差动变压器的性能实验

差动变压器的性能实验
差动变压器的性能实验

实验九差动变压器的性能实验

一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。

四、实验步骤:

附:测微头的组成与使用

测微头组成和读数如图9—1

测微头读数图

图9—1测位头组成与读数

测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。

测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。

用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。

测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图9—1甲读数为3.678mm,不是3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,

如图9—1乙已过零则读2.514mm;如图9—1丙未过零,则不应读为2mm,读数应为1.980mm。

测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。

1、将差动变压器和测微头(参照附:测微头使用)安装在实验模板的支架座上,差动变压器的原理图已印刷在实验模板上,L1为初级线圈;L

2、L3为次级线圈;*号为同名端,如下图9-2。

2、按图9—2接线,差动变压器的原边L1的激励电压必须从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为4-5KHz(可用主机箱的频率表输入Fin来监测);调节输出幅度峰峰值为Vp-p=2V(可用示波器监测:X 轴为0.2ms/div)。

3、松开测微头的安装紧固螺钉,移动测微头的安装套使示波器第二通道显示的波形V p-p为较小值(变压器铁芯大约处在中间位置),拧紧紧固螺钉,仔细调节测微头的微分筒使示波器第二通道显示的波形Vp-p为最小值(零点残余电压)并定为位移的相对零点。这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从V p-p最小开始旋动测微头的微分筒,每隔0.2mm(可取10—25点)从示波器上读出输出电压V p-p值,填入下表9,再将测位头退回到V p-p最小处开始反方向做相同的位移实验。在实验过程中请注意:⑴从Vp-p最小处决定位移方向后,测微头只能按所定方向调节位移,中途不允许回调,否则,由于测微头存在机械回差而引起位移误差;所以,实验时每点位移量须仔细调节,绝对不能调节过量,如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。⑵当一个方向行程实验结束,做另一方向时,测微头回到Vp-p最小处时它的位移读数有变化(没有回到原来起始位置)是正常的,做实验时位移取相对变化量△X为定值,只要中途测微头不回调就不会引起位移误差。

图9—2差动变压器性能实验安装、接线图

4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根

据表9画出V op-p -X 曲线,作出位移为±1mm 、±3mm 时的灵敏度和非线性误差。实验完毕,

关闭电源。

五、思考题:

1、用差动变压器测量振动频率的上限受什么影响?

2、试分析差动变压器与一般电源变压器的异同?

实验十 激励频率对差动变压器特性的影响

一、实验目的:了解初级线圈激励频率对差动变压器输出性能的影响。

二、基本原理:差动变压器的输出电压的有效值可以近似用关系式:o U =2

2221)(p

p i

L R U M M ωω+-表示,式中L P 、RP 为初级线圈电感和损耗电阻,i U 、ω为激励电压和频率,M1、M2为初

级与两次级间互感系数,由关系式可以看出,当初级线圈激励频率太低时,若RP2>ω2LP2,则输出电压Uo受频率变动影响较大,且灵敏度较低,只有当ω2LP2>>RP2时输出Uo与ω无关,当然ω过高会使线圈寄生电容增大,对性能稳定不利。

三、需用器件与单元:主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。

四、实验步骤:

1、差动变压器及测微头的安装、接线同实验九图9—2并仔细参阅实验九附:测微头的组成与使用。

2、检查接线无误后,合上主机箱电源开关,调节主机箱音频振荡器L V输出频率为1KH Z (可用主机箱的频率表监测频率),V p-p=2V(示波器监测V p-p)。调节测微头微分筒使差动变压器的铁芯处于线圈中心位置即输出信号最小时(示波器监测V p-p最小时)的位置。

3、调节测微头位移量△X为2.50mm,差动变压器有某个较大的V p-p输出。

4、在保持位移量不变的情况下改变激励电压(音频振荡器)的频率从1KH Z—9KH Z(激励电压幅值2V不变)时差动变压器的相应输出的V p-p值填入表10。

5、作出幅频(F—V p-p)特性曲线。实验完毕,关闭电源。

实验十一差动变压器零点残余电压补偿实验

一、实验目的:了解差动变压器零点残余电压补偿方法。

二、基本原理:由于差动变压器二只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁芯B-H特性的非线性等,因此在铁芯处于差动线圈中间位置时其输出电压并不为零,称其为零点残余电压。

三、需用器件与单元:主机箱、测微头、差动变压器、差动变压器实验模板、示波器。

四、实验步骤:

1、参阅实验九附:测微头的组成与使用。根据图11接线,差动变压器原边激励电压从音频振荡器的L V插口引入,实验模板中的R1、C1、R W1、R W2为电桥单元中调平衡网络。

2、用示波器和频率表监测并调节主机箱音频振荡器输出频率为4—5KHz、幅值为2V

峰峰值的激励电压。

3、调整测微头,使差动放大器输出电压最小。

4、依次交替调整R W1、R W2,使输出电压降至最小。

图11 零点残余电压补偿实验接线图

5、将示波器第二通道的灵敏度提高,观察零点残余电压的波形,注意与激励电压相比较。

6、从示波器上观察,差动变压器的零点残余电压值(峰峰值)。(注:这时的零点残余

V0,K是放大电压是经放大后的零点残余电压,所以经补偿后的零点残余电压:V零点p-p=

K

倍数约为7倍左右。)实验完毕,关闭电源。

五、思考题:

零点残余电压是什么波形?

实验十二差动变压器的应用—振动测量实验

一、实验目的:了解差动变压器测量振动的方法。

二、基本原理:由实验九差动变压器性能实验基本原理可知,当差动变压器的铁芯连接杆与被测体连接时就能检测到被测体的位移或振动。

三、需用器件与单元:主机箱、差动变压器、差动变压器实验模板、移相器/相敏检波器/滤波器模板、振动源、示波器。

四、实验步骤:

1、将差动变压器按图12卡在传感器安装支架的U型槽上并拧紧差动变压器的夹紧螺母,调整传感器安装支架使差动变压器的铁芯连杆与振动台中心点磁钢吸合并拧紧传感器安装支架压紧螺帽,再调节升降杆使差动变压器铁芯大约处于线圈的中心位置。

图12 差动变压器振动测量安装、接线图

1、按图12接线,并调整好有关部分,调整如下:(1)检查接线无误后,合上主机箱电源开关,用频率表、示波器监测音频振荡器L V的频率和幅值,调节音频振荡器的频率、幅度旋钮使Lv输出4—5KHz、Vop-p=2V的激励电压。(2)用示波器观察相敏检波器输出(图中低通滤波器输出中接的示波器改接到相敏检波器输出),调节升降杆(松开锁紧螺钉转动

升降杆的铜套)的高度,使示波器显示的波形幅值为最小。(3)仔细调节差动变压器实验模板的R W1和R W2(交替调节)使示波器(相敏检波器输出)显示的波形幅值更小,基本为零点。(4)用手按住振动平台(让传感器产生一个大位移)仔细调节移相器和相敏检波器的旋钮,使示波器显示的波形为一个接近全波整流波形。(5)松手,整流波形消失变为一条接近零点线(否则再调节R W1和R W2)。(6)振动源的低频输入接上主机箱的低频振荡器,调节低频振荡器幅度旋钮和频率旋钮,使振动平台振荡较为明显。用示波器观察放大器相敏检波器Vo及低通滤波器的Vo波形。

2、保持低频振荡器的幅度不变,改变振荡频率(频率与输出电压Vp-p的监测方法与实验十相同)用示波器观察低通滤波器的输出,读出峰-峰电压值,记下实验数据,填入下表12。

表12

3、根据实验结果作出梁的振幅—频率特性曲线,指出自振频率的大致值,并与实验七用应变片测出的结果相比较。

4、保持低频振荡器频率不变,改变振荡幅度,同样实验可得到振幅与电压峰峰值Vp-p 曲线(定性)。

注意事项:低频激振电压幅值不要过大,以免梁在自振频率附近振幅过大。实验完毕,关闭电源。

五、思考题:

1、如果用直流电压表来读数,需增加哪些测量单元,测量线路该如何?

2、利用差动变压器测量振动,在应用上有些什么限制?

实验十三电容式传感器的位移实验

一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用电容C=εA/d和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测位移(d变)和测量液位(A变)等多种电容传感器。本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如下图所示:它是有二个圆筒和一个圆柱组成的。设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2πx/ln(R /r)。图中C1、C2是差动连接,当图中的圆柱产生?X位移时,电容量的变化量为?C=C1-C2=ε2π2?X/ln(R/r),式中ε2π、ln(R/r)为常数,说明?C与位移?X成正比,配上配套测量电路就能测量位移。

三、需用器件与单元:主机箱、电容传感器、电容传感器实验模板、测微头。

四、实验步骤:

1、测微头的使用和安装参阅实验九。按图13将电容传感器装于电容传感器实验模板上并按图示意接线(实验模板的输出VO1接主机箱电压表的Vin)。

2、将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时传3圈)。

3、将主机箱上的电压表量程(显示选择)开关打到2v档,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。以后,反方向每转动测微头1圈即△X=0.5mm位移读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表13并作出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。

4、根据表13数据计算电容传感器的系统灵敏度S和非线性误差δ。实验完毕,关闭电源。

图13 电容传感器位移实验安装、接线图

(一) 差动变压器的性能实验

实验三电磁式传感器 (一)差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式 和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源 (音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1 差动变压器电容传感器安装示意图 2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率 为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。调节幅度使输出幅度为峰一峰值 V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。 图3-2 双线示波与差动变压器连结示意图

差动变压器的性能实验

差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器的工作原理电磁互感原理。差动变压器的结构如图所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。 当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。由于两个二次绕组反向串接,所以差动输出电动势为零。当衔铁移向二次绕组L21,这时互感M1大,M2小, 差动变压器的结构示意图差动变压器的等效电路图 因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。在传感器的量程内,衔铁位移越大,差动输出电动势就越大。同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。由图可以看出一次绕组的电流为: 二次绕组的感应动势为: 由于二次绕组反向串接,所以输出总电动势为:

其有效值为: 差动变压器的输出特性曲线如图所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。零点残余电动势的存在,使得传感器的输出特性在零点附近不灵敏,给测量带来误差,此值的大小是衡量差动变压器性能好坏的重要指标。为了减小零点残余电动势可采取以下方法: 差动变压器输出特性 1、尽可能保证传感器几何尺寸、线圈电气参数及磁路的对称。磁性材料要经过处理,消除内部的残余应力,使其性能均匀稳定。 2、选用合适的测量电路,如采用相敏整流电路。既可判别衔铁移动方向又可改善输出特性,减小零点残余电动势。 3、采用补偿线路减小零点残余电动势。下图是其中典型的几种减小零点残余电动势的补偿电路。在差动变压器的线圈中串、并适当数值的电阻电容元件,当调整W1、W2时,可使零点残余电动势减小。 (a) (b) (c) 减小零点残余电动势电路

差动变压器的性能(自检实验二)

实 验 报 告 实验项目名称:差动变压器的性能 同组人 试验时间 年 月 日,星期 , 节 实验室 K2,508传感器实验室 指导教师 一、 实验目的 了解差动变压器原理、位移特性、零点残余电压补偿方法、振动测量的方法。 二、 实验原理 差动变压器是把被测的非电量变化转换成线圈互感量得变化。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动的形式连接,故称之为差动变压器。 图2.1 螺线管式差动变压器 如图2.1所示,1-活动衔铁;2-导磁外壳;3-骨架;4-匝数为W 1初级绕组;5-匝数为W 2a 次级绕组;6-匝数W 2b 次级绕组。 设1U ? 为一次一次绕组激励电压;1M 、2M 分别为一次绕组与两个二次绕组间的互感;1L 为一次绕组的电感;1r 为一次绕组的有效电阻。 当次级开路时,初级线圈激励电流为: 1 111 U I r j L ω? ? = + 根据电磁感应定律,两个次级绕组的感应电动势分别为: 211a E j M I ω? ? =-、221b E j M I ω? ? =- 次级绕组反相串联后的电势差为: 121 22211 ()a b j M M U U E E r j L ωω? ? ? ? -=-=- +

由上面公式可得差动变压器输出电压特性,如图2.2 图2.2 差动变压器输出电压特性曲线 差动变压器往往会产生零点残余电压,主要原因是: 1、由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的 幅值和相位不同,调整磁芯位置时,也不能达到幅值和相位同时相同。 2、由于铁芯的B-H特性的非线性,产生高次谐波不同,不能相互抵消。 为减小零点残余电压,我们一般会做如下措施: 1、在设计和工艺上,力求做到磁路对称,线圈对称,铁芯材料均匀。 2、在电路上进行补偿,一般会加串联电阻、并联电容、反馈电阻或反馈电容 等。 三、所需单元及部件: 1、STIM-01模块、STIM-08模块、STIM-02模块、STIM-03模块、差动变压器。 2、1-10KHZ音频信号、1-30HZ低频信号、示波器。 3、电子连线若干。 四、实验步骤: 1、(1)将信号发生器LF/AF按钮置于AF位置,并用示波器观察输出波形,将输出波形频率调节到4KHZ,幅值调节调节至Vp-p=5V。 (2)按图30.3连接好各实验模块,接上各模块电源。

差动变压器的性能实验

传感器技术 实验报告 实验序号:实验十二 系别:电子通信工程系 班级: ********班 组别:第一组 成员:7 ****** 实验操作 5 ****** 实验阅读 8 ******* 实验记录 2015年3月23日

实验十二 差动变压器的性能实验 一、实验目的: 了解差动变压器的工作原理和特性。 二、基本原理: 差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成(铁芯在可移动杆的一端),根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元: 差动变压器实验模块、测微头、双线示波器、差动变压器、音频信号源(音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模块上。 接第一通道示波器接第二通道示 波器 插座管脚编号 图3-2 双线示波器与差动变压器连接示意图 图3-1 差动变压器电容传感器安装示意

2、在模块上按照图3-2接线,音频振荡器信号必须从主控箱中的L V 端子输 出,调节音频振荡器的频率,输出频率为5~10KHz(可用主控箱的数显表的频率 档f i 输入来监测,实验中可调节频率使波形不失真)。调节幅度使输出幅度为峰 -峰值V p-p =2V(可用示波器监测:X轴为div、Y轴CH 1 为1V/div、CH 2 为div)。 判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈(1和2实验插孔作为初级线圈),并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点(即3和4实验插孔),而且相位与初 级线圈波形(L V 音频信号V p-p =2V波形)比较能同相和反相变化,说明已连接的 初、次级线圈及同名端是正确的,否则继续改变连接再判断直到正确为止。图中 (1)、(2)、(3)、(4)为模块中的实验插孔。) 3、旋动测微头,使示波器第二通道显示的波形峰-峰值V p-p 为最小。这时可 以左右位移,假设其中一个方向为正位移,则另一个方向位移为负。从V p-p 最小 开始旋动测微头,每隔0.5mm从示波器上读出输出电压V p-p 值填入表3-1。再从 V p-p 最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。 表3-1 差动变压器位移ΔX值与输出电压V p-p 数据表 4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电 压大小。根据表3-1画出V op-p -X曲线,作出量程为±4mm、±6mm灵敏度和非线性误差。

差动变压器及应用

差动变压器及其应用 一、差动变压器简介(摘自日刊《传感器技术》1986年5月专号) 差动变压器是一种将机械位移变换成电信号的电磁感应式位移传感器。它主要是靠圆筒线圈内的可动铁芯的位移,在圆筒线圈的输入线圈和输出线圈之间建立起相互感应关系,可动铁芯的位移可以通过测定与其成正比的输出线圈的感应电压来获得。 1、差动变压器的特点 (1)线性范围的种类很多,容易根据用途进行选择,通常在±2mm~±200mm级之间有10个左右类型的品种。 (2)结构简单,所以耐振性和耐冲击性都很强。 (3)不磨损,不变质,耐久性优良。 (4)输出电压对铁心的位移有精确的比例,即直线性好。一般这种传感器中全行程偏差小于1%,在高档品可以保证在±0.2%~±0.3%。 (5)因为灵敏度高,可以获得大的输出电压,不要求外围电路高级化也能检测到微小的位移。 (6)因为输出变化平滑,故能进行高分辨率的检测。 (7)零点稳定,以其作为测定的基准点对维持精度有好处。 (8)能够得到从500Hz到100Hz的高的响应速度。 2、差动变压器原理 差动变压器的构造原理如图1-1所示,由圆筒形线圈和与其完全分离的铁芯构成。典型的差动变压器的圆筒线圈有三只,各是总长度的三分之一,中间是一次线圈,两侧是二次线圈。加入圆筒线圈中的铁芯用来在线圈中链接磁力线而构成磁路。 当在中间的一次线圈加上交流电压时(即激磁),由于与两端线圈的互感就产生了电动势(这一点与普通变压器相同)。 因为二次线圈彼此极性相反地串联,两个二次线圈中的感应电动势相位相反,将其相加的结果,在输出端产生二者的电位差。相对于线圈长度方向的中心处,两个二次线圈的感应电压大小相等方向相反,因而输出为零。这个位置被称为差动变压器的机械零点(或简称为零点)。当铁芯从零点相某一方向改变位置时,位移方向的二次线圈的电压就增大,另一个二次线圈的电压则减小。 产品设计保证产生的电位差与铁芯的位移成正比。当铁芯从零点向与刚才相反的方向移动

实验四 差动变压器性能

实验四差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传 感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器,音频信号源(音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1 差动变压器电容传感器安装示意图 2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。调节幅度使输出幅度为峰一峰值V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端方法如

下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。 图3-2 双线示波与差动变压器连结示意图 3、旋动测微头,使示波器第二通道显示的波形峰一峰值V p-p为最小。这时可以左右位移,假设其中一个方向为正位移,则另一方向移为负。从V p-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压V p-p值填入下表(3-1)。再从V p-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。 表(3-1)差动变压器位移ΔX值与输出电压V p-p数据表 V(mv) -←0mm X(mm) V p-p最小 4、实验过程中注意差动变压输出的最小值即为差动变压器的零点残余电压大小。 根据表3-1画出V op-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。 五、思考题: 1、用差动变压器测量较高频率的振幅,例如1KHz的振动幅填,可以吗?差动变压器测量频率的上限受到什么影响? 2、试分析差动变压器与一般电源变压器的异同?

实验2 差动变压器位移性能实验

差动变压器位移性能实验 一、实验目的: 了解差动变压器的工作原理和特性。 二、基本原理: 差动变压器如图(3-1),由一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。在传感器的初级线圈上接入高频交流信号,当初、次中间的铁芯随着被测体移动时,由于初级线圈和次级线圈之间的互感磁通量发生变化促使两个次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),在另两端就能引出差动电势输出,其输出电势的大小反映出被测体的移动量。 图(3-1) 三、需用器件与单元: 差动变压器、差动变压器实验模块、测微头、双踪示波器、音频振荡器、直流稳压电源、数字电压表。 四、实验步骤: 1、根据图(3-2),将差动变压器装在差动变压器实验模块上。 2、在模块上如图(3-3)接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率旋钮,输出频率为4~5KHz(可用主控箱的数显频率表来监测),调节幅度旋钮使输出幅度为Vp-p=2V—5V 之间(可用示波器监测),模块上L1表示初级线圈,L2、L3表示两个次级线圈且同名端相连。

图(3-2)差动变压器/电容传感器安装示意图 图(3-3) 3、将测微头旋至10mm处,,调整测微头的左右位置,使之与差动变压器活动杆吸合并且使示波器第二通道显示的波形值Vp-p为最小,然后将测量支架顶部的镙钉拧紧固定住测微头;这时就可以进行位移性能实验了,假设其中一个方向为正位移,则另一方向为负位移。 4、从Vp-p最小处开始旋动测微头,每隔0.2或0.5mm从示波器上读出电压Vp-p值并填入表(3-1),直到测微头旋至20mm处。 4、测微头旋回到Vp-p最小处并反向旋转测微头,隔0.2或0.5mm从示波器上读出电压Vp-p值并填入表(3-1),在实验过程中注意观察两个不同方向位移时初、次级波形的相位关系。 表(3-1):差动变压器位移ΔX值与输出电压Vp-p数据表

实验十____差动变压器性能

实验十差动变压器性能 实验目的:了解差动变压器原理及工作情况。 所需单元及部件: 音频振荡器、测微头、示波器、主副电源、差动变压器、振动平台。 有关旋钮初始位置: 音频振荡器4KHZ~8KHZ之间,双线示波器第一通道灵敏度500mv/div ,第二通道灵敏度10mv/div,触发选择打到第一通道,主、副电源关闭。 实验步骤: 1.根据图2-6接线,将差动变压器、音频振荡器(必须L V输出)、双线示波器连接起来,组成一个测量线路。开启主、副电源,将示波器探头分别接至差动变压器的输入端和输出端,观察差动变压器源边线圈音频振荡器激励信号峰峰值为2V。 图2-6 2.转动测微头使测微头与振动平台吸合。再向上转动测微头5mm,使振动平台往上位移。 往下旋动测微头,使振动平台产生位移。每位移0.2mm,用示波器读出差动变压器输出端的峰峰值填入下表,根据所得数据计算灵敏度S。S=ΔV/ΔX(式中ΔV为电压变化,ΔX为相应振动平台的位移变化),作出V-X关系曲线。

灵敏度S=ΔV/ΔX=(481-285)/(5+2)=28 思考: 1.根据实验结果,指出线性范围。 2.当差动变压器中磁棒的位置由上到下变化时,双线示波器观察到的波形相位会发生怎样的变化? 答:零点残余电压的波形十分复杂,主要是基波和高次谐波组成。基波的产生主要是传感器的两次级绕组的电器参数,几何尺寸不对称,导致它们产生的感应电势幅值不等、相位不同,因此不论怎样调整衔铁位置,两线圈中感应电势都不能完全抵消。高次谐波中起主要作用的是三次谐波,产生的原因是由于磁性材料磁化曲线的非线性(磁饱和、磁带)。 3.用测微头调节振动平台位置,使示波器上观察到的差动变压器的输出端信号为最小,这个最小电压称作什么?由于什么原因造成? 答:最小电压被称为零点残余电压。当活动衔铁向上移动时,同于磁阻的影响,ω2a 中磁通将大于ω2b,使M1>M2,因而E2增加,而E2b减小。反之,E2b 增加,E2a减小,因为U2=E2a-E2b,所以当E2a、E2b 随着衔铁位移x 变化时,U2 也必将随x 变化。下图给出了变压器输出电压U2 与活动衔铁位移x 的关系曲线。实际上,当衔铁位于中心位置时,差动变压器输出电压并不等于零,我们把差动变压器在零位移时的输出电压称为零点残余电压,记作Ux,它的存在使传感器的输出特性曲线不过零点,造成实际特性与理论特性不完全一致。零点残余电压的产生的原因主要是传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性等问题引起的。

差动变压器的性能(自检实验二)剖析

实验报告 实验项目名称:差动变压器的性能同组人 试验时间年月日,星期,节实验室K2,508传感器实验室指导教师 一、实验目的 了解差动变压器原理、位移特性、零点残余电压补偿方法、振动测量的方法。 二、实验原理 差动变压器是把被测的非电量变化转换成线圈互感量得变化。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动的形式连接,故称之为差动变压器。 图2.1 螺线管式差动变压器 如图2.1所示,1-活动衔铁;2-导磁外壳;3-骨架;4-匝数为W 1 初级绕组; 5-匝数为W 2a 次级绕组;6-匝数W 2b 次级绕组。 设1 U ? 为一次一次绕组激励电压; 1 M、 2 M分别为一次绕组与两个二次绕组间 的互感; 1 L为一次绕组的电感; 1 r为一次绕组的有效电阻。 当次级开路时,初级线圈激励电流为: 1 1 11 U I r j L ω ? ? = + 根据电磁感应定律,两个次级绕组的感应电动势分别为: 211 a E j M I ω ?? =-、 221 b E j M I ω ?? =- 次级绕组反相串联后的电势差为: 121 222 11 () a b j M M U U E E r j L ω ω ? ???- =-=- +

由上面公式可得差动变压器输出电压特性,如图2.2 图2.2 差动变压器输出电压特性曲线 差动变压器往往会产生零点残余电压,主要原因是: 1、由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的 幅值和相位不同,调整磁芯位置时,也不能达到幅值和相位同时相同。 2、由于铁芯的B-H特性的非线性,产生高次谐波不同,不能相互抵消。 为减小零点残余电压,我们一般会做如下措施: 1、在设计和工艺上,力求做到磁路对称,线圈对称,铁芯材料均匀。 2、在电路上进行补偿,一般会加串联电阻、并联电容、反馈电阻或反馈电容 等。 三、所需单元及部件: 1、STIM-01模块、STIM-08模块、STIM-02模块、STIM-03模块、差动变压器。 2、1-10KHZ音频信号、1-30HZ低频信号、示波器。 3、电子连线若干。 四、实验步骤: 1、(1)将信号发生器LF/AF按钮置于AF位置,并用示波器观察输出波形,将输出波形频率调节到4KHZ,幅值调节调节至Vp-p=5V。 (2)按图30.3连接好各实验模块,接上各模块电源。

差动变压器性能.

实验三 差动变压器性能、零残及补偿、标定实验 一、差动变压器性能 实验目的:了解差动变压器的原理及工作情况。 实验准备:预习 实验仪器和设备:音频振荡器、测微头、双踪示波器、差动式电感。 实验原理:交流电通过偶合的线圈产生感应电势。 实验注意事项:旋钮初始位置是,音频振荡器4KHz,幅度为最小,双踪示波器第一通道灵敏度500mV/cm,第二通道灵敏度10mV/cm,触发选择打到第一通道。其它还须注意的事项有: (1)差动变压器的激励源必须从音频振荡器的电源输出插口(LV 插口)输出。 (2)差动变压器的两个次级线圈必须接成差动形式,即,两个非同名端短接,两个同名端则构成输出。 (3)差动变压器与激励信号的连线应尽量短一些,以避免引入干扰。 实验内容: (1)按图5接线,音频振荡器必须从LV 接出,LV、GND 接差动式电感的Li,2个L0构成 差动输出。 LV 信号输入到初级线圈的电 压为V PP =2伏。 (3)调整测微头,使10mm 处对应衔铁处中间位置(一般已由实验员调整好) (4)旋动测微头,从示波器第二通道上读出次级差动输出电压的峰一峰值填入下表: X(mm) 10 10.5 Vop -p(mV) *如果第二通道的信号实在太弱,可先接差放再行观察。 读数过程中应注意初、次级波形的相位关系: 当铁芯从上至下、再由下至上过零位时,相位由 相变为 相。 (4)仔细调节测微头使次级的差动输出电压为最小,必要时应将通道二的灵敏度打到较高档,如:2mV/cm,这个最小电压叫做 ,可以看出它的基波与输入电压的相位差约为 。 (1)根据所得结果,画出(Vop -p 一X)曲线,指出线性工作范围,求出灵敏度: =ΔΔ= X V S ,更一般地,由于灵敏度还与激励电压有关,因此:λ V X V S /1ΔΔ== 。

实验十差动变压器的性能实验

实验十差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有 二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流 电源(音频振荡器)、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1差动变压器电容传感器安装示意图 2、在模 块上按 图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz (可用主控箱的频率表输入Fin来监测)。调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。图中1、2、3、4、5、6为连接线插座的编号。接线时,航空插头上的号码与之对应。 当然不看插孔号码,也可以判别初次级线圈及次级同名端。判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。 3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位移,假设其中 一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.2mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

差动变压器的性能及零点残余误差消除实验

实验三差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排 列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频 信号源、直流电源(音频振荡器)、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1差动变压器电容传感器安装示意图 2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频 振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。图中1、2、3、4、

5、6为连接线插座的编号。接线时,航空插头上的号码与之对应。当然不看插孔号码, 也可以判别初次级线圈及次级同名端。判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。 3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位 移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.5mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。 图3-2双踪示波器与差动变压器连结示意图 4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据 表3-1画出V op-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。 表(3-1)差动变压器位移X值与输出电压数据表

一) 差动变压器的性能实验

实验三 电磁式传感器 (一) 差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式 和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源 (音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1 差动变压器电容传感器安装示意图 2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v 端子输出,调节音频振荡器的频率,输出频率 为4~5KHz(可用主控箱的数显表的频率档Fin 输入来监测)。调节幅度使输出幅度为峰一峰值 V p-p =2V(可用示波器监测:X 轴为0.25ms/div 、Y 轴CH 1为1V/div 、CH 2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v 音频信号V p-p =2V 波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。 4、实验过程中注意差动变压输出的最小值即为差动变压器的零点残余电压大小。 根据表4-1画出V op-p -X 曲线,作出量程为±1mm 、±3mm 灵敏度和非线性误差。 >> axis([0 7.5 233 336 ]); coords=[0,1.5,3.0,4.5,6.0,7.5;233,248,264,288,312,366]; grid; hold;

自动化传感器实验报告五 差动变压器的性能测定

广东技术师范学院实验报告 学院: 自动化学院 专业: 自动化 班级: 08自 动化 成绩: 姓名: 学号: 组别: 组员: 实验地点: 实验日期: 指导教师签名: 实验 五 项目名称: 差动变压器的性能测定 一、实验目的 1.了解差动变压器的工作原理和特性。 2.了解三段式差动变压器的结构。 二、基本原理 差动变压器由一只初级线圈和二只次级线圈及铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测物体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接,即同名端接在一起,就引出差动输出,其输出电势则反映出被测体的位移量。 三、需用器件与单元 传感器实验箱(一)、传感器调理电路挂件、测微头、差动变压器、信号源。 四、实验内容与步骤 1.将差动变压器及测微头安装在传感器实验箱(一)的传感器支架上,将“差动式”传感器引线插头插入实验模板的插座中。 2.调节功率信号发生器,使之输出频率为4-5KHz 、幅度为Vp-p=2V 的正弦信号,并用示波器的CH1监视输出。 3.将功率信号发生器的功率输出端接“差动变压器实验”单元激励电压输入端,把“差动变压器实验”单元的输出端3、4接入示波器的CH2,同时接入交流毫伏表。 3.旋动测微头,使示波器第二通道显示的波形Vp-p 为最小,这时可以左右移动旋动测微头,假设其中一个方向为正位移,另一个方向为负位移,从Vp-p 最小开始旋动测微头,每0.2mm 从交流毫伏表上读出输出电压Vp-p 值,填入下表6-1,再从Vp-p 最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

差动变压器的性能实验

汕头大学实验报告 实验者:黄科岸学号:2012141021实验日期:2014年11月10日 实验四差动变压器的性能实验 一、实验目的 了解差动变压器的工作原理和特性。 二、基本原理 差动变压器的工作原理是电磁互感原理。差动变压器的结构如图4—1所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。 当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图4—2所示。图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。由于两个二次绕组反向串接,所以差动输出电动势为零。当衔铁移向二次绕组L21,这时互感M1大,M2小,因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。 图4—1差动变压器的结构示意图图4—2差动变压器的等效电路图

在传感器的量程内,衔铁位移越大,差动输出电动势就越大。同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。 由图4—2可以看出一次绕组的电流为: 二次绕组的感应动势为: 由于二次绕组反向串接,所以输出总电动势为: 其有效值为: 差动变压器的输出特性曲线如图4—3所示。图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。零点残余电动势的存在,使得传感器的输出特性在零点附近不灵敏,给测量带来误差,此值的大小是衡量差动变压器性能好坏的重要指标。为了减小零点残余电动势可采取以下方法: 图4—3 差动变压器输出特性 1、尽可能保证传感器几何尺寸、线圈电气参数及磁路的对称。磁性材料要经过处理, 消除内部的残余应力,使其性能均匀稳定。

实验03(差动变压器的性能)实验报告

实验三-差动变压器的性能 实验1:差动变压器位移测量实验 一、实验目的 了解差动变压器的工作原理和特性 二、实验原理 差动变压器由一个初级线圈和二个次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。其输出电势反映出被测体的移动量。 三、实验器械 主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。 四、实验电路以及接线图 五、实验数据及处理

X为差动变压器衔铁在线圈中移动的距离,X>0为衔铁正向移动,X<0为衔铁反向移动 V p-p为次级输出电压,初级输入电压为Vi=3V,f=4.5kHz的正弦波。 由数据和图像可得零点残余电压为80mV。 实验数据如下: 数据拟合如下:左侧红线为衔铁反向移动,右侧蓝线为衔铁正向移动。横轴为衔铁的位移量,单位为mm。纵轴为次级线圈输出电压值,单位为mV。 正向移动拟合直线方程为y=457.03x+45.143 反向移动拟合直线方程为y=-460x+47 灵敏度和非线性误差分析:

X=+1mm时,灵敏度为500.00(V/m),非线性误差为0.125% X=-1mm时,灵敏度为500.00(V/m),非线性误差为0.933% X=+3mm时,灵敏度为466.66(V/m),非线性误差为0.402% X=-3mm时,灵敏度为473.33(V/m),非线性误差为0.402% 六、思考题 差动式变压器和一般电源变压器的异同? 相同点: 两种变压器均采用电磁感应原理作为工作原理,变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。它可以变换交流电压、电流和阻抗。 不同点: 差动变压器是将非电量的位移变化变换成线圈的互感变化,它本身是一种互感式变压器。当变压器的互感量随位移的变化而变化时,输出电压将相应发生变化。一般电源变压器的输出电压则基本不会变化。 实验2:激励频率对差动变压器性能 一、实验目的 了解初级线圈激励频率对差动变压器输出性能的影响。 二、实验原理 差动变压器的输出电压的有效值可以近似用关系式:表示,式中LP、RP为初级线圈电

差动变压器的性能实验

实验九差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当差动变压器随着被测体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动电势输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器。 四、实验步骤: 附:测微头的组成与使用 测微头组成和读数如图9—1 测微头读数图 图9—1测位头组成与读数 测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。 测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。 用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。 测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图9—1甲读数为3.678mm,不是3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,

如图9—1乙已过零则读2.514mm;如图9—1丙未过零,则不应读为2mm,读数应为1.980mm。 测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。当转动测微头的微分筒时,被测体就会随测杆而位移。 1、将差动变压器和测微头(参照附:测微头使用)安装在实验模板的支架座上,差动变压器的原理图已印刷在实验模板上,L1为初级线圈;L 2、L3为次级线圈;*号为同名端,如下图9-2。 2、按图9—2接线,差动变压器的原边L1的激励电压必须从主机箱中音频振荡器的Lv端子引入,检查接线无误后合上总电源开关,调节音频振荡器的频率为4-5KHz(可用主机箱的频率表输入Fin来监测);调节输出幅度峰峰值为Vp-p=2V(可用示波器监测:X 轴为0.2ms/div)。 3、松开测微头的安装紧固螺钉,移动测微头的安装套使示波器第二通道显示的波形V p-p为较小值(变压器铁芯大约处在中间位置),拧紧紧固螺钉,仔细调节测微头的微分筒使示波器第二通道显示的波形Vp-p为最小值(零点残余电压)并定为位移的相对零点。这时可以左右位移,假设其中一个方向为正位移,另一个方向位移为负,从V p-p最小开始旋动测微头的微分筒,每隔0.2mm(可取10—25点)从示波器上读出输出电压V p-p值,填入下表9,再将测位头退回到V p-p最小处开始反方向做相同的位移实验。在实验过程中请注意:⑴从Vp-p最小处决定位移方向后,测微头只能按所定方向调节位移,中途不允许回调,否则,由于测微头存在机械回差而引起位移误差;所以,实验时每点位移量须仔细调节,绝对不能调节过量,如过量则只好剔除这一点继续做下一点实验或者回到零点重新做实验。⑵当一个方向行程实验结束,做另一方向时,测微头回到Vp-p最小处时它的位移读数有变化(没有回到原来起始位置)是正常的,做实验时位移取相对变化量△X为定值,只要中途测微头不回调就不会引起位移误差。

差动变压器式位移传感器

课程设计说明书 传感器课程设计 Course-Design of Sensor ——差动变压器式位移传感器 学院名称:机械工程学院 专业班级: 学生姓名: 学号: 指导教师姓名: 指导教师职称:教授 2012年 01月 目录

第一章绪论 (1) 1.1 概述 (1) 1.2 设计任务 (1) 第二章方案论证及选择 (3) 2.1 方案论证 (3) 2.2 原理简述 (4) 第三章差动变压器 (5) 3.1 传感器结构 (5) 3.2 工作原理 (5) 第四章单元电路的分析 (6) 4.1 差动放大电路 (6) 4.2 移相电路 (9) 4.3 相敏检波电路 (10) 4.4 低通滤波电路 (11) 第五章电路测试及波形 (14) 5.1 各电路波形 (14) 5.2 位移测量数据拟合 (17) 第六章心得体会 (18) 第七章参考文献 (19) 第八章参考文献 (19) 第一章绪论

1.1 概述 当今时代是信息时代,在工业和科技领域信息主要是通过测量获得,在现代生产中,物质和能量在信息流指挥和控制下运动。测控技术正成为现代生产生活中乃至高科技领域中一项必不可少的基础技术。 测控系统主要是传感器,测量放大电路和执行机构三个部分组成,而在测控系统中测量变换电路是最灵活的部分。它的选取往往改变了整个系统性能的优劣。 所以,学习并领悟测控技术就显得十分重要了,《测试技术》是我们测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的方方面面问题也应该是本专业学生的基本素质,也鉴于这些要求,做一些测控方面的课程设计就会让我们加深对传感器技术的理解和运用,也正是因为对一些实际问题的研究,才能使我们成为真正意义上的测控技术性人才,下面就以本次才课程设计题目——差动变压器式位移传感器——做比较详细的分析。 1.2 设计任务 设计要求:掌握差动变压器式位移传感器的结构,工作原理。分析各部分电路的作用及工作原理,特别是相敏检波电路的作用,观察分析各部分的波形,给出测试结果。 第二章方案论证及选择 2.1 方案论证 差动传感器输出的是0~40mvVp-p的正弦信号,第一是比较微弱的,第二不

相关文档
最新文档