高考物理电学大题整理

合集下载

物理电学大题归纳总结

物理电学大题归纳总结

物理电学大题归纳总结电学是物理学的重要分支,研究电荷、电场、电流、电势等与电相关的现象和性质。

在学习电学的过程中,我们经常遇到一些大题,既考察了基本概念的掌握,又对知识的运用能力进行考察。

本文将对一些物理电学的大题进行归纳总结,帮助同学们更好地复习和理解相关知识。

一、电荷与电场1. 电荷守恒定律:电荷在封闭系统中守恒。

这就意味着,在一个系统中,电荷的净量始终不变。

2. 库仑定律:两个电荷之间的作用力与其电量大小成正比,与它们之间的距离的平方成反比。

3. 电场强度:电场强度是描述某一点电场的强弱和方向的物理量。

在点电荷附近,电场强度与距离的平方成反比。

二、电势与电势能1. 电势:电势是描述电场能量分布的物理量,它是单位正电荷在某点处具有的电势能。

2. 电势差:电势差是指两个点之间的电势差异,也称为电压。

电势差的计算可以利用公式ΔV = Vb - Va。

3. 电势能:电势能是指带电粒子由于存在于电场中而具有的能量。

电势能可以通过公式Ep = qV计算,其中q为电荷量,V为电势。

三、电路分析1. 基尔霍夫定律:基尔霍夫定律包括电流定律和电压定律。

电流定律指出,一个电路中的所有电流的代数和为零;电压定律指出,沿着闭合回路的各个电压之和等于零。

2. 串联电路:在串联电路中,电流在各个电阻之间相同,而电压分布在各个电阻之间。

3. 并联电路:在并联电路中,电压在各个电阻之间相同,而电流分布在各个电阻之间。

四、电流与电阻1. 电流:电流是电荷在单位时间内通过横截面的量度,单位为安培(A)。

电流的大小可以通过公式I = q/t计算,其中q为通过截面的电荷量,t为时间。

2. 电阻:电阻是电流受到阻碍的程度,单位为欧姆(Ω)。

电阻的大小可以通过公式R = V/I计算,其中V为电压,I为电流。

3. 欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系,公式为V = IR,其中V为电压,I为电流,R为电阻。

五、电功与功率1. 电功:电功是电能转化为其他形式的能量的过程,可以用于描述电流通过电阻时所做的功。

2020-2024全国高考真题物理汇编:电势差与电场强度的关系

2020-2024全国高考真题物理汇编:电势差与电场强度的关系

2020-2024全国高考真题物理汇编电势差与电场强度的关系一、单选题1.(2024江西高考真题)极板间一蜡烛火焰带有正离子、电子以及其他的带电粒子,两极板电压保持不变,当电极板距离减小时,电场强度如何变?电子受力方向?( )A .电场强度增大,方向向左B .电场强度增大,方向向右C .电场强度减小,方向向左D .电场强度减小,方向向右2.(2024北京高考真题)如图所示,两个等量异种点电荷分别位于M 、N 两点,P 、Q 是MN 连线上的两点,且MP QN =。

下列说法正确的是( )A .P 点电场强度比Q 点电场强度大B .P 点电势与Q 点电势相等C .若两点电荷的电荷量均变为原来的2倍,P 点电场强度大小也变为原来的2倍D .若两点电荷的电荷量均变为原来的2倍,P 、Q 两点间电势差不变二、多选题3.(2021海南高考真题)如图,在匀强电场中有一虚线圆,ab 和cd 是圆的两条直径,其中ab 与电场方向的夹角为60︒,0.2m ab =,cd 与电场方向平行,a 、b 两点的电势差20V ab U =。

则( )A .电场强度的大小200V /m E =B .b 点的电势比d 点的低5VC .将电子从c 点移到d 点,电场力做正功D .电子在a 点的电势能大于在c 点的电势能4.(2022重庆高考真题)如图为两点电荷Q 、Q '的电场等势面分布示意图,Q 、Q '位于x 轴上,相邻等势面的电势差为3V 。

若x 轴上的M 点和N 点位于0V 等势面上,P 为某等势面上一点,则( )A.N点的电场强度大小比M点的大B.Q为正电荷C.M点的电场方向沿x轴负方向D.P点与M点的电势差为12V三、填空题5.(2023福建高考真题)“场离子显微镜”的金属钨针尖处于球形真空玻璃泡的球心O,玻璃泡内壁有一层均匀导电膜:在钨针和导电膜间加上高电压后,玻璃泡上半部分的电场可视为位于O点处点电荷形成的电场,如图所示。

高考物理压轴题选--电学篇精选

高考物理压轴题选--电学篇精选

选修3-1 电场、恒定电流、磁场1.(09全国1)26.(21分)如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外,P 是y 轴上距原点为h 的一点,N 0为x 轴上距原点为a 的一点。

A 是一块平行于x 轴的档板,与 x 轴的距离为2h,A 的中点在y 轴上,长度略小于2a。

带电粒子与挡板碰撞前后x 方向上的分速度不变,y 方向上的分速度反向,大小不变。

质量为m ,电荷量为q (q >0)的粒子从P 点瞄准N 0点入射,最后又通过P 点。

不计重力。

求粒子入射速度的所有可能值。

【解析】设粒子的入射速度为v,第一次射出磁场的点为O N ',与板碰撞后再次进入磁场的位置为1N .粒子在磁场中运动的轨道半径为R,有mvR qB=…⑴,粒子速率不变,每次进入磁场与射出磁场位置间距离1x 保持不变有1x =2sin O O N N R θ'=…⑵,粒子射出磁场与下一次进入磁场位置间的距离2x 始终不变,与1O N N '相等.由图可以看出2x a =……⑶设粒子最终离开磁场时,与档板相碰n 次(n=0、1、2、3…).若粒子能回到P 点,由对称性,出射点的x 坐标应为-a,即()1212n x nx a +-=……⑷,由⑶⑷两式得121n x a n +=+……⑸ 若粒子与挡板发生碰撞,有124ax x ->……⑹联立⑶⑷⑹得n<3………⑺联立⑴⑵⑸得 22sin 1qB n v a m n θ+=⋅+………⑻把22sin h a hθ=+代入⑻中得22,0o qBa a h v n mh+==…………⑼xy A PO N 0h/222131qBa a h v n +==…………⑾22222qBa a h v n +==…………⑿2.(09浙江)25.(22分)如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。

在xOy 平面内与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。

2023年高考物理压轴题电路大题含答案

2023年高考物理压轴题电路大题含答案

2023年高考物理压轴题电路大题含答案1. 问题描述:一辆汽车在特定道路上匀速行驶,通过一个含有两个电阻的电路。

电路图如下所示:![电路图](circuit.png)电路中的电阻分别为R₁ = 4Ω 和 R₂ = 6Ω。

汽车的电源电压为12V。

1.1 计算题:求解以下两个问题:- 问题1:求解电路中的总电流(I₁)。

- 问题2:当电流通过R₁和R₂时,求解R₁上的电压(V₁)和R₂上的电压(V₂)。

2. 解答:2.1 问题1:求解电路中的总电流(I₁)。

根据欧姆定律,电流(I)与电压(U)和电阻(R)之间的关系为:I = U / R由于电压(U₁)等于电压(U₂),可以得到以下公式:I₁ = U / (R₁ + R₂)= 12V / (4Ω + 6Ω)= 1.2A所以,电路中的总电流(I₁)为1.2安培。

2.2 问题2:求解R₁上的电压(V₁)和R₂上的电压(V₂)。

根据欧姆定律,电压(U)与电流(I)和电阻(R)之间的关系为:U = I * R根据问题1中的结果,我们知道电路中的总电流(I₁)为1.2安培。

因此:V₁ = I₁ * R₁= 1.2A * 4Ω= 4.8VV₂ = I₁ * R₂= 1.2A * 6Ω= 7.2V所以,R₁上的电压(V₁)为4.8伏特,R₂上的电压(V₂)为7.2伏特。

以上就是2023年高考物理压轴题电路大题的答案。

注意:本文档中的电路图仅供参考,并可能与实际题目不完全相符。

请参考实际题目中的电路图和题目要求进行解答。

高考物理电学大题整理

高考物理电学大题整理

高三期末计算题复习题1.两根平行光滑金属导轨MN 和PQ 水平放置,其间距为0.60m ,磁感应强度为0.50T 的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻R =5.0Ω。

在导轨上有一电阻为1.0Ω的金属棒ab ,金属棒与导轨垂直,如图13所示。

在ab 棒上施加水平拉力F 使其以10m/s 的水平速度匀速向右运动。

设金属导轨足够长。

求:(1)金属棒ab 两端的电压。

(2)拉力F 的大小。

(3)电阻R 上消耗的电功率。

1.(7分)解:(1)金属棒ab 上产生的感应电动势为BLv E ==3.0V , (1分)根据闭合电路欧姆定律,通过R 的电流 I =Rr E+= 0.50A 。

(1分) 电阻R 两端的电压 U =IR =2.5V 。

(1分) (2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力大小相等,即F = BIL = 0.15 N (2分)(3)根据焦耳定律,电阻R 上消耗的电功率 R I P 2==1.25W (2分)2.如图10所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场区域。

线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界。

已知线框的四个边的电阻值相等,均为R 。

求: ⑴在ab 边刚进入磁场区域时,线框内的电流大小。

⑵在ab 边刚进入磁场区域时,ab 边两端的电压。

⑶在线框被拉入磁场的整个过程中,线框产生的热量。

2.(7分)(1)ab 边切割磁感线产生的电动势为E=BLv …………………(1分) 所以通过线框的电流为 I=RBLv R E 44= ……………………(1分) (2)ab 边两端电压为路端电压 U ab =I ·3R ……………………(1分)图10BNQ 图13所以U ab = 3BLv/4……………………(1分)(3)线框被拉入磁场的整个过程所用时间t=L/v ……………………(1分)线框中电流产生的热量Q=I 2·4R ·t RvL B 432= ……………………(2分)3.如图16所示,两根竖直放置的足够长的光滑平行金属导轨间距l =0.50m ,导轨上端接有电阻R =0.80Ω,导轨电阻忽略不计。

(完整版)高中物理电学试题及答案(经典)

(完整版)高中物理电学试题及答案(经典)

高中物理电学试题及答案一、选择题(25×4=100分)1、如图,A、B是两个带电量为+Q和-Q的固定的点电荷,现将另一个点电荷+q从A附近的A附近的a沿直线移到b,则下列说法中正确的是:A、电场力一直做正功B、电场力一直做负功C、电场力先做正功再做负功D、电场力先做负功再做正功2、在第1题的问题中,关于电势和电势能下列说法中正确的是:A、a点比b点的电势高,电荷+q在该点具有的电势能大B、a点比b点的电势高,电荷+q在该点具有的电势能小C、a点和b点的电势一样高,电荷+q在两点具有的电势能相等D、a点和b点电势高低的情况与电荷+q的存在与否无关3、如图所示,两个完全相同的金属小球用绝缘丝线悬挂在同一位置,当给两个小球带有不同电量的同种电荷,静止时,两小球悬线与竖直线的夹角情况是:A、两夹角相等B、电量大的夹角大C、电量小的夹角大D、无法判断4、在第3题的问题中若将两小球互相接触一下再静止时应是:A、夹角都增大,但不一定再相等B、夹角仍为原值C、夹角有增大和减小,但两夹角的和不变D、夹角都增大了相同的值5、如图所示,这是一个电容器的电路符号,则对于该电容器的正确说法是:A、是一个可变电容器B、有极性区别,使用时正负极不能接错C、电容值会随着电压、电量的变化而变化D、由于极性固定而叫固定电容6、如图所示的电路,滑动变阻器的电阻为R,其两个固定接线柱在电压恒为U的电路中,其滑片c位于变阻器的中点,M、N间接负载电阻R f=R/2,,关于R f的电压说法正确的是:A、R f的电压等于U/2B、R f的电压小于U/2C、R f的电压大于U/2D、R f的电压总小于U7、在第6题的问题中,如果将滑动变阻器b端断开,则关于R f的电压变化范围说法正确的是:A、U/2-UB、0-UC、U/3-UD、0-U/28、如图所示的电路中,当变阻器R的阻值增加时,关于通过电源的电流和路端电压说法正确的是:A、通过电源的电流I将增大B、通过电源的电流I将减小C、路端电压将增大D、路端电压将减小9、在第7题的问题中,关于通过R的电流和R两端的电压说法正确的是:A、R两端的电压将增大B、R两端的电压将减小C、通过R的电流不变D、通过R的电流减少10、关于电源的总功率和效率说法正确的是:A、总功率减少,效率提高B、总功率增加,效率增加C、总功率减少,效率降低D、总功率增加,效率不变11、磁感应强度是描述磁场的重要概念,磁场的基本性质是对电流有安培力的作用,则关于磁感应强度的大小,下列说法正确的是:A、一段通电导体,在磁场某处受的力越大,该处的磁感应强度越大B、一段通电导线在磁场某处受的力等于零,则该处的磁感应强度一定等于零C、匀强磁场中某处的磁感应强度的大小等于该处单位面积穿过的磁感线的条数D、磁感线密处,磁感应强度大,磁感线疏的地方,磁感应强度一定小12、在第11题的问题中,关于磁感应强度的方向,下列说法正确的是:A、磁感应强度的方向,就是该处电流受力的方向B、磁感应强度的方向就是该处小磁针静止是北极的受力方向C、磁感应强度的方向与该处小磁针静止是北极的受力方向垂直D、磁感应强度的方向与该处电流的流向有关13、关于安培力的说法中,正确的是:A、一小段通电导线放在磁感应强度为零的位置,它受的磁场力一定为零B、一小段通电导线在某点不受安培力的作用,则该点的磁感应强度一定为零C、一小段通电导线所受的安培力其方向一定与电流垂直D、一小段通电导线所受安培力的方向与该点磁感应强度方向及电流方向三者一定互相垂直14、磁通量是研究电磁感应的重要概念,关于磁通量的概念,以下说法正确的是:A、磁感应强度越大,穿过闭合回路的磁通量也越大B、磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大C、穿过线圈的磁通量为零时,磁感应强度不一定为零D、磁通量发生变化时,磁通密度也一定发生变化15、在匀强磁场中,有一个闭合金属线框如图,它可以绕轴转动,开始时金属线框与磁感线平行,下列说法正确的是:A、当金属线框平面与磁感线平行时,穿过线框的磁通量最大B、当金属线框平面与磁感线垂直时,穿过线框的磁通量最大C、当金属线框平面与磁感线垂直时,穿过线框的磁通量为零D、当金属线框平面与磁感线平行时,穿过线框的磁通量为零16、材料、粗细相同相同,长度不同的电阻丝做成ab、cd、ef三种形状的导线,分别放在电阻可忽略的光滑金属导轨上,并与导轨垂直,如图。

(完整)物理电学实验高考真题汇编(含答案),推荐文档

(完整)物理电学实验高考真题汇编(含答案),推荐文档

电学实验1.【2017·天津卷】某探究性学习小组利用如图所示的电路测量电池的电动势和内阻。

其中电流表A1的内阻r1=1.0 kΩ,电阻R1=9.0 kΩ,为了方便读数和作图,给电池串联一个R0=3.0 Ω的电阻。

①按图示电路进行连接后,发现aa'、bb'和cc'三条导线中,混进了一条内部断开的导线。

为了确定哪一条导线内部是断开的,将电建S闭合,用多用电表的电压挡先测量a、b'间电压,读数不为零,再测量、a'间电压,若读数不为零,则一定是________导线断开;若读数为零,则一定是___________导线断开。

②排除故障后,该小组顺利完成实验。

通过多次改变滑动变阻器触头位置,得到电流表A1和A2的多组I1、I2数据,作出图象如右图。

由I1–I2图象得到电池的电动势E=_________V,内阻r=__________Ω。

【答案】①aa'bb'②1.41(1.36~1.44均可)0.5(0.4~0.6均可)【考点定位】实验——用伏安法测干电池的电动势和内阻【名师点睛】由图象法处理实验数据的关键是要理解图线的物理意义——纵轴截距和斜率表示什么,闭合电路的欧姆定律是核心。

2.【2017·新课标Ⅰ卷】(10分)某同学研究小灯泡的伏安特性,所使用的器材有:小灯泡L(额定电压3.8 V,额定电流0.32A);电压表V d V(量程3 V,内阻3 kΩ);电流表A d(量程0.5 A,内阻0.5 Ω);固定电阻R0(阻值1 000 Ω);滑动变阻器R(阻值0~9.0 Ω);电源E(电动势5 V,内阻不计);开关S;导线若干。

(1)实验要求能够实现在0~3.8 V的范围内对小灯泡的电压进行测量,画出实验电路原理图。

(2)实验测得该小灯泡伏安特性曲线如图(a)所示。

由实验曲线可知,随着电流的增加小灯泡的电阻_________(填“增大”“不变”或“减小”),灯丝的电阻率__________(填“增大”“不变”或“减小”)。

(完整版)高中物理电学试题及答案

(完整版)高中物理电学试题及答案

高中物理电学试题及答案一、选择题(25×4=100分)1、如图,A、B是两个带电量为+Q和-Q的固定的点电荷,现将另一个点电荷+q从A附近的A附近的a沿直线移到b,则下列说法中正确的是:A、电场力一直做正功B、电场力一直做负功C、电场力先做正功再做负功D、电场力先做负功再做正功2、在第1题的问题中,关于电势和电势能下列说法中正确的是:A、a点比b点的电势高,电荷+q在该点具有的电势能大B、a点比b点的电势高,电荷+q在该点具有的电势能小C、a点和b点的电势一样高,电荷+q在两点具有的电势能相等D、a点和b点电势高低的情况与电荷+q的存在与否无关3、如图所示,两个完全相同的金属小球用绝缘丝线悬挂在同一位置,当给两个小球带有不同电量的同种电荷,静止时,两小球悬线与竖直线的夹角情况是:A、两夹角相等B、电量大的夹角大C、电量小的夹角大D、无法判断4、在第3题的问题中若将两小球互相接触一下再静止时应是:A、夹角都增大,但不一定再相等B、夹角仍为原值C、夹角有增大和减小,但两夹角的和不变D、夹角都增大了相同的值5、如图所示,这是一个电容器的电路符号,则对于该电容器的正确说法是:A、是一个可变电容器B、有极性区别,使用时正负极不能接错C、电容值会随着电压、电量的变化而变化D、由于极性固定而叫固定电容6、如图所示的电路,滑动变阻器的电阻为R,其两个固定接线柱在电压恒为U的电路中,其滑片c位于变阻器的中点,M、N间接负载电阻R f=R/2,,关于R f的电压说法正确的是:A、R f的电压等于U/2B、R f的电压小于U/2C、R f的电压大于U/2D、R f的电压总小于U7、在第6题的问题中,如果将滑动变阻器b端断开,则关于R f的电压变化范围说法正确的是:A、U/2-UB、0-UC、U/3-UD、0-U/28、如图所示的电路中,当变阻器R的阻值增加时,关于通过电源的电流和路端电压说法正确的是:A、通过电源的电流I将增大B、通过电源的电流I将减小C、路端电压将增大D、路端电压将减小9、在第7题的问题中,关于通过R的电流和R两端的电压说法正确的是:A、R两端的电压将增大B、R两端的电压将减小C、通过R的电流不变D、通过R的电流减少10、关于电源的总功率和效率说法正确的是:A、总功率减少,效率提高B、总功率增加,效率增加C、总功率减少,效率降低D、总功率增加,效率不变11、磁感应强度是描述磁场的重要概念,磁场的基本性质是对电流有安培力的作用,则关于磁感应强度的大小,下列说法正确的是:A、一段通电导体,在磁场某处受的力越大,该处的磁感应强度越大B、一段通电导线在磁场某处受的力等于零,则该处的磁感应强度一定等于零C、匀强磁场中某处的磁感应强度的大小等于该处单位面积穿过的磁感线的条数D、磁感线密处,磁感应强度大,磁感线疏的地方,磁感应强度一定小12、在第11题的问题中,关于磁感应强度的方向,下列说法正确的是:A、磁感应强度的方向,就是该处电流受力的方向B、磁感应强度的方向就是该处小磁针静止是北极的受力方向C、磁感应强度的方向与该处小磁针静止是北极的受力方向垂直D、磁感应强度的方向与该处电流的流向有关13、关于安培力的说法中,正确的是:A、一小段通电导线放在磁感应强度为零的位置,它受的磁场力一定为零B、一小段通电导线在某点不受安培力的作用,则该点的磁感应强度一定为零C、一小段通电导线所受的安培力其方向一定与电流垂直D、一小段通电导线所受安培力的方向与该点磁感应强度方向及电流方向三者一定互相垂直14、磁通量是研究电磁感应的重要概念,关于磁通量的概念,以下说法正确的是:A、磁感应强度越大,穿过闭合回路的磁通量也越大B、磁感应强度越大,线圈面积越大,穿过闭合回路的磁通量也越大C、穿过线圈的磁通量为零时,磁感应强度不一定为零D、磁通量发生变化时,磁通密度也一定发生变化15、在匀强磁场中,有一个闭合金属线框如图,它可以绕轴转动,开始时金属线框与磁感线平行,下列说法正确的是:A、当金属线框平面与磁感线平行时,穿过线框的磁通量最大B、当金属线框平面与磁感线垂直时,穿过线框的磁通量最大C、当金属线框平面与磁感线垂直时,穿过线框的磁通量为零D、当金属线框平面与磁感线平行时,穿过线框的磁通量为零16、材料、粗细相同相同,长度不同的电阻丝做成ab、cd、ef三种形状的导线,分别放在电阻可忽略的光滑金属导轨上,并与导轨垂直,如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三期末计算题复习题1.两根平行光滑金属导轨MN 和PQ 水平放置,其间距为0.60m ,磁感应强度为的匀强磁场垂直轨道平面向下,两导轨之间连接的电阻R =Ω。

在导轨上有一电阻为Ω的金属棒ab ,金属棒与导轨垂直,如图13所示。

在ab 棒上施加水平拉力F 使其以10m/s 的水平速度匀速向右运动。

设金属导轨足够长。

求:(1)金属棒ab 两端的电压。

(2)拉力F 的大小。

(3)电阻R 上消耗的电功率。

1.(7分)解:(1)金属棒ab 上产生的感应电动势为BLv E ==, (1分)根据闭合电路欧姆定律,通过R 的电流 I =Rr E+= 0.50A 。

(1分) 电阻R 两端的电压 U =IR =。

(1分) (2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力大小相等,即F = BIL = N (2分) (3)根据焦耳定律,电阻R 上消耗的电功率 R I P 2== (2分)2.如图10所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场区域。

线框被全部拉入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界。

已知线框的四个边的电阻值相等,均为R 。

求:⑴在ab 边刚进入磁场区域时,线框内的电流大小。

⑵在ab 边刚进入磁场区域时,ab 边两端的电压。

⑶在线框被拉入磁场的整个过程中,线框产生的热量。

2.(7分)(1)ab 边切割磁感线产生的电动势为E=BLv …………………(1分) 所以通过线框的电流为 I=RBLvR E 44=……………………(1分) (2)ab 边两端电压为路端电压 U ab =I ·3R ……………………(1分) 所以U ab = 3BLv/4……………………(1分)(3)线框被拉入磁场的整个过程所用时间t=L/v ……………………(1分)线框中电流产生的热量Q=I 2·4R ·t RvL B 432= ……………………(2分)图10BNQ图133.如图16所示,两根竖直放置的足够长的光滑平行金属导轨间距l =0.50m ,导轨上端接有电阻R =Ω,导轨电阻忽略不计。

导轨下部的匀强磁场区有虚线所示的水平上边界,磁感应强度B =,方向垂直于金属导轨平面向外。

电阻r =Ω的金属杆MN ,从静止开始沿着金属导轨下落,下落一定高度后以v =2.5m/s 的速度进入匀强磁场中,金属杆下落过程中始终与导轨垂直且接触良好。

已知重力加速度g =10m/s 2,不计空气阻力。

(1)求金属杆刚进入磁场时通过电阻R 的电流大小;(2)求金属杆刚进入磁场时,M 、N 两端的电压;(3)若金属杆刚进入磁场区域时恰能匀速运动,则在匀速下落过程中每秒钟有多少重力势能转化为电能?3. (7分)解:(1)金属杆进入磁场切割磁感线产生的电动势E=Blv , (1分)根据闭合电路欧姆定律,通过电阻R 的电流大小I =rR E+=0.5A (2分) (2)M 、N 两端电压为路端电压,则U MN =IR = (2分) (3)每秒钟重力势能转化为电能E = I 2(R+r )t = (2分)4.如图14所示,两平行金属导轨间的距离L =0.40m ,金属导轨所在的平面与水平面夹角θ=37o ,在导轨所在平面内,分布着磁感应强度B =、方向垂直遇导轨所在平面的匀强磁场。

金属导轨的一端接有电动势E=、内阻r =Ω的直流电源。

现把一个质量m =0.040kg 的导体棒ab 放在金属导轨上,导体棒恰好静止。

导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻R 0=Ω,金属导轨电阻不计,g 取10m/s 2。

已知sin37o=,cos37o=,求: (1)通过导体棒的电流;(2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力。

4.(1)导体棒、金属导轨和直流电源构成闭合电路,根据闭合电路欧姆定律有:I =rR E+=1.5A …………2分 (2)导体棒受到的安培力: F 安=BIL =…………2分(3)导体棒所受重力沿斜面向下的分力F 1= mg sin37o=由于F 1小于安培力,故导体棒受沿斜面向下的摩擦力f …………1分 根据共点力平衡条件mg sin37o+f =F 安…………1分图14解得:f = …………1分5.在水平面上平行放置着两根长度均为L 的金属导轨MN 和PQ ,导轨间距为d ,导轨和电路的连接如图16所示。

在导轨的MP 端放置着一根金属棒,与导轨垂直且接触良好。

空间中存在竖直向上方向的匀强磁场,磁感应强度为B 。

将开关S 1闭合S 2断开,电压表和电流表的示数分别为U 1和I 1,金属棒仍处于静止状态;再将S 2闭合,电压表和电流表的示数分别为U 2和I 2,金属棒在导轨上由静止开始运动,运动过程中金属棒始终与导轨垂直。

设金属棒的质量为m ,金属棒与导轨之间的动摩擦因数为μ。

忽略导轨的电阻以及金属棒运动过程中产生的感应电动势,重力加速度为g 。

求:(1)金属棒到达NQ 端时的速度大小;(2)金属棒在导轨上运动的过程中,电流在金属棒中产生的热量。

5.(8分)解:(1)当通过金属棒的电流为I 2度为a ,根据牛顿第二定律,ma mg BlI =-μ2设金属棒到达NQ 端时的速度为v 由以上两式解得: mLmg BdI v )(22μ-=。

(2分)(2)当金属棒静止不动时,金属棒的电阻11I U r =,设金属棒在导轨上运动的时间为t ,电流在金属棒中产生的热量为Q ,根据焦耳定律,rt I Q 22=, (2分)根据运动学公式,t vL 2=,将(1)的结果代入,解得 (1分) mgBdI LmI U I Q μ-=211222。

(1分)图166.如图15(甲)所示,一固定的矩形导体线圈水平放置,线圈的两端接一只小灯泡,在线圈所在空间内均匀分布着与线圈平面垂直的磁场。

已知线圈的匝数n =100匝,电阻r=Ω,所围成矩形的面积S=0.040m 2,小灯泡的电阻R=Ω,磁场的磁感应强度随时间按如图15(乙)所示的规律变化,线圈中产生的感应电动势的瞬时值的表达式为e =t TT SnB m )2cos(2ππ,其中B m 为磁感应强度的最大值,T 为磁场变化的周期。

不计灯丝电阻随温度的变化,求: (1)线圈中产生感应电动势的最大值。

(2)小灯泡消耗的电功率。

(3)在磁感应强度变化0~T /4的时间内,通过小灯泡的电荷量。

6.(8分)解:(1)因为线圈中产生的感应电流变化的周期与磁场变化的周期相同,所以由图象可知,线圈中产生交变电流的周期为 T=×10-2s 。

所以线圈中感应电动势的最大值为 E=2πnB m S/T = (2分)(2)根据欧姆定律,电路中电流的最大值为I m =rR E +m=0.80A 通过小灯泡电流的有效值为I =I m /2=0.402A , (1分) 灯泡消耗的电功率为P=I 2R = (2分) (3)在磁感应强度变化1/4周期内,线圈中感应电动势的平均值E =nStB∆∆ 通过灯泡的平均电流tr R BnS r R E I ∆+∆=+=)( (1分) 通过灯泡的电荷量Q =rR BnS t I +∆=∆=×10-3C 。

(2分)7.如图17(甲)所示,长为l 、相距为d 的两块正对的平行金属板AB 和CD 与一电源相连(图中未画出电源),B 、D 为两板的右端点。

两板间电势差的变化如图17(乙)所示。

在金属板B 、D 端的右侧有一与金属板垂直的荧光屏MN ,荧光屏距B 、D 端的距离为l 。

质量为m ,电荷量为e 的电子以相同的初速度v 0从极板左边中央沿平行极板的直线OO ′连续不断地射入。

已知所有的电子均能够从两金属板间射出,且每个电子在电场中运动的时间与电压变化的周期相等。

忽略极板边缘处电场的影响,不计电子的重力以及电子之间的相互作用。

求:(1)t =0和t =T /2时刻进入两板间的电子到达金属板B 、D 端界面时偏离OO ′的距离之比。

(2)两板间电压的最大值U 0。

(3)电子在荧光屏上分布的最大范围。

图15(甲)-2s图15(乙)UO ′7.(9分)解:(1)t =0时刻进入两板间的电子沿OO ′方向做匀速运动,在T /2的时间经过的位移l /2,即有220lT v =,而后在电场力作用下做抛物线运动,在垂直于OO ′方向做匀加速运动,设到达B 、D 界面时偏离OO ′的距离为y 1,则201)2(21T md eU y ==2208mdv l eU 。

(2分) t =T /2时刻进入两板间的电子先在T /2时间内做抛物线运动,沿OO ′方向的位移为l /2,在垂直于OO ′方向做匀加速运动,设此时偏离OO ′的距离为y 2,将此时电子的速度分解为沿OO ′方向的速度v 0与沿电场方向的分量v E ,并设此时刻电子的速度方向与OO ′的夹角为θ,而后沿直线到达B 、D 界面。

设电子沿直线到达B 、D 界面时偏离OO ′的距离为y 2′,则有202)2(21T md eU y ==y 1, 2'2tan 22000l y y T mdv eU v v E -===θ;解得y 2′=202083mdv l eU 。

(1分) 因此,y 1:y 2′=1:3。

(1分) (2)在t =(2n +1)T /2(n =0,1,2……)时刻进入两板间的电子在离开金属板时偏离OO ′的距离最大,因此使所有进入金属板间的电子都能够飞出金属板,即应满足的条件为y 2′≤2d,解得板间电压的最大值 2202034el mv d U =。

(2分) (3)设t =nT (n =0,1,2……)时刻进入两板间的电子到达荧光屏上的位置与O ′点的距离为Y 1,t =(2n +1)T /2(n =0,1,2……)时刻进入两板间的电子到达荧光屏上的位置与O ′点的距离为Y 2,电子在荧光屏上分布的范围ΔY =Y 2-Y 1。

当满足y 2′=2d的条件时,ΔY 为最大。

根据题中金属板和荧光屏之间的几何关系,得到ly Y l y Y 1122'tan -=-=θ, (1分) 因此电子在荧光屏上分布的最大范围为 ΔY =Y 2-Y 1=y 2′-y 1=3d。

(2分)8.电视机显像管中需要用变化的磁场来控制电子束的偏转。

图20甲为显像管工作原理示意图,阴极K 发射的电子束(初速不计)经电压为U 的加速电场后,进入一圆形匀强磁场区,磁场方向垂直于圆面(以垂直圆面向里为正方向),磁场区的中心为O ,半径为r ,荧光屏MN 到磁场区中心O 的距离为L 。

相关文档
最新文档