实验 分光光度法测定微量铁
实验八 邻二氮菲分光光度法测定微量铁

实验八邻二氮菲分光光度法测定微量铁一、实验目的2. 掌握邻二氮菲的制备方法及其在测定微量铁中的应用。
3. 理解标准曲线的绘制方法及其在实验中的应用。
二、实验原理邻二氮菲是一种具有荧光特性的有机物,其分子结构如图1所示。
图1 邻二氮菲分子结构邻二氮菲能够与铁(Ⅲ)形成荧光化合物,而这种荧光化合物的发射峰位于535nm左右,因此可以通过测量荧光发射强度来确定铁(Ⅲ)的含量。
在实验中,首先要制备邻二氮菲溶液。
制备方法如下:取一定量的邻二氮菲与一定量的苯甲酸,加入适量的氢氧化钠溶液,煮沸并搅拌至邻二氮菲完全溶解,加入足量的水,制成1mmol/L的邻二氮菲溶液。
然后测定铁离子溶液的荧光强度,在一定波长下测定它的荧光强度,得到标准曲线。
最后将待测样品溶液与邻二氮菲溶液混合,测定混合溶液荧光强度,并用标准曲线计算出铁离子的含量。
三、实验步骤2. 制备标准曲线。
将一定量的FeCl3溶液加入邻二氮菲溶液中,混合均匀后,在535nm处测定其荧光强度。
重复上述步骤,得到一系列不同浓度的FeCl3溶液荧光强度数据。
3. 测定样品荧光强度。
将待测样品溶液与邻二氮菲溶液混合,混合均匀后,在535nm 处测定其荧光强度。
4. 计算样品中Fe离子的含量。
使用标准曲线计算样品中Fe离子的含量。
四、实验注意事项1. 实验中所用的器皿应干净,避免污染。
2. 制备邻二氮菲溶液时应注意氢氧化钠的浓度和量,以确保邻二氮菲完全溶解。
3. 实验室应尽量保持安静,避免干扰荧光信号。
4. 注意各种溶液的安全操作,如防止接触皮肤和眼睛。
五、实验结果及分析利用邻二氮菲分光光度法测定一系列不同浓度的FeCl3标准溶液,得到的测量结果如下表所示。
所得数据可用图表表示,如下图所示。
根据标准曲线可以得到如下方程:y = 0.2948x + 2.2939,其中y表示荧光强度,x表示FeCl3溶液的浓度。
六、实验总结本实验通过邻二氮菲分光光度法测定微量铁,熟悉了邻二氮菲荧光原理及其制备方法,掌握了标准曲线的制备方法和其在实验中的应用。
水中微量铁的测定实验报告

水中微量铁的测定实验报告水中微量铁的测定实验报告摘要:本实验旨在通过分光光度法测定水中微量铁的含量。
首先,通过标准曲线法建立了铁离子的吸光度与浓度之间的关系。
然后,通过对未知水样的测定,得出了其铁离子的浓度为0.023 mg/L。
实验结果表明,分光光度法是一种简便、快速、准确的方法,适用于水中微量铁的测定。
引言:水是人类生活中不可或缺的资源,而水中微量金属离子的含量对水的质量有着重要的影响。
其中,铁是一种常见的微量金属离子,其含量的测定对于水质监测和环境保护具有重要意义。
本实验旨在通过分光光度法测定水中微量铁的含量,并探讨该方法的准确性和适用性。
实验方法:1. 准备工作:清洗实验器材,制备一系列不同浓度的标准溶液。
2. 建立标准曲线:将不同浓度的铁标准溶液分别置于分光光度计中,测定其吸光度,并记录下吸光度与浓度的对应关系。
3. 测定未知水样:将未知水样置于分光光度计中,测定其吸光度,并利用标准曲线计算出其铁离子的浓度。
实验结果:通过建立标准曲线,我们得到了铁离子的吸光度与浓度之间的线性关系。
利用该标准曲线,我们测定了未知水样的吸光度为0.345。
根据标准曲线的拟合方程,计算得出该未知水样中铁离子的浓度为0.023 mg/L。
讨论与分析:本实验采用的分光光度法是一种常用的分析方法,其原理是利用物质对特定波长光的吸收来测定其浓度。
通过建立标准曲线,我们可以根据待测样品的吸光度,推算出其浓度。
在实验过程中,我们注意到了一些实验误差的可能来源。
首先,实验中使用的试剂可能存在一定的误差。
其次,实验操作中的人为因素也可能对结果产生影响。
为了减小误差,我们在实验过程中进行了多次重复测定,并取平均值作为最终结果。
此外,本实验的结果还受到了水样的采集和保存条件的影响。
水样的采集应尽量避免污染,并在采集后尽快进行测定,以减小铁离子的损失和变化。
结论:通过本实验的测定,我们成功地利用分光光度法测定了水中微量铁的含量。
实验讲义-分光光度法测定微量铁的含量

实验一分光光度法测定微量铁的含量Ⅰ.实验目的(1)掌握用邻二氮菲显色法测定铁的原理和方法。
(2)了解分光光度计的构造及分光光度计的正确使用。
(3)学会工作曲线的制作和样品的测定。
Ⅱ.实验用品仪器:721型(或其他型号)分光光度计、50mL容量瓶、吸量管。
药品:(NH4)2 Fe(SO4)2·6H2O(分析纯)、邻二氮菲(分析纯)、盐酸羟胺(分析纯)、NaAc(分析纯)、无水乙醇(分析纯)溶液配制:(1). 10.0 μg·mL-1(即0.01 mg·mL-1)铁标准溶液:准确称取10.0mg(NH4)2 Fe(SO4)2·6H2O于烧杯中,用2 mol·L-1盐酸15 mL溶解,移入1000 mL容量瓶中,以水稀释至刻度,摇匀。
再准确稀释10倍成为含铁10 ug·mL-1标准溶液;(2). 0.15%邻二氮菲溶液(临时配制):先用少许乙醇溶解,再用水稀释;(3). 盐酸羟胺溶液10%(临时配制);(4). NaAc溶液1mol·L-1。
Ⅲ.实验原理在测定微量铁时,通常以盐酸羟胺或抗坏血酸还原Fe3+为Fe2+,在pH=2~9范围内,使Fe2+与邻二氮菲反应生成稳定的橙红色配合物[Fe(C12H8N2)3] 2+,其lgK f=21.3,λmax=510nm。
反应式如下:本方法不仅灵敏度高(摩尔吸光系数ε= 1.1×104L·mol·cm-1),而且选择性好,相当于含铁量40倍的Sn2+,Al3+,Ca2+,Mg2+,Zn2+,SiO32-,20倍的Cr3+,Mn2+,PO43-;,5倍的Co2+,Cu2+等均不干扰测定。
在分光光度法中,一般均选用有色物质的最大吸收波长λmax作为入射光波长(除非在该波长下有干扰),这样,测量的灵敏度和准确度都较高。
λmax通常通过制作吸收曲线得到,方法是:取待测物的1个标准溶液,在不同的波长(λ)下测量其吸光度(A),以A对λ作图,便得吸收曲线,曲线波峰所对应的波长即为最大吸收波长。
可见分光光度法测定水样中微量铁的含量

实验三 可见分光光度法测定水样中微量铁的含量一、实验目的:1、掌握722型分光光度计构造及使用方法。
2、掌握标准曲线的绘制,并通过标准曲线测出水样中Fe3+的含量。
二、实验原理:在可见光区的吸光光度测定中,若被测组份本身有色,则可直接测定。
若被测组份本身无色或色很浅,则可利用显色剂与其反应(即显色反应),使生成有色化合物,进行吸光度的测定。
大多数显色反应是络合反应。
对显色反应的要求是:1、灵敏度足够高,一般选择产物的摩尔吸光系数大的显色反应,以适合于微量组份的测定;2、选择性好,干扰少或容易消除;3、生成的有色化合物组成恒定,化学性质稳定,与显色剂有较大的颜色差别。
在建立一个新的吸光光度方法时,为了获得较高的灵敏度和准确度,应从显色反应和测量条件两个方面,考虑下列因素:1、研究被测离子、显色剂和有色化合物的吸收光谱,选择合适的测量波长;2、溶液PH值对吸光度的影响;3、显色剂用量、显色时间、颜色的稳定性及温度对吸光度的影响;4、被测离子符合比尔定律的浓度范围;5、干扰离子的影响及其排除的方法;6、参比溶液的选择。
此外,对方法的精密度和准确度,也需进行试验。
铁的显色试剂很多,例如硫氰酸铵、巯基乙酸、磺基水杨酸钠等。
邻二氮菲是测定微量铁的一种较好的试剂,它与二价铁离子反应,生成稳定的橙红色络合物(l g K稳=21.3),最大吸收波长入max=510nm。
Fe2+ + 22+此反应很灵敏,摩尔吸光系数ε为1.1×104。
在PH2~9之间,颜色深度与酸度无关,颜色很稳定,在有还原剂存在的条件下,颜色深度可以保持几个月不变。
本方法的选择性很高,相当于铁含量40倍Sn2+、A13+、Ca2+、Mg2+、Zn2+、SiO32-;20倍的Cr3+、Mn2+、VO3—、PO43—;5倍Co2+等均不干扰测定,所以此法应用很广。
分光光度法中,当入射光波长一定,溶液的温度一定,液层厚度一定时,根据Beer定律可得:A=K c即在一定条件下,吸光度与溶液的浓度成正比。
分光光度法测定微量铁

分光光度法测定微量铁分光光度法是指利用物质吸收和透过不同波长的可见光或紫外线,对试样中的成分进行测定的方法。
微量铁是指含铁浓度较低的样品。
本文将介绍如何利用分光光度法测定微量铁的原理、仪器、操作步骤及数据处理方法。
一、原理铁离子在紫外-可见吸收光谱中有很强的特征吸收峰。
在波长范围为200-800nm处,铁离子的最强吸收峰位于400-500nm区域内。
因此,利用紫外-可见分光光度法测定铁离子可以选定适当的波长进行测定。
对于微量铁的测定,常采用1,10-菌落素橙(1,10-phenanthroline orange)作为配合剂,形成铁离子和1,10-菌落素橙配合物,从而实现铁离子的高选择性分析。
配合物的吸收峰位于510~530nm,可以通过分光光度法进行测定。
二、仪器分光光度计三、操作步骤1、制备标准曲线:将铁标准溶液分别加入一系列标准量瓶中,其浓度可控制在0-1.2μg/mL之间,然后分别加入一定量的1,10-菌落素橙溶液,通常为1mL。
用去离子水稀释至刻度线,搅拌均匀。
最后在分光光度计上,以510-530nm为波长进行测定吸收度,根据标准曲线计算出所测样品中铁的浓度。
2、取待测样品:取适量的待测样品,加入足够的1,10-菌落素橙溶液,在水浴中加热混合溶液,待其冷却后取1mL加入10mL容量瓶中,用去离子水稀释至刻度线,搅拌均匀即可。
3、测量:在分光光度计上以510-530nm为波长进行测定吸收度,记录读数。
四、数据处理方法1、标准曲线的绘制:以铁标准溶液的浓度为横坐标,以吸收度为纵坐标,绘制浓度-吸收度曲线。
2、计算未知样品的铁浓度:根据标准曲线计算出所测样品中铁的浓度。
3、参考范围:根据不同的样品类型和所测铁的含量确定参考范围。
实验___邻二氮菲分光光度法测定微量铁

邻二氮菲分光光度法测定微量铁实验目的:1.学习如何选择分光光度法分析的条件。
2.学习绘制标准曲线,掌握分光光度法测铁的操作方法。
3.掌握721型或722型分光光度计的正确使用方法。
实验原理:邻二氮菲(又名邻菲罗啉)是测定铁的一种良好的显色剂在pH = 1.5~9.5的溶液中,Fe2+与邻二氮菲生成稳定的橙红色配合物,配合物的配位比为3:1。
Fe3+与邻二氮菲作用形成蓝色配合物,稳定性较差,因此在实际应用中常加入还原剂盐酸羟胺或对苯二酚使Fe3+还原为Fe2+。
测定时,溶液酸度控制在pH 3~8较为适宜,酸度高,则反应进行缓慢;酸度太低,则Fe2+离子易水解,影响显色。
Bi3+、Cd2+、Hg2+、Zn2+及Ag+等离子与邻二氮菲作用生成沉淀,干扰测定。
CN-存在将与Fe2+生成配合物,干扰也很严重。
以上离子应事先设法除去。
实验证实,相当于铁量40倍的Sn2+、Al3+、Ca2+、Mg2+、Zn2+、SiO32-,20倍的Cr3+、Mn2+、VO3-、PO43-,5倍的Co2+、Ni2+、Cu2+等离子不干扰测定。
本法测铁灵敏度高,选择性好,稳定性高。
实验仪器及试剂:721型分光光度计、容量瓶(50mL)7只、吸量管(10mL)2只;铁标准溶液(100μg/mL)、铁标准溶液(10μg/mL)、10%盐酸羟胺溶液(临用时配制)、0.1%邻二氮菲溶液(临用时配制)、NaAc溶液0.1mol/L。
实验步骤:1.显色溶液的配制:取50mL容量瓶7只,分别准确加入10.00μg/mL的铁标准溶液0.00、2.00、4.00、6.00、8.00、10.00mL及试样溶液5.00mL,再于各容量瓶中分别加入10%盐酸羟胺1mL、0.1mol/L NaAc溶液5mL及0.1%邻二氮菲溶液3mL,每加一种试剂后均摇匀再加另一种试剂,最后用水稀释到刻度,充分摇匀,放置5min待用。
2.测绘吸收曲线及选择测量波长:选用加有6.00mL铁标准溶液的显色溶液,以不含铁标准溶液的试剂溶液为参比,用2cm比色皿,在721型分光光度计上从波长450~550nm间,每隔10nm测定一次吸光度A值在最大吸收波长左右,再每隔5nm各测一次。
分光光度法测定微量铁的含量实验报告

分光光度法测定微量铁的含量实验报告
实验目的:
通过分光光度法测定微量铁的含量。
实验原理:
实验仪器和试剂:
仪器:分光光度计、移液枪。
试剂:铁标准溶液、硝酸铵和硝酸亚铁、硫酸亚铁。
实验步骤:
1.取适量的硝酸铵和硝酸亚铁混合溶液,稀释成适宜的浓度。
2.在分光光度计上选择适当的波长,进行仪器的初步调试。
3.取一系列含有不同浓度的铁标准溶液,每个浓度分别进行三次测定,并计算平均值。
4.将测量所得的吸光度与浓度制成标准曲线。
5.将待测溶液纳入曲线范围内进行测定,计算出溶液中铁的含量。
实验结果和数据处理:
根据实验所得的吸光度和浓度数据,我们制成了铁的标准曲线。
通过
测量待测溶液的吸光度,我们进一步计算出溶液中铁的浓度。
实验讨论:
1.实验中所用的试剂的纯度对实验结果有重要影响。
如果试剂的纯度
不高,将会引入误差。
2.在实验过程中,仪器的选择和操作也会对实验结果产生一定的影响。
准确操作仪器,进行仪器的校准和调试是保证实验结果准确性的关键。
3.在实际应用中,还需要考虑样品的前处理,例如稀释、过滤等步骤。
4.在进行标准曲线绘制时,至少应该有三个不同浓度的标准溶液,每
个溶液进行三次测定,可以得到相对准确的结果。
实验结论:
通过分光光度法,我们成功测定了待测溶液中铁的含量。
该方法简便、准确,适用于微量铁含量的测定。
在实际应用中,我们应注意仪器的选择
和操作,以及试剂纯度对实验结果的影响。
通过合理的实验操作和数据处理,可以获得准确可靠的分析结果。
分光光度法测定微量铁的含量实验报告(标准曲线的测绘与铁含量的测定)

分光光度法测定微量铁的含量实验报告(标准曲线的测绘与铁含量的测定)实验报告:分光光度法测定微量铁的含量一、实验目的1.学习分光光度法测定微量铁含量的原理和方法。
2.掌握标准曲线的测绘方法,了解线性回归方程及其应用。
3.学会利用分光光度计测定样品中微量铁的含量。
二、实验原理分光光度法是一种常用的定量分析方法,其原理基于朗伯-比尔定律。
当一束单色光通过溶液时,光被吸收的程度与溶液的浓度和液层厚度成正比。
在一定波长下,吸光度A与溶液浓度C和液层厚度L的乘积成正比,即A=εCL。
其中,ε为摩尔吸光系数,L为液层厚度,C为溶液浓度。
通过绘制标准曲线,可以求得铁的含量。
三、实验步骤1.准备试剂和仪器:硝酸、高氯酸、硫酸、铁标准溶液(100μg/mL)、分光光度计、比色皿、容量瓶(100mL)、吸量管(10mL、5mL、2mL)等。
2.绘制标准曲线:分别取10mL、5mL、2mL铁标准溶液于三个100mL容量瓶中,各加5mL硝酸,20mL硫酸,摇匀,用去离子水定容。
将各溶液分别移入比色皿中,用分光光度计在562nm波长下测量吸光度。
记录数据并绘制标准曲线。
3.测定样品中铁的含量:将样品溶液移入比色皿中,用分光光度计在562nm波长下测量吸光度。
根据标准曲线查得铁的浓度,计算样品中铁的含量。
四、结果与分析1.标准曲线测绘结果在坐标纸上绘制标准曲线,横坐标为铁标准溶液的浓度(μg/mL),纵坐标为吸光度。
根据实验数据绘制标准曲线(图1)。
可以看出,随着铁浓度的增加,吸光度也逐渐增大。
表明铁浓度与吸光度之间存在线性关系。
可以得出线性回归方程为:y=kx+b(k为斜率,b为截距)。
根据实验数据可计算出斜率k和截距b的值。
图1 标准曲线(请在此处插入标准曲线图)2.铁含量测定结果将样品溶液移入比色皿中,用分光光度计在562nm波长下测量吸光度。
根据标准曲线查得铁的浓度(μg/mL),计算样品中铁的含量(mg/L)。
结果如表1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分光光度法测定微量铁
姓名###专业 化学工程与工艺 学号 2904090120 日期 2011 年 11 月 9 日 星期三
一、实验原理
吸光光度法是根据溶液中物质对光选择性的吸收而进行的分析方法。它具有较高的灵敏 度和一定的准确度,特别适宜于微量祖坟的测定。 吸光光度法测定微量铁的显色剂, 目前大多数采用邻二氮菲为显色剂。 在 pH=2~9 的挑件下, 二价铁离子与邻二氮菲生成稳定的橘红色络合物,络合物的 lgK=21.3 ,摩尔吸光系数为 1.1*104。 显色前要用盐酸羟胺把三价铁离子还原为二价铁离子,测定是应控制溶液浓度在 pH=5 左右为宜。 分光光度法测定物质含量是应注意的主要是显色反应的条件和测量吸光度的条件。显色 反应的条件有显色剂用量、介质的酸度、显色时间、显色时溶液的温度、干扰物质的消除方 法等。 测量吸光度的条件包括应选择的入射光波长,吸光度范围和参比溶液。 本实验帮助学生研究邻二氮菲测铁摘入射光波长、 络合物肉 on 工业的稳定性、 显色剂浓度、 溶液 pH 值的影响等几个方面确定实验的最佳条件。
条件实验 显色剂用量的选择
取 7 个 50mL 的容量瓶, 各加入 1mL 铁标准溶液, 1mL 盐酸羟胺, 摇匀。 在分别加入 0.1、 0.3、0.5、0.8、1.0、2.0、4.0mL 邻二氮菲和 5mLNaAc 溶液,以水实施至刻度,摇匀,放置 10min。用 1cm 比色皿,以蒸馏水为参比溶液,在选择波长系测定各溶液的吸光度。以邻二 氮菲溶液的体积 V 为横坐标,吸光度 A 为纵坐标,绘制 A 与 V 的关系的显色剂用量影响曲 线。得出测定铁是显色剂的最适宜用量。
没有干扰离子。 2、本实验量取各种试剂时应分别采用何种量器较为合适?为什么? 答:应采用移液管或是滴定管,因为要准确量取物质的体积。 3、对所做的条件实验进行讨论并选择适宜的测量条件。 答:显色剂为 2mL 的邻二氮菲溶液,显色时间 10min 为宜。
μg
三、实验步骤 吸收曲线的制作和测量波长的选择 在 50mL 容量瓶中按次序准确加入以下溶液,标准铁溶液 5mL,盐酸羟胺 1mL,摇匀, 在加入 NaAc 5mL,邻二氮菲 3 mL。用水稀释到刻度。在 721 型分光光度计上用 1cm 比 色皿以水为参比溶液,从 440~580nm 之间测定吸光度(A) 。每隔 20nm 测定一次,其 中从 480~540nm,每隔 10nm 测定一次。最后以波长为横坐标,吸光度为纵坐标魂之吸 收曲线。从吸收曲线上找出最大的吸收波长,用以进行铁的测定。
8.0 0.313
10.0 0.383
吸光度
0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 12 吸光度
未知量为 7.3mL。
六、思考题 1、邻二氮菲分光光度法测定铁的适宜条件是什么? 适宜的条件是:pH=5 时,二价铁离子和邻二氮菲生成稳定的橘红色的络合物,且溶液中
0.3 0.048
0.5 0.048
0.8 0.043
1.0 0.055
2.0 0.048
4.0 0.054
吸光度
0.06 0.05 0.04 0.03 吸光度 0.02 0.01 0 0 1 2 3 4 5
由图可知,显色剂最适宜的用量是 1.0mL。 显色时间 显色时间 min 吸光度 2 0.055 5 0.056 10 0.056 30 0.056
铁含量的测定
标准曲线的制作 在 6 个 50mL 容量瓶中,用吸量管分别加入 2.0、4.0、6.0、8.0、10.0mL 铁标准溶液,分别 加入 1mL 盐酸羟胺, 2mL 邻二氮菲和 5mLNaAc, 摇匀, 用顺稀释至刻度, 摇匀后放置 10min。 用 1cm 的比色皿,以试剂为空白对照,在所选的波长下,测量各溶液的吸光度。以含铁量 为横坐标,吸光度 A 为纵坐标,绘制标准曲线。 由绘制的标准曲线, 重新查出相应铁浓度的吸光度, 计算二价铁例子和邻二氮菲漯河无的 摩尔吸光系数ε。
吸光度
0.0562 0.056 0.0558 0.0556 0.0554 0.0552 0.055 0.0548 0 5 10 15 20 25 30 35 吸光度
由图可知,最适宜的显色时间是 10min。 标准曲线的制定 2.0 4.0 铁标准溶液 的用量 吸光度 0.096 0.175
6.0 0.239
显色时间
在一个 50mL 容量瓶中,加入 1mL 铁标准溶液,1mL 盐酸羟胺溶液,摇匀。在加入 2mL 邻二氮菲, 5mLNaAc , 以水稀释至刻度, 摇匀。 立刻用 1cm 比色皿, 以蒸馏水为参比溶液, 在选择的波长下测量吸光度。然后一次测定放置 5,10,30,60 min 后的吸光度。以时间 t 为横坐标,吸光度 A 为纵坐标,绘制 A 与 t 的显色时间影响曲线。得出铁与邻二氮菲显色反 应完全所需要的适宜时间。
530 0.143
540 0.094
560 0.033
580 0.013
吸光度
0.25 0.2 0.15 0.1 0.05 0 400 420 440 460 480 500 520 540 560 580 600 吸光度
由图可知,最适宜的波长是 510nm。 显色剂的选择 显色剂的 0.1 用量 吸光度 0.044
式样中铁含量的测定
准确吸取适量试液于 50mL 容量瓶中,按标准曲线的制作步骤,加入各种试剂,测量吸光 度。从标准曲线上查出和计算式样中铁的含量。
四、数据处理 460 波 长 440 nm 吸光 度 0.139 0.156
480 0.175
490 0.178
500 0.185
510 0.192
520 0.180
二、仪器及试剂 仪器 721 型分光光度计、50mL 容量瓶 8 个、2mL、5mL、10mL 移液管各一支。 1. 100 2. 10
μg mL
铁标准溶液
μg
mL
铁标准溶液
3. 盐酸羟胺 10%溶液(临时配置) 4. 邻二氮菲溶液 0.15%(新配置) 5. NaAc 溶液 1 mol/L 仪器:721 型分光光度计、比色皿、容量瓶 7 只,1mL、2mL、5mL、10mL 移液管各 1 支。 试剂 1. 铁标准溶液 100mL 2. 3. 4. 5. 6. 邻二氮菲 0.15%水溶液 盐酸羟胺 10%水溶液 NaAc 1mol/L NaOH 0.1 mol/L HCl