第2章-电磁场基本方程
第2章--电磁场基本方程---2

B(z) 0Ia
4π
2π 0
(z2
ez a a2 )3/2
d
'
0 Ia 2
2(z2 a2 )3/ 2
可见,线电流圆环轴线上的磁感应强度只有轴向分量,这是因为
圆环上各对称点处的电流元在场点P产生的磁感应强度的径向分 量相互抵消。
在圆环的中心点上,z = 0,磁感应强度最大,即
B(0)
ez
0 I
dB (r )
0
4π
Idl (r r r3
r )
体电流产生的磁感应强度
B(r ) 0 J (r) R dV
4π V R3 面电流产生的磁感应强度
z
C Idl M
r R r y
o
x
B(r ) 0
4π
S
JS
(r ) R3
R
dS
25
电磁场
第二章 电磁场基本方程
3. 几种典型电流分布的磁感应强度
D
rˆ
q
4r 2
4
电磁场
第二章 电磁场基本方程
电通量为
S
D
ds
q
4r 2
4r 2
q
此通量仅取决于点电荷量q, 而与所取球面的半径无关。
如果在封闭面内的电荷不止一个, 则利用叠加原理知, 穿出封闭 面的电通量总和等于此面所包围的总电量
S D ds Q
--- 高斯定理的积分形式(1839
K .F .Gauss导出),
r1 R12 r2
o
x
C2
I2dl2
y
安培磁力定律
F12
0
4π
I2dl2 (I1dl1 R12 )
电磁场与电磁波公式整理

∫ ∫
s
D ⋅d S = q E ⋅dl = 0
∫
∫
s
E涡 ⋅ d S = 0
∫ ∫
s
B ⋅d S = 0 H ⋅dl = I
∫
s
B涡 ⋅ d S = 0
s
E ⋅ d l = − ∫ s ∂B ⋅ d S L 涡 ∂t
L
∫
L
H涡 ⋅ d l =
∫∫
∂D ⋅ d S = Id ∂t
第二章 表一:电荷和电流的三种密度
Idl
( en 为电流密度的方向)
( en 为电流密度的方向)
∇i J +
∂ρ =0 ∂t
i = ∫ J i dS
S
i = ∫ Jsi(n1 × dl )
l
(电流连续性方程)
整理人:南昌大学通信 092 张奔
表二:电场和磁场
项目 定律
F=
E (r ) =
电场
qq 0 r − r ' (库仑定律) 4πε 0 | r − r ' |3 F 12 = B(r ) = B(r ) = B(r ) =
变化电场和磁场的联 系
∫
L
H ⋅ dl = I + I d = ∫∫ δ ⋅ d S + ∫∫
reθ r sin θ eφ ∂ ∂ ∂θ ∂φ rAθ r sin θ Aφ
∇ u=
2
1 ∂ 2 ∂u 1 ∂ ∂u 1 ∂ 2u ( ) + (sin θ ) + r 2 2 ∂θ r 2 sin 2 θ ∂φ 2 r ∂r ∂r r sin θ ∂θ
C:几个定理 散度定理: ∫v ∇i FdV = ∫ s F idS
电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场理论课件 2-1静电场的标势及其微分方程

(P)
Q
4 0
(1 r
1 r
)
r2 R 2 l 2 2Rl cos
Q
2l
x -Q
求近似值:
r R
1
l2 R2
2l
cos
/
R
R
1 2l cos / R
R(1 1 2l cos ) R l cos
2R
R r
y
(l R)
同理
r R l cos
1 1 r r 2l cos 2l cos
R02 R2
20
ln
R R0
若选P0为参考点,则
(P)
ln R
ER
R
20
,
2 0 R
R0 E EZ 0
解2:
z
电荷源
dq dz z' o
r
场点
p
R
选取柱坐标:源点的坐标为(0, z'),场点的坐标为
(R, 0),考虑到导线是无限长,电场强度显然与z
无关。
这里,先求场强 E
,后求电势
E 0
D
E
这两方程连同介质的 电磁性质方程是解决 静电问题的基础。
静电场的无旋性是它的一个重要特 性,由于无旋性,我们可以引入一 个标势来描述静电场。
无旋性的积分形式是电场 沿任一闭合回路的环量等 于零,即
E dl 0
设C1和C2为P1和P2点的两 条不同路径。C1与C2合成 闭合回路,因此
量与存在着电荷分布的空间有关。真实的静电能量是以
密度 w 1 E D的形式在空间连续分布,场强大的地方 2
能量也大;
(4)W 1 dV中的 是由电荷分布 激发的电势; 2
工程电磁场

E m j Bm
Bm 0
Dm m
不再含有场量对时间t的偏导数,从而使时谐电磁场的分析得 以简化。
例4-2:写出与时谐电磁场对应的复矢量(有效值)或瞬时矢量,
H x jH 0 sin cos(x cos )e
jz sin
E
U e ln( b / a
U I ez ln( b / a ) 2
同轴电缆中的电磁能流
单位时间内流入内外导体间的横截面A的总能量为 b UI P S dA 2d UI A a 2 2 ln b / a 这表明: • 穿出任一横截面的能量相等,电源提供的能量全部被负载吸收。
时变电磁场中媒质分界面上的衔接条件的推导方式与前三章类同,归纳如下:
e n H 2 H 1 k e n E 2 E1 0
E2t E1t
B1n B2n
D2n D1n
e n B2 B1 0
tan 1 1 tan 2 2
时谐电磁场
4.2.1 时谐电磁场的复数表示
E(r, t ) ex Exm r cost x r e y Eym r cost y r ez Ezm r cost z r
(三要素) 是角频率,Exm、Eym、Ezm及x、y、z 分别是 电场强度在直角坐标系下的三个分量的振幅和初相位。 采用相量表示法,上式可表示为如下复矢量(相量),即
~ j
通常的磁导率
通常的介电常数
表征磁介质中的 磁化损耗
在高频时谐电磁场以上参数通常是频率的函数
当电介质同时存在电极化损耗和欧姆损耗时,其等效复介电 常数可写为 ~ e j 为了表征电介质中损耗的特性,通常采用损耗角的正切
电磁场基本方程

一、电磁场的源——电荷与电流1、电荷与电荷密度宏观上可以用“电荷密度”来描述带电体的电荷分布。
定义体电荷密度为30m C d d lim−→∆⋅=∆∆=VQV Q V ρ其中Q ∆是体积元V ∆内包含的总电荷量。
当电荷存在于一无限薄的薄层或者截面很小的细线上时,可用面电荷密度或线电荷密度来描述20m C d d lim−→∆⋅=∆∆=SQS Q S S ρ10m C d d lim −→∆⋅=∆∆=lQl Q l l ρ一个体积为V 、表面积为S 、线长为l 上包含的电荷总量可以分别对上述三式进行体、面、线积分得到,即∫∫∫=VV Q d ρ、∫∫=SS S Q d ρ、∫=ll lQ d ρ2、电流与电流密度任取一个面,穿过此面的电流定义为单位时间内穿过此面的电荷量,即As C d d lim10或−→∆⋅=∆∆=tQt Q I t 电流的正方向规定与正电荷的运动方向。
体电流密度是一个矢量,方向为正电荷的运动方向,大小等于垂直于运动方向上的单位面积上的电流。
电流密度的大小可表示为20m A lim−→∆⋅∆∆=SI J S 体电流密度矢量由体电荷密度和正电荷的运动速度确定,即vJ r r ⋅=ρ对于任意曲面,穿过此曲面的总电流为∫∫⋅=SSJ I r r d 同样,可以定义面电流密度为10m A lim −→∆⋅∆∆=l IJ l S vJ S S r r ⋅=ρ∫⋅=ls lJ I r r d 3、电流连续性方程(电荷守恒定律)在一个体电荷密度为ρ的带电体内任取一个封闭曲面S ,某瞬间从此封闭曲面流出的电流为i(t),则()∫∫∫∫∫−=−==⋅V S V t t Q t i S J d d d d d d ρr r 即电流连续性方程(电荷守恒定律)的积分形式。
若体积V 是静止的,则对时间的微分和体积分的次序可以交换,结合散度定理,有∫∫∫∫∫∫∫∫∂∂−=⋅=⋅∇V S V Vt S J V J d d d ρr r r于是,对于任意体积V ,都有tJ ∂∂−=⋅∇ρr 即电流连续性方程(电荷守恒定律)的微分形式。
电磁场基本方程

(高)
—— 麦克斯韦方程组的微分形式
在界面处,场不连续,微分关系不能用了, 在界面处,场不连续,微分关系不能用了, 要代之以界面关系: 要代之以界面关系: (1)′′ ′′ E1t = E2t n (2)′′ ′′ D1n − D2n = σ 0 t 1 r r r 2 ′′ H1t − H2t = ( j0S ×en ) ⋅ et (3)′′ σ0,j0S B = B (4)′′ ′′ 2n 1n (1)′— (4)′和(1)′′ (4)′′ 构成了完备的方程组, ′′— ′′ 构成了完备的方程组 ′ ′ ′′ 了完备的方程组, 在一定初始条件和边界条件下, 在一定初始条件和边界条件下,就可以求解电 磁场了。 磁场了。
二者形式上是对称的。公式中差了一个负号, 二者形式上是对称的。公式中差了一个负号, 这恰恰反映了能量转化和守恒的规律: 这恰恰反映了能量转化和守恒的规律:
例如图示情况: 例如图示情况:
r r ∂D E ↑ ,( ) ↑ ∂t
r E感 线
r r E与E感反向
r r ∂B H ↑, )↑ ( ∂t
磁场的增加以电场的削弱为代价(能量守恒) 磁场的增加以电场的削弱为代价(能量守恒)。
例题
麦氏方程组积分形式
方程组再现
(1) — (4)是积分形式的麦克斯韦方程组(Maxwell 是积分形式的麦克斯韦方程组 是积分形式的 equations)。 。 是由于没有 方程组形式上的不对称, 方程组形式上的不对称, 磁荷, 单独的磁荷 也没有相应于传导电流的“磁流”。 单独的磁荷, 也没有相应于传导电流的“磁流” 该方程组在宏观领域证明是完全正确的, 但在 该方程组在宏观领域证明是完全正确的, 微观领域并不完全适用。 微观领域并不完全适用。 那里需要考虑量子效应, 那里需要考虑量子效应, 量子电动力学。 从而建立更为普遍的量子电动力学 从而建立更为普遍的量子电动力学。 外还有洛仑兹力公式 除(1) — (4)外还有洛仑兹力公式: 外还有洛仑兹力公式:
电磁场方程及其解法

电磁场方程及其解法电磁场是自然界中非常重要的物理现象,它的应用领域非常广泛。
电磁场方程是描述电磁现象的基本方程,了解电磁场方程及其解法,对于深入理解电磁现象具有重要的意义。
一、麦克斯韦方程组麦克斯韦方程组是描述电磁现象的重要基础方程组。
麦克斯韦方程组包括四个方程:高斯定理、法拉第定律、安培环路定理和位移电流定律。
高斯定理描述了电场和电荷之间的关系。
该定理的数学表达式为:$$\nabla·\boldsymbol{E}=\frac{\rho}{\varepsilon_0}$$其中$\boldsymbol{E}$表示电场矢量,$\rho$表示电荷密度,$\varepsilon_0$表示真空电容率。
法拉第定律描述了磁场和电流之间的关系。
该定律的数学表达式为:$$\nabla\times\boldsymbol{E}=-\frac{\partial\boldsymbol{B}}{\partial t}$$其中$\boldsymbol{B}$表示磁场矢量,$t$表示时间。
安培环路定理描述了磁场和电流之间的关系。
该定理的数学表达式为:$$\nabla·\boldsymbol{B}=0$$$$\nabla\times\boldsymbol{B}=\mu_0\boldsymbol{J}+\mu_0\vare psilon_0\frac{\partial\boldsymbol{E}}{\partial t}$$其中$\boldsymbol{J}$表示电流密度,$\mu_0$表示真空磁导率。
位移电流定律描述了电场和磁场之间的关系。
该定律的数学表达式为:$$\nabla·\boldsymbol{J}=-\frac{\partial\rho}{\partial t}$$$$\nabla\times\boldsymbol{B}=\mu_0\boldsymbol{J}$$二、电磁场方程的解法由于电磁场方程比较复杂,通常采用数值解法进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——高斯定理
(1) ∫ H ⋅ dl = I
l
or
∇⋅ E= ρv ε
恒定电流 的磁场:
——安培环路定律
v
即 ∫ (∇× H)⋅ ds = ∫ J ⋅ ds ⇒
s s
∇×H = J
有旋场,旋涡源是电流
(2)∫ B ⋅ d s = 0
S
即 ∫ ∇ ⋅ B dv = 0
⇒
∇⋅B = 0
∇⋅ H = 0
无散场(管形场)
∂ρ ∂t
qq0 F= R 3 4π ε 0 R
7. 电场强度
q F E= = R 3 q0 4π ε0 R
1 E (r ) = 4π ε 0
单位为V/m(伏/米)
(r − r ′ ) ∫V | r − r ′ |3 ρ (r ′ )dV ′
5
§2.1 静态电磁场的基本定律和基本场矢量
8. 静电场的通量、散度与高斯定理
∂B ∇×E = − (a) ∂t
∂ D (b) ∇×H = J + ∂t
∫ E ⋅ dl = −∫
l
l s
的涡旋源。由此,变化的磁场产生电场,那么变化的电场是否会产生磁场呢?
16
§2.2 法拉第电磁感应定律和全电流定律
二、位移电流和全电流定律
现有方程: 静态电场: 静态磁场: 时变电场:
∇ × Eq = 0
∇ ⋅ Dq = ρ v
∂Bi ∇ × Ei = − ∂t dQ 电荷守恒定律 ∫ J ⋅ d s = − S dt
用散度定理,将上式两端用体积分表示 ∫V∇ ⋅ Jdv = − 得电流连续性方程:
∇ × Hq = J
∇ ⋅ Bq = 0
∂ρ v ∂ ρ v dv = − ∫ dv ∫V V ∂t ∂t
∇⋅J = −
∂ρ v ∂t
(e)
目标:总结出既适合静态场又适合时变场的普遍方程
17
§2.2 法拉第电磁感应定律和全电流定律
7
§2.1 静态电磁场的基本定律和基本场矢量
10. 磁通连续性原理和磁场强度
∫
定义
S0
B ⋅ dS = 0
→
∇ ⋅ B (r ) = 0
H=
B
μ
单位为A/m
静磁场的基本性质 (1)静磁场不是由通量源,而是由旋涡源产生的; (2)静磁场是无散、有旋场。
8
§2.1 静态电磁场的基本定律和基本场矢量
基本定律
(1)分析电场是否具有对称性。 (2)取合适的高斯面(封闭面),即取在E相等的曲面上。
(3)E相等的面不构成闭合面时,另选法线 n ⊥ E 的面,使其成为闭合面。 ˆ
(4)分别求出
s ∫ D ⋅ d,从而求得 D 及 E 。 ∑q
s
i S内
14
§2.2 法拉第电磁感应定律和全电流定律
Faraday’s Law of Electromagnetic Induction and the Total Current Law
d
Jd =
∂ D ε dU = ( ) ∂t d dt
ε A0 dU
d ( dt )=C dU =I dt
平板电容器
I d = ∫ J d dS =
S
C=
ε A0
d
二平板间位移电流等于电路的传导电流
23
§2.3 麦克斯韦方程组
Maxwell’s Equations
一、Maxwell方程组及电流连续性方程
•
磁场不变,回路切割磁力线有变 ε=- dt = −∫l (v × B ) ⋅ dl
动生电动势,如发电机
应用Stokes定理,如果回路是静止的,则
∫S (∇ × E) ⋅ ds = −∫S
∂B ⋅ ds ∂t
因S是任意的,从而有
∇×E = −
∂B ∂t
意义:随时间变化的磁场将激发电场
∂B 该感应电场是非保守场,其电力线呈闭合曲线。变化的磁场 ∂t 是产生感应电场
本章将在复习“大学物理”电磁学部分的基础上,导出麦 氏方程组,然后讨论它的边界条件、电磁场的能量关系和惟 一性定律。构成其它章节的共同基础。
1
第2章 电磁场基本方程
主要内容
• 静态电磁场的基本定律 • 法拉第电磁感应定律和全电流定律 • Maxwell方程组 • 电磁场的边界条件 • 坡印廷定律和坡印廷矢量 • 惟一性定律
∇ ⋅ (∇ × H ) = 0 = ∇ ⋅ J+
利用(c) ∇ ⋅ D = ρv , 则
∂ρv ∂t
James Clerk Maxwell (1831-1879)
⎛ ∂D ⎞ ⎟ ∇ ⋅ (∇ × H ) = ∇ ⋅ ⎜ J + ⎜ ∂t ⎟ ⎝ ⎠
由此得
∂D ∇× H = J + (b) ∂t
位移电流密度,单位A/m2
Michael Faraday (1791-1867)
15
电场强度沿任一闭合路径的线积分等于该路径所交链的磁通量时间变化率的负值
§2.2 法拉第电磁感应定律和全电流定律
引起磁通变化的原因分为二类:
•
回路不变,磁场随时间变化 ε=-
dΨ ∂B = −∫s ⋅ ds dt ∂t
dΨ
感生电动势,如变压器
一、法拉第电磁感应定律
问题引入: 静电场和静磁场的场源分别是静电荷和等速运动的电荷,它们是
相互独立的。但是时变的电场和磁场之间是相互关联的。这首先 由英国法拉第在1831年的实验中发现。
法拉第电磁感应定律: ε = −
dΨm dt
ε = ∫l E ⋅ dl
回路所感应的电动势
ψ m = ∫SB ⋅ dS 回路所交链的磁通量
s l
得
ˆ D=ρ
ρl , 2πρ
a< ρ <b
ρl ˆ E = =ρ ε 2περ
D
b
b)
b ρl ρ U = ∫ E ⋅ dl = ∫ d ρ = l ln l a 2περ 2πε a
故
ˆ E =ρ
U a ln b a
U ρ ln b a
同轴线内最大电场强度EM发生于内导体表面处: E M =
∂D Jd = 定义 ∂t
19
§2.2 法拉第电磁感应定律和全电流定律
位移电流的性质:
1)实质是变化电场,不产生焦耳热! 2)在激发磁场方面与I等效 3)激发的磁场B与其成右手螺旋关系:
Id
D B
∂D > 0 ∂t
Id
D B
∂D < 0 ∂t
20
§2.2 法拉第电磁感应定律和全电流定律
对(b)两端作面积分,并用Stokes定理将左边的面积分化为线积分,得到积分 形式的全电流定律。
B (Wb / m 2 ):B = μH (简单媒质)
体电荷密度 ρ v C m 3 体电流密度 J
(
)
2
(A m ) (不是
A m 3!)
10
§2.1 静态电磁场的基本定律和基本场矢量
例2.1 如图,同轴线的内外导体半径分别为a和b。在内外
导体间加电压U,则内导体通过的电流为I,外导体 返回的电流为-I。 a)设内外导体上单位长度的带电量分别为 ρ l 和 − ρ l , 求内外导体间的 D及E ; b)用电压U来表示,则 E =?其最大值EM =? c)若给定b=1.8cm,应如何选择a以使同轴线承受的耐 压最大?
ˆ [解] a) 介质层中的电场都沿径向 ρ ,垂直于内外导体表面,其大小沿圆周方向是
轴对称的。应用高斯定理,取半径 ρ长1 的同轴圆柱为高斯面。 作为封闭面,还应加上前后圆盘底面,但是它们与D 相平行,因而没有通量穿 过,不必考虑。
11
§2.1 静态电磁场的基本定律和基本场矢量
于是
ˆ ∫ D ⋅ ds = D ⋅ ρ 2πρl = ρ l
——磁通连续性原理
or
静电场有散无旋,其通量源是静止电荷;恒定磁场有旋无散,其旋涡源是电 流。它们互不相关。 9
§2.1 静态电磁场的基本定律和基本场矢量
基本场矢量
•电场强度 E (V / m) •电通(量)密度 D (C / m 2 ):D = εE (简单媒质) •磁场强度 H ( A m ) •磁通(量)密度
Jd = ∂D ∂t
= 传导电流、运流电流和位移电流之和称为全电流: J t = J c + J v + J d J + J d
b) 全电流连续性原理
将(b)两端取散度并用散度定理
∫ (J
S
c
+ J v + J d ) ⋅ ds = 0
穿过任一封闭面的各类电流之和恒为0
Ic + Iv + Id = 0
积分形式
(1) ∫ E ⋅ d l = 0
l s
微分形式
即∫ (∇ × E )⋅ d s = 0 ⇒ ∇ × E = 0
特点
无旋场(保守场,位场)
静电场:
——静电场的环路定律
S
(2)∫ D ⋅ ds = Q
即 ∫ ∇ ⋅ Ddv = ∫ ρvdv ⇒ ∇ ⋅ D = ρ v
v v
有散场,通量源是电荷
C (库仑)。自然界存在两种电荷:正电荷和
Δq dq = ΔV ′ dV ′
ρ ( r ) = lim
Δ V ′→ 0
3
§2.1 静态电磁场的基本定律和基本场矢量
3.电流:电荷作定向运动,形成电流,其大小用电流强度来表示。单 位为A(安培)。
Δq d q = I = lim Δt → 0 Δ t dt
Idl × ( I'dl' × a R ) ∫l ∫l ' R2