数域上的分解式为4122222222x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=+-++---+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.在有理数域上41x +是不可约多项式.否则,若41x +可约,有以下两种可能. (1)41x +有一次因式,从而它有有理根,但(1)0f ±≠,所以41x +无有理根.(2)41x +无一次因式,设4221()()x x ax b x cx d +=++++,其中,,,a b c d 为整数.于是0a c +=,0b d ac ++=,0ad bc +=,1bd =,又分两种情况:①1b d ==,又 a c =-,从而由 0b d ac ++=,得22a =,矛盾;②1b d ==-,则22a =-,矛盾. 综合以上情况,即证.17. 求下列多项式的有理根: (1) 32()61514f x x x x =-+-; (2) 42()4751g x x x x =---;(3) 5432()614113h x x x x x x =+----.解 (1)由于()f x 是首项系数为1的整系数多项式,所以有理根必为整数根,且为14-的因数.14-的因数有:1,2,7,14±±±±,计算得到:(1)4,(1)36,(2)0,(2)72,(7)140,(7)756, (14)1764,(14)4144,f f f f f f f f =--=-=-=-=-=-=-=-故2x =是()f x 的有理根.再由多项式除法可知,2x =是()f x 的单根.(2) 类似(1)的讨论可知,()g x 的可能的有理根为:111,,24±±±,计算得到 111171111(1)9,(1)1,5,0,,22464464g g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=--==--==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故12x =-是()g x 的有理根.再由多项式除法可知,12x =-是()f x 的2重根. (3) 类似地,()h x 的可能的有理根为:1,3±±,计算得到(1)28,(1)0,(3)0,(3)96h h h h =--==-=-.故1x =-,3x =是()h x 的有理根.再由多项式除法可知,1x =-是()h x 的4重根,3x =是()h x 的单根.18.若实系数方程30x px q ++=有一根a bi +(,a b 为实数,0b ≠),则方程30x px q +-=有实根2a .证明 设原方程有三个根123,,ααα.不失一般性,令1a bi α=+,从而有 2a bi α=-,由根与系数的关系可知12330()()a bi a bi αααα=++=++-+,所以32a α=-,即3(2)(2)0a p a q -+-+=,故3(2)(2)0a p a q +-=.这说明30x px q +-=有实根2a .19. 证明:如果(1)()nx f x -,那么(1)()n n x f x -.证明 因为(1)()nx f x -,所以 (1)(1)0nf f ==.因此,令()(1)()f x xg x =-,则有()(1)()n n n f x x g x =-,即(1)()n n x f x -.20. 下列多项式在有理数域上是否可约(1) 21()1f x x =+;(2) 4322()8122f x x x x =-++; (3) 633()1f x x x =++;(4) 4()1pf x x px =++,p 为奇素数; (5) 45()41f x x kx =++,k 为整数.解 (1)1()f x 的可能的有理根为:1±,而(1)2f ±=,所以它在有理数域上不可约.(2)由Eisenstein 判别法,取素数2p =,则2不能整除1,而 2(8),212,22-,但是22不能整除2,所以该多项式在有理数域上不可约.(3)令1x y =+,代入633()1f x x x =++有654323()(1)615211893g y f y y y y y y y =+=++++++.取素数3p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以()f x 在有理数域上不可约.(4) 令1x y =-,代入4()1pf x x px =++,得11222214()(1)()p p p p p p p p p g y f y y C yC y C y C p y p ----=-=-+--++-L , 取素数p ,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以4()f x 在有理数域上不可约.(5) 令1x y =+,代入45()41f x x kx =++,得4325()(1)46(44)42g y f y y y y k y k =+=++++++,取素数2p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以5()f x 在有理数域上不可约.B 组1.设()f x ,()g x ,()h x 是实数域上的多项式,(1) 若222()()()f x xg x xh x =+,则()()()0f x g x h x ===.(2) 在复数域上,上述命题是否成立证明 (1)当()()0g x h x ==时,有2()0f x =,所以()0f x =,命题成立.如果()g x ,()h x 不全为零,不妨设()0g x ≠.当()0h x =时,()22()()12()xg x xh x g x ∂+=+∂为奇数;当()0h x ≠时,因为()g x ,()h x 都是实系数多项式,所以2()xg x 与2()xh x 都是首项系数为正实数的奇次多项式,于是也有22(()())xg x xh x ∂+为奇数.而这时均有2()0f x ≠,且2()2()f x f x ∂=∂为偶数,矛盾.因此有()()0g x h x ==,从而有()0f x =.(2) 在复数域上,上述命题不成立.例如,设()0f x =,()n g x x =,()i nh x x =,其中n 为自然数,有222()()()f x xg x xh x =+,但()0g x ≠,()0h x ≠.2. 设(),(),()[]f x g x h x P x ∈,满足 2(1)()(1)()(2)()0x h x x f x x g x ++-++=,2(1)()(1)()(2)()0x h x x f x x g x ++++-=.证明()2(1)(),()x f x g x +.证明 两式相加得到22(1)()2(()())0x h x x f x g x +++=.由2(1,)1x x +=可知 ()2(1)()()x f x g x ++.两式相减得到2()4()0,()2()f x g x f x g x -+==. 故()()221(),1()x f x x g x ++,即()()21(),()x f x g x +.3.设1212()()()()g x g x f x f x ,证明(1) 若11()()f x g x ,1()0f x ≠,则22()()g x f x ;(2) 若212()()()g x f x f x ,是否有22()()g x f x解 (1) 因为1212()()()()g x g x f x f x ,11()()f x g x ,故存在多项式()h x ,1()h x 使得1212111()()()()(),()()()f x f x g x g x h x g x f x h x ==.于是12112()()()()()()f x f x f x h x g x h x =.由于1()0f x ≠,故有212()()()()f x h x g x h x =,即22()()g x f x .(2) 否.例如取1()2g x x =-,22()1g x x =-,1()(1)(2)f x x x =--,2()(1)(2)f x x x =++.虽然1212()()()()g x g x f x f x 且212()()()g x f x f x ,但2()g x 不能整除2()f x .4.当k 为何值时,2()(6)42f x x k x k =++++和2()(2)2g x x k x k =+++的最大公因式是一次的并求出此时的最大公因式.解 显然()()(2)g x x k x =++.当()(),()2f x g x x =+时,(2)42(6)420f k k -=-+++=,则3k =.当()(),()f x g x x k =+时,2()(6)420f k k k k k -=-+++=,则1k =.这时()(),()1f x g x x =+. 5.证明:对于任意正整数n ,都有 ()()(),()(),()n n n f x g x f x g x =.证明 由题意可知()f x 与()g x 不全为零.令()(),()()f x g x d x =,则()0d x ≠,从而()(),1()()f x g x d x d x ⎛⎫= ⎪⎝⎭,所以对任意正整数n ,有()(),1()()n n f x g x d x d x ⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是有 ()()()()1()()n nf xg x u x v x d x d x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 即 ()()()()()n n n u x f x v x g x d x +=. 又由()()d x f x ,()()d x g x ,有()()n n d x f x ,()()n n d x g x ,因此()n d x 是()nf x 与()ng x 的首项系数为1的最大公因式,从而有()()(),()()(),()nn n n f x g x d x f x g x ==. 6. 设11()()(),()()(),f x af x bg x g x cf x dg x =+=+且0ad bc -≠,证明()()11(),()(),()f x g x f x g x =.证明 设()(),()()f x g x d x =,则()(),()()d x f x d x g x .由于1()()()f x af x bg x =+,1()()()g x cf x dg x =+, 故11()(),()()d x f x d x g x .又设11()(),()()h x f x h x g x ,由上式及0ad bc -≠,可得11()()()d b f x f x g x ad bc ad bc =---, 11()()()c a g x f x g x ad bc ad bc-=+--, 从而 ()(),()()h x f x h x g x ,于是 ()()h x d x ,即()d x 也是1()f x 和1()g x 的最大公因式,即()()11(),()(),()f x g x f x g x =.7.设1()()()f x d x f x =,1()()()g x d x g x =,且()f x 与()g x 不全为零,证明()d x 是()f x 与()g x 的一个最大公因式的充分必要条件是()11(),()1f x g x =.证明 必要性.若()d x 是()f x 与()g x 的一个最大公因式,则存在多项式(),()u x v x 使()()()()()u x f x v x g x d x +=,于是11()()()()()()()u x d x f x v x d x g x d x +=.由()f x 与()g x 不全为零知()0d x ≠,因此有11()()()()1u x f x v x g x +=,即()11(),()1f x g x =.充分性.若()11(),()1f x g x =,则存在多项式(),()u x v x ,使11()()()()1u x f x v x g x +=.两边同时乘()d x 有()()()()()u x f x v x g x d x +=.由()d x 是()f x 与()g x 的一个公因式知,()d x 是()f x 与()g x 的一个最大公因式.8.设()f x 和()g x 是两个多项式,证明()(),()1f x g x =当且仅当()()(),()()1f x g x f x g x +=. 证明 必要性.设()(),()1f x g x =,若()()f x g x +与()()f x g x 不互素,则有不可约公因式()p x ,使()()()p x f x g x , 所以()()p x f x 或()()p x g x .不妨设()()p x f x ,由()()()()p x f x g x +可知()()p x g x ,因此()p x 是()f x 和()g x 的公因式,与(),()f x g x 互素矛盾,故()()f x g x +与()()f x g x 互素.充分性.设(()(),()())1f x g x f x g x +=,则存在(),()u x v x 使()()()()()()()1f x g x u x f x g x v x ++=,()()()()()()()1f x u x g x u x f x v x ++=,上式说明()(),()1f x g x =.9. 如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x -.证明 21x x ++的两个根为1ε=和2ε=33121εε==. 因为()23312(1)()()x x f x xf x +++,所以331212()()()()x x f x xf x εε--+,故有33111213312222()()0,()()0,f f f f εεεεεε⎧+=⎪⎨+=⎪⎩ 即112122(1)(1)0,(1)(1)0.f f f f εε+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而1(1)()x f x -,2(1)()x f x -.10. 若()()n f x f x ,则()f x 的根只能是零或单位根.证明 因为()()n f x f x ,故存在多项式()q x ,使()()()nf x f x q x =.设a 为()f x 的任一根,即()0f a =,则()()()0n f a f a q a ==.也就是说,当a 为()f x 的一根时,n a 也为()f x 的一根.依此类推,可知2,,,n n a a a L 也是()f x 的根.由于()f x 的根的个数有限,故必定存在正整数,s t (不妨设s t >),使得s t n n a a =,(1)0t s t n n n a a --=.于是有0t n a =即0a =,或者(1)0s t n n a --=,即a 为单位根.11. 设()f x 是一个整系数多项式,且(0),(1)f f 都是奇数,则()f x 没有整数根.证明 设10()n n f x a x a x a =+++L ,假设()f x 有整数根α,则x α-整除()f x ,即()()()f x x q x α=-,其中商式()q x 也是一个整系数多项式.事实上,设1110()n n q x b x b x b --=+++L ,代入上式并比较两端同次幂系数,得112110100,,,,n n n n n a b a b b a b b a b ααα----==-=-=-L ,因为()f x 是一个整系数多项式,所以,110,,,n b b b -L 也是整数,令0,1x x ==分别代入展开式,得(0)(0),(1)(1)(1)f q f q αα=-=-.由于(0),(1)f f 都是奇数,则α及1α-都必须是奇数,这是不可能的,所以,()f x 不能有整数根.12.证明对于任意非负整数n ,都有 ()()22211(1)n n x x x x ++++++. 证明 设α是21x x ++的任一根,即 210αα++=,21αα+=-,31α=.由此得221222123(1)()(1)0n n n n n n αααααα+++++++=+-=-=,即α也是221(1)n n x x ++++的根.又因为21x x ++无重根,因此()()22211(1)n n x x x x ++++++.13. 假设12,,,n a a a L 是两两不同的整数,证明:多项式12()()()()1n f x x a x a x a =----L 在有理数域上不可约.证明 用反证法.假设()f x 在有理数域上可约,则有整系数多项式12(),()g x g x ,使得12()()()f x g x g x =.于是12()()()i i i f a g a g a =,1,2,,i n =L .因此,12()1,()1i i g a g a ==-或12()1,()1i i g a g a =-=.这样总有12()()i i g a g a =-,从而由推论2知12()()g x g x =-,所以21()()f x g x =-.这与()f x 的首项系数为1相矛盾,故()f x 在有理数域上不可约.。
高等代数考研真题 第一章 多项式

第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
高等代数第一章一元多项式

1第一章多项式21.1 数域3数是数学的一个最基本的概念,研究数学问题常常需要明确规定所考虑的数的范围,按照所研究的问题不同,我们对数的范围界定也不一样。
例如22x 在有理数范围内不能分解,在实数范围内就可以分解。
210x 在实数范围内没有根,在复数范围内就有根。
自然数整数有理数实数复数NZQRC这是一个认识的渐进的过程。
在讨论多项式的因式分解、方程的根等问题时,都跟数的范围有关。
4在代数中,我们主要考虑一个集合中元素的加、减、乘、除四则运算以及经过四则运算后是否还在这个集合之中。
例如自然数集N 只对加法和乘法封闭,而整数集Z 对加、减、乘三种运算封闭,但对除法不封闭;而有理数集Q 对加、减、乘、除(除数不为0)四种运算都封闭,同样,实数集R 、复数集C 对加、减、乘、除四种运算都封闭。
定义( 运算封闭):在一个数的集合P 中,如果集合中任意两个数做某种运算后的结果仍在P 中,则称数集P 对这种运算是封闭的(closed) 。
5定义1(数域):设P 是一个由一些复数组成的数的集合,其中包含0和1。
如果P 中的任意两个数对加、减、乘、除(除数不为0)都是封闭的,则称P 是一个数域(number field )。
有理数集Q ,实数集R ,复数集C 都是数域,且是三个最重要的数域。
如果某个数集只对加、减、乘封闭,则称其为数环。
整数集是一个数环.任意一个数域P 都是复数域C 的子集,都包含有理数域Q 作为其子域,即满足.Q P C 在Q 和R 之间存在其它数域;但在R 与C 之间没有别的数域存在.61.2 一元多项式教学目的和要求1. 掌握一元多项式形式表达式的准确定义.2. 掌握一元多项式的加法、减法、乘法的运算和运算律.3. 掌握一元多项式经过运算后的次数,并会用相关结论解题.78一、基本概念设x 是一个符号(或称文字),P 是一个数域,定义2:n 是一个非负整数,形式表达式其中,,,,,011P a a a a n n 称为系数在数域P 中的一元多项式(one variable polynomial ),或称为数域P 上的一元多项式。
一元多项式习题及解答

习 题 一A 组1. 判别{},a a b =+∈QQ 是否为数域 解 是.2. 设32()1f x x x x =+++,2()32g x x x =++,求()()f x g x +,()()f x g x -,()()f x g x . 解 32()()243f x g x x x x +=+++,3()()21f x g x x x -=--,5432()()46652f x g x x x x x x =+++++.3.设19932199431995()(54)(421)(8112)f x x x x x x =----+,求()f x 的展开式中各项系数的和. 解 由于()f x 的各项系数的和等于(1)f ,所以199319941995(1)(54)(421)(8112)1f =----+=-.4. 求()g x 除以()f x 的商()q x 与余式()r x .(1) 322()31,()321f x x x x g x x x =---=-+; (2) 42()25,()2f x x x g x x x =-+=-+.解 (1) 用多项式除法得到 所以,17262(),()3999q x x r x x =-=--. (2) 用多项式除法得到 所以,2()1,()57q x x x r x x =+-=-+.5.设,a b 是两个不相等的常数,证明多项式()f x 除以()()x a x b --所得余式为()()()()f a f b af b bf a x a b a b--+--. 证明 依题意可设()()()()f x x a x b q x cx d =--++,则解得故所得余式为()()()()f a f b af b bf a x a b a b--+--.6. 问,,m p q 适合什么条件时,()f x 能被()g x 整除(1) 3()f x x px q =++,2()1g x x mx =+-;(2) 42()f x x px q =++,2()1g x x mx =++.解 (1) 由整除的定义知,要求余式()0r x =.所以先做多项式除法,要求2()(1)()0r x p m x q m =+++-=, 所以2(1)0,0p m q m ++=-=.即21,p m q m =--=时,可以整除.(2) 方法同上.先做多项式除法,所得余式为22()(2)(1)r x m p m x q p m =--++--,所以22(2)0,10m p m q p m --=+--=,即01m p q ==+,或22,1p m q -==时,可以整除.7. 求()f x 与()g x 的最大公因式:(1) 43232()341,()1f x x x x x g x x x x =+---=+--;(2) 4332()41,()31f x x x g x x x =-+=-+;(3) 42432()101,()61f x x x g x x x =-+=-+++.解 (1) 用辗转相除法得到用等式写出来,就是2()()(231)f x xg x x x =+---,21133()(231)2444g x x x x x ⎛⎫⎛⎫=-+----+ ⎪ ⎪⎝⎭⎝⎭,284332313344x x x x ⎛⎫⎛⎫---=+-- ⎪⎪⎝⎭⎝⎭,所以()(),()1f x g x x =+.(2) 同样地,所以()(),()1f x g x =.(3) 同样用辗转相除法,可得 ()2(),()1f x g x x =--.8. 求(),()u x v x 使()()()()()(),()u x f x v x g x f x g x +=:(1) 432432()242,()22f x x x x x g x x x x x =+---=+---:(2) 43232()421659,()254f x x x x x g x x x x =--++=--+:(3) 4322()441,()1f x x x x x g x x x =--++=--.解 (1) 利用辗转相除法,可以得到3()()(2)f x g x x x =+-,32()(1)(2)(2)g x x x x x =+-+-,322(2)x x x x -=-.因而,()2(),()2f x g x x =-,并且所以()1,()2u x x v x x =--=+(2) 利用辗转相除法,可以得到2()2()(639)f x xg x x x =-+-,211()(639)(1)33g x x x x x ⎛⎫=-+--+-- ⎪⎝⎭, 2(639)(1)(69)x x x x -+-=--+.因而,()(),()1f x g x x =-,并且 所以21122(),()13333u x x v x x x =-+=--. (3) 利用辗转相除法,可以得到2()(3)()(2)f x x g x x =-+-, ()(1)(2)1g x x x =+-+.因而()(),()1f x g x =,并且所以32()1,()32u x x v x x x x =--=+--. 9. 设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 利用辗转相除法,可以得到 2()()(1)(2)f x g x t x t x u =+++-+,222222212()(1)(2)[(1)(2)]()(1)(2)1(1)(1)(1)t t t u t t u t t g x x t x t x u x t t t t ⎡⎤⎛⎫-+-++-+--⎡⎤=+++-+++ ⎪⎢⎥⎣⎦++++⎝⎭⎣⎦由题意,()f x 与()g x 的最大公因式是一个二次多项式,所以解得0,4u t ==-.10. 设()242(1)1x Ax Bx -++,求A 和B .解 用2(1)x -去除()f x 421Ax Bx =++,得余式1()(42)13r x A B x A B =++--,由题意要求知1()0r x =,即解得1,2A B ==-.11. 证明:如果()(),()1f x g x =,()(),()1f x h x =,那么()(),()()1f x g x h x =.证明 由条件可知,存在1()u x 和1()v x 使得11()()()()1u x f x v x g x +=,存在2()u x 和2()v x 使得22()()()()1u x f x v x h x +=.用()h x 乘以第一式得11()()()()()()()u x f x h x v x g x h x h x +=,代入第二式得[]2211()()()()()()()()()1u x f x v x u x f x h x v x g x h x ++=,即[]21212()()()()()[()()]()()1u x u x v x h x f x v x v x g x h x ++=,所以()(),()()1f x g x h x =.12. 证明:如果()f x 与()g x 不全为零,且()()()()()(),()u x f x v x g x f x g x +=,那么()(),()1u x v x =.证明 由于()()()()()(),()u x f x v x g x f x g x +=,()f x 与()g x 不全为零,所以()(),()0f x g x ≠.两边同时除以()(),()0f x g x ≠,有()()()()()()1(),()(),()f x g x u x v x f x g x f x g x +=, 所以()(),()1u x v x =. 13. 证明:如果()(),()()d x f x d x g x ,且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由题意知()d x 是()f x 与()g x 的公因式.再由条件设()()()()()d x u x f x v x g x =+. 又设()h x 为()f x 与()g x 的任一公因式,即()(),()()h x f x h x g x ,则由上式有 ()()h x d x .故而()d x 是()f x 与()g x 的一个最大公因式.14. 证明:()()()(),()()(),()()f x h x g x h x f x g x h x =,其中()h x 的首项系数为1.证明 显然()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个公因式.下面来证明它是最大公因式. 设(),()u x v x 满足()()()()()(),()u x f x v x g x f x g x +=,则()()()()()()((),())()u x f x h x v x g x h x f x g x h x +=.由上题结果知,()(),()()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式,又首项系数为1,所以()()()(),()()(),()()f x h x g x h x f x g x h x =.15. 设多项式()f x 与()g x 不全为零,证明()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫= ⎪ ⎪⎝⎭.证明 设()()(),()d x f x g x =,则存在多项式(),()u x v x ,使()()()()()d x u x f x v x g x =+.因为()f x 与()g x 不全为零,所以()0d x ≠.上式两边同时除以()d x ,有()()()()1()()(),()(),()f x g x u x v x f x g x f x g x =+, 故()()()(),1(),()(),()f x g x f x g x f x g x ⎛⎫= ⎪ ⎪⎝⎭成立.16.分别在复数域、实数域和有理数域上分解41x +为不可约因式之积.解 在实数域上的分解式为 ()()4222221(1)211x x x x x +=+-=+++.在复数域上的分解式为4122222222x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=+-++---+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.在有理数域上41x +是不可约多项式.否则,若41x +可约,有以下两种可能.(1)41x +有一次因式,从而它有有理根,但(1)0f ±≠,所以41x +无有理根.(2)41x +无一次因式,设4221()()x x ax b x cx d +=++++,其中,,,a b c d 为整数.于是0a c +=,0b d ac ++=,0ad bc +=,1bd =,又分两种情况:①1b d ==,又 a c =-,从而由 0b d ac ++=,得22a =,矛盾;②1b d ==-,则22a =-,矛盾.综合以上情况,即证.17. 求下列多项式的有理根:(1) 32()61514f x x x x =-+-;(2) 42()4751g x x x x =---;(3) 5432()614113h x x x x x x =+----.解 (1)由于()f x 是首项系数为1的整系数多项式,所以有理根必为整数根,且为14-的因数.14-的因数有:1,2,7,14±±±±,计算得到:故2x =是()f x 的有理根.再由多项式除法可知,2x =是()f x 的单根.(2) 类似(1)的讨论可知,()g x 的可能的有理根为:111,,24±±±,计算得到 111171111(1)9,(1)1,5,0,,22464464g g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫=--==--==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故12x =-是()g x 的有理根.再由多项式除法可知,12x =-是()f x 的2重根. (3) 类似地,()h x 的可能的有理根为:1,3±±,计算得到(1)28,(1)0,(3)0,(3)96h h h h =--==-=-.故1x =-,3x =是()h x 的有理根.再由多项式除法可知,1x =-是()h x 的4重根,3x =是()h x 的单根.18.若实系数方程30x px q ++=有一根a bi +(,a b 为实数,0b ≠),则方程30x px q +-=有实根2a .证明 设原方程有三个根123,,ααα.不失一般性,令1a bi α=+,从而有 2a bi α=-,由根与系数的关系可知 12330()()a bi a bi αααα=++=++-+,所以32a α=-,即3(2)(2)0a p a q -+-+=,故3(2)(2)0a p a q +-=.这说明30x px q +-=有实根2a .19. 证明:如果(1)()n x f x -,那么(1)()n n x f x -.证明 因为(1)()n x f x -,所以 (1)(1)0nf f ==.因此,令()(1)()f x xg x =-,则有 ()(1)()n n n f x x g x =-, 即(1)()n n x f x -.20. 下列多项式在有理数域上是否可约(1) 21()1f x x =+;(2) 4322()8122f x x x x =-++;(3) 633()1f x x x =++;(4) 4()1p f x x px =++,p 为奇素数;(5) 45()41f x x kx =++,k 为整数.解 (1)1()f x 的可能的有理根为:1±,而(1)2f ±=,所以它在有理数域上不可约.(2)由Eisenstein 判别法,取素数2p =,则2不能整除1,而 2(8),212,22-,但是22不能整除2,所以该多项式在有理数域上不可约.(3)令1x y =+,代入633()1f x x x =++有654323()(1)615211893g y f y y y y y y y =+=++++++.取素数3p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以()f x 在有理数域上不可约.(4) 令1x y =-,代入4()1p f x x px =++,得11222214()(1)()p p p p p p p p p g y f y y C y C y C y C p y p ----=-=-+--++-,取素数p ,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以4()f x 在有理数域上不可约.(5) 令1x y =+,代入45()41f x x kx =++,得4325()(1)46(44)42g y f y y y y k y k =+=++++++,取素数2p =,由Eisenstein 判别法知,()g y 在有理数域上不可约,所以5()f x 在有理数域上不可约.B 组1.设()f x ,()g x ,()h x 是实数域上的多项式,(1) 若222()()()f x xg x xh x =+,则()()()0f x g x h x ===.(2) 在复数域上,上述命题是否成立证明 (1)当()()0g x h x ==时,有2()0f x =,所以()0f x =,命题成立.如果()g x ,()h x 不全为零,不妨设()0g x ≠.当()0h x =时,()22()()12()xg x xh x g x ∂+=+∂为奇数;当()0h x ≠时,因为()g x ,()h x 都是实系数多项式,所以2()xg x 与2()xh x 都是首项系数为正实数的奇次多项式,于是也有22(()())xg x xh x ∂+为奇数.而这时均有2()0f x ≠,且2()2()f x f x ∂=∂为偶数,矛盾.因此有()()0g x h x ==,从而有()0f x =.(2) 在复数域上,上述命题不成立.例如,设()0f x =,()n g x x =,()i nh x x =,其中n 为自然数,有222()()()f x xg x xh x =+,但()0g x ≠,()0h x ≠.2. 设(),(),()[]f x g x h x P x ∈,满足 2(1)()(1)()(2)()0x h x x f x x g x ++-++=,2(1)()(1)()(2)()0x h x x f x x g x ++++-=.证明()2(1)(),()x f x g x +.证明 两式相加得到22(1)()2(()())0x h x x f x g x +++=.由2(1,)1x x +=可知 ()2(1)()()x f x g x ++.两式相减得到2()4()0,()2()f x g x f x g x -+==. 故()()221(),1()x f x x g x ++,即()()21(),()x f x g x +.3.设1212()()()()g x g x f x f x ,证明(1) 若11()()f x g x ,1()0f x ≠,则22()()g x f x ;(2) 若212()()()g x f x f x ,是否有22()()g x f x解 (1) 因为1212()()()()g x g x f x f x ,11()()f x g x ,故存在多项式()h x ,1()h x 使得1212111()()()()(),()()()f x f x g x g x h x g x f x h x ==.于是12112()()()()()()f x f x f x h x g x h x =.由于1()0f x ≠,故有212()()()()f x h x g x h x =,即22()()g x f x .(2) 否.例如取1()2g x x =-,22()1g x x =-,1()(1)(2)f x x x =--,2()(1)(2)f x x x =++.虽然1212()()()()g x g x f x f x 且212()()()g x f x f x ,但2()g x 不能整除2()f x .4.当k 为何值时,2()(6)42f x x k x k =++++和2()(2)2g x x k x k =+++的最大公因式是一次的并求出此时的最大公因式.解 显然()()(2)g x x k x =++.当()(),()2f x g x x =+时,(2)42(6)420f k k -=-+++=,则3k =.当()(),()f x g x x k =+时,2()(6)420f k k k k k -=-+++=,则1k =.这时()(),()1f x g x x =+. 5.证明:对于任意正整数n ,都有 ()()(),()(),()n n n f x g x f x g x =.证明 由题意可知()f x 与()g x 不全为零.令()(),()()f x g x d x =,则()0d x ≠,从而()(),1()()f x g x d x d x ⎛⎫= ⎪⎝⎭,所以对任意正整数n ,有()(),1()()n n f x g x d x d x ⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是有 ()()()()1()()n nf xg x u x v x d x d x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即 ()()()()()n n n u x f x v x g x d x +=. 又由()()d x f x ,()()d x g x ,有()()n n d x f x ,()()n n d x g x ,因此()n d x 是()nf x 与()ng x 的首项系数为1的最大公因式,从而有()()(),()()(),()nn n n f x g x d x f x g x ==. 6. 设11()()(),()()(),f x af x bg x g x cf x dg x =+=+且0ad bc -≠,证明()()11(),()(),()f x g x f x g x =.证明 设()(),()()f x g x d x =,则()(),()()d x f x d x g x .由于1()()()f x af x bg x =+,1()()()g x cf x dg x =+, 故11()(),()()d x f x d x g x .又设11()(),()()h x f x h x g x ,由上式及0ad bc -≠,可得11()()()d b f x f x g x ad bc ad bc =---, 11()()()c a g x f x g x ad bc ad bc-=+--, 从而 ()(),()()h x f x h x g x ,于是 ()()h x d x ,即()d x 也是1()f x 和1()g x 的最大公因式,即()()11(),()(),()f x g x f x g x =.7.设1()()()f x d x f x =,1()()()g x d x g x =,且()f x 与()g x 不全为零,证明()d x 是()f x 与()g x 的一个最大公因式的充分必要条件是()11(),()1f x g x =.证明 必要性.若()d x 是()f x 与()g x 的一个最大公因式,则存在多项式(),()u x v x 使()()()()()u x f x v x g x d x +=,于是11()()()()()()()u x d x f x v x d x g x d x +=.由()f x 与()g x 不全为零知()0d x ≠,因此有11()()()()1u x f x v x g x +=,即()11(),()1f x g x =.充分性.若()11(),()1f x g x =,则存在多项式(),()u x v x ,使11()()()()1u x f x v x g x +=.两边同时乘()d x 有()()()()()u x f x v x g x d x +=.由()d x 是()f x 与()g x 的一个公因式知,()d x 是()f x 与()g x 的一个最大公因式.8.设()f x 和()g x 是两个多项式,证明()(),()1f x g x =当且仅当()()(),()()1f x g x f x g x +=. 证明 必要性.设()(),()1f x g x =,若()()f x g x +与()()f x g x 不互素,则有不可约公因式()p x ,使()()()p x f x g x , 所以()()p x f x 或()()p x g x .不妨设()()p x f x ,由()()()()p x f x g x +可知()()p x g x ,因此()p x 是()f x 和()g x 的公因式,与(),()f x g x 互素矛盾,故()()f x g x +与()()f x g x 互素.充分性.设(()(),()())1f x g x f x g x +=,则存在(),()u x v x 使()()()()()()()1f x g x u x f x g x v x ++=,()()()()()()()1f x u x g x u x f x v x ++=,上式说明()(),()1f x g x =.9. 如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x -.证明 21x x ++的两个根为1ε=和2ε=33121εε==. 因为()23312(1)()()x x f x xf x +++,所以331212()()()()x x f x xf x εε--+,故有即解得12(1)(1)0f f ==,从而1(1)()x f x -,2(1)()x f x -.10. 若()()n f x f x ,则()f x 的根只能是零或单位根.证明 因为()()n f x f x ,故存在多项式()q x ,使()()()n f x f x q x =.设a 为()f x 的任一根,即()0f a =,则()()()0n f a f a q a ==.也就是说,当a 为()f x 的一根时,n a 也为()f x 的一根.依此类推,可知2,,,n n a a a 也是()f x 的根.由于()f x 的根的个数有限,故必定存在正整数,s t (不妨设s t >),使得s t n n a a =,(1)0t s t n n n a a --=.于是有0t n a =即0a =,或者(1)0s tn n a --=,即a 为单位根. 11. 设()f x 是一个整系数多项式,且(0),(1)f f 都是奇数,则()f x 没有整数根.证明 设10()n n f x a x a x a =+++,假设()f x 有整数根α,则x α-整除()f x ,即()()()f x x q x α=-,其中商式()q x 也是一个整系数多项式.事实上,设1110()n n q x b x b x b --=+++,代入上式并比较两端同次幂系数,得112110100,,,,n n n n n a b a b b a b b a b ααα----==-=-=-, 因为()f x 是一个整系数多项式,所以,110,,,n b b b -也是整数,令0,1x x ==分别代入展开式,得 (0)(0),(1)(1)(1)f q f q αα=-=-.由于(0),(1)f f 都是奇数,则α及1α-都必须是奇数,这是不可能的,所以,()f x 不能有整数根.12.证明对于任意非负整数n ,都有 ()()22211(1)n n x x x x ++++++. 证明 设α是21x x ++的任一根,即 210αα++=,21αα+=-,31α=.由此得221222123(1)()(1)0n n n n n n αααααα+++++++=+-=-=,即α也是221(1)n n x x ++++的根.又因为21x x ++无重根,因此()()22211(1)n n x x x x ++++++.13. 假设12,,,n a a a 是两两不同的整数,证明:多项式12()()()()1n f x x a x a x a =----在有理数域上不可约.证明 用反证法.假设()f x 在有理数域上可约,则有整系数多项式12(),()g x g x ,使得12()()()f x g x g x =.于是12()()()i i i f a g a g a =,1,2,,i n =.因此,12()1,()1i i g a g a ==-或12()1,()1i i g a g a =-=.这样总有12()()i i g a g a =-,从而由推论2知12()()g x g x =-,所以21()()f x g x =-.这与()f x 的首项系数为1相矛盾,故()f x 在有理数域上不可约.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数一元多项式例题
当涉及到高等代数的一元多项式例题时,我可以为您提供一个典型的例子,以便更好地理解。
假设我们有以下一元多项式:
P(x) = 3x^4 - 2x^3 + 5x^2 - 7x + 10
在这个例子中,P(x) 是一个四次多项式,其中x 是变量,3、-2、5、-7 和10 是系数。
每个项是由变量的幂次和对应的系数组成。
现在,我们来解决几个与这个多项式相关的问题
1. 求导:
要求P(x) 的导函数,可以通过对每一项进行求导并合并结果来实现。
对于这个例子来说,得到的导函数为:
P'(x) = 12x^3 - 6x^2 + 10x - 7
2. 求函数值:
给定一个特定的x 值,我们可以求出P(x) 的函数值。
例如,当x = 2 时,可以计算出:
P(2) = 3(2)^4 - 2(2)^3 + 5(2)^2 - 7(2) + 10 = 48
3. 因式分解:
对于多项式P(x),我们可以尝试将其因式分解为更简单的形式。
这需要使用因式分解的技巧和方法。
但是,并非所有的多项式都可以被因式分解,有些可能需要使用更高级的技术。
4. 求根:
求多项式的根是找出使得P(x) 等于零的x 值。
这就是求方程P(x) = 0 的解。
对于这个例子来说,我们可以通过使用因式分解、配方法、综合定理等方法来解决这个问题。
以上是一些关于高等代数一元多项式例题的常见问题和解决方法。