悬臂梁的受力分析

合集下载

悬臂梁分析报告

悬臂梁分析报告

悬臂梁受力分析报告高一博2016.11.13西安理工大学机械与精密仪器工程学院摘要利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。

从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。

关键词:悬臂梁,变形分析,应力分析目录一.问题描述: (4)二.分析的目的和内容: (4)三.分析方案和有限元建模方法: (4)四.几何模型 (4)五.有限元模型 (4)六.计算结果: (5)七.结果合理性的讨论、分析 (8)八.结论 (8)参考文献 (8)一.问题描述:现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。

其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。

二.分析的目的和内容:1.观察悬臂梁的变形情况;2.观察分析悬臂梁的应力变化;3.找出其最大变形和最大应力点,分析形成原因;三.分析方案和有限元建模方法:1.使用ANSYS-modeling-create-volumes-block建模,2.对梁进行材料定义,网格划分。

3.一端固定,另外一端施加一个向下的200N的力。

4.后处理中查看梁的应力和变形情况。

四.几何模型500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。

五.有限元模型单元类型:solid brick8node45材料参数:弹性模量2e+11pa,泊松比0.3边界条件:一端固定,一端施加载荷载荷:F=200N划分网格后的悬臂梁模型六.计算结果:变形位移图等效应力图局部应力图七.结果合理性的讨论、分析1.位移分析:在变形位移图上,在约束端位移最小为零,受压端位移最大。

与实际结果一致。

2.应力分析:在应力图上,应力最大处在约束端,而最小的位于受压端,与变形图相对应。

通过材料力学计算可知约束端的所受弯矩最大。

两个结果印证无误。

3.局部应力分析:在局部应力图上,可以看出在固定端上表面存有较大的应力,且为拉应力,受压端直角尖处有最大应力,从形成原因上分析属于尖角处应力集中。

悬臂梁受力分析

悬臂梁受力分析

悬臂梁受力分析
分析悬臂梁这个简化模型所受各外力的特性。

悬臂梁是在材料力学中为了便于计算分析而得到的一个简化模型,悬臂梁的一端是固定支座,另一端为自由端。

在荷载作用下,可根据力的平衡条件求得悬臂梁的固定端的支座反力,包括水平力、竖向力以及弯矩,并可据此画出轴力图、剪力图与弯矩图。

由于梁一般承受竖向的集中荷载或均布荷载的作用,故支座的水平反力为0。

受力分析将研究对象看作一个孤立的物体并分析它所受各外力特性的方法。

外力又包括主动力和约束力。

又称画隔离体图,或画示力图,是进行力学计算的基础。

相关计算
在预估截面尺寸时,对于混凝土悬臂梁,其截面高度一般取悬挑长度的1/5。

在计算配筋时,应有不少于2根上部钢筋伸至悬臂梁外端,并向下弯折不小于12d,其余钢筋不应在梁的上部截断,而应按规范规定的弯起点位置向下弯折,并按规定在梁的下边锚固。

弯起角宜取45°或60°,在弯终点外应留有平行于梁轴线方向的锚固长度,且在受拉区不应小于20d,在受压区不应小于10d。

悬臂梁理论计算公式

悬臂梁理论计算公式

悬臂梁理论计算公式悬臂梁是一种常见的结构形式,在工程中广泛应用。

悬臂梁的设计和计算是工程设计中的重要环节,其计算公式是设计师必须掌握的基础知识。

本文将介绍悬臂梁的理论计算公式,并结合实际工程案例进行分析和应用。

悬臂梁的理论计算公式主要包括以下几个方面,受力分析、挠度计算、应力计算等。

在进行悬臂梁的设计和计算时,需要根据具体的工程要求和材料特性来确定合适的计算公式,并结合实际情况进行合理的计算和分析。

首先,我们来看一下悬臂梁的受力分析。

悬臂梁在受外力作用下会产生弯曲和剪切力,因此需要进行受力分析来确定梁的受力情况。

根据力学原理,悬臂梁受力分析的基本公式为:M = -EI(d^2w/dx^2)。

其中,M为悬臂梁上任意截面处的弯矩,E为杨氏模量,I为截面惯性矩,w为梁的挠度,x为梁的坐标。

这个公式描述了悬臂梁在外力作用下产生的弯曲变形情况,是进行悬臂梁挠度计算的基础。

接下来,我们来看一下悬臂梁的挠度计算公式。

悬臂梁在受外力作用下会发生挠曲变形,挠度计算是悬臂梁设计中的重要环节。

根据悬臂梁受力分析的基本公式,可以得到悬臂梁的挠度计算公式:w = (Fx^2)/(6EI)(3a-x)。

其中,w为梁的挠度,F为悬臂梁上的外力,x为梁的坐标,E为杨氏模量,I为截面惯性矩,a为悬臂梁的长度。

这个公式描述了悬臂梁在外力作用下的挠曲变形情况,是进行悬臂梁挠度计算的基础。

除了挠度计算,悬臂梁的应力计算也是设计中的重要环节。

悬臂梁在受外力作用下会产生应力,需要进行应力计算来确定梁的受力情况。

根据悬臂梁受力分析的基本公式,可以得到悬臂梁的应力计算公式:σ = My/I。

其中,σ为悬臂梁上任意截面处的应力,M为悬臂梁上任意截面处的弯矩,y 为梁的截面高度,I为截面惯性矩。

这个公式描述了悬臂梁在外力作用下的应力情况,是进行悬臂梁应力计算的基础。

在实际工程中,悬臂梁的设计和计算需要根据具体的工程要求和材料特性来确定合适的计算公式,并结合实际情况进行合理的计算和分析。

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法悬臂梁是工程力学中常见的结构形式,它广泛应用于桥梁、楼房等建筑物中。

在设计和施工过程中,了解悬臂梁的受力情况和弯曲变形问题至关重要。

本文将对悬臂梁的受力和弯曲变形进行分析,并介绍相应的计算方法。

首先,我们来讨论悬臂梁的受力情况。

悬臂梁在受力时主要承受弯矩和剪力。

弯矩是悬臂梁上各点受力引起的弯曲效应,它使悬臂梁产生弯曲变形。

剪力则是悬臂梁上各点受力引起的剪切效应,它使悬臂梁产生剪切变形。

在实际工程中,我们需要计算和分析悬臂梁上各点的弯矩和剪力分布,以确保悬臂梁的安全性和稳定性。

悬臂梁的弯矩和剪力分布可以通过力学原理和结构力学知识进行计算。

在计算弯矩时,我们可以利用悬臂梁的受力平衡条件和弹性力学理论,根据悬臂梁上各点的受力情况和几何特征,推导出弯矩的计算公式。

而剪力的计算则需要考虑悬臂梁上各点的剪力平衡条件和结构特性,通过应力分析和静力平衡原理,得出剪力的计算公式。

除了计算弯矩和剪力分布,我们还需要了解悬臂梁的弯曲变形问题。

悬臂梁在受力时会发生弯曲变形,这对于悬臂梁的设计和施工具有重要影响。

弯曲变形可以通过弹性力学理论进行分析和计算。

我们可以利用悬臂梁的几何特征、材料性质和受力情况,推导出弯曲变形的计算公式。

通过计算弯曲变形,我们可以评估悬臂梁的变形程度,以及对结构的影响。

在实际工程中,为了更准确地计算悬臂梁的受力和弯曲变形,我们通常会借助计算机软件进行数值模拟和分析。

数值模拟可以更精确地模拟悬臂梁的受力和变形情况,提供更准确的计算结果。

同时,数值模拟还可以帮助工程师优化悬臂梁的设计方案,提高结构的安全性和稳定性。

总结起来,工程力学中的悬臂梁受力和弯曲变形问题是一个重要的研究领域。

通过分析悬臂梁的受力情况和弯曲变形问题,我们可以了解悬臂梁的力学特性,为悬臂梁的设计和施工提供依据。

同时,借助计算机软件进行数值模拟和分析,可以更准确地计算悬臂梁的受力和变形情况,提高工程的安全性和稳定性。

悬臂梁原理

悬臂梁原理

悬臂梁原理悬臂梁是一种常见的结构形式,它由一端固定在支点上,另一端悬挂在空中,承受外部载荷。

悬臂梁原理是指在外部力作用下,悬臂梁产生的内部应力和变形规律。

了解悬臂梁原理对于工程设计和结构分析具有重要意义。

在本文中,我们将对悬臂梁原理进行详细介绍,包括其受力分析、应力分布和变形规律。

首先,让我们来看一下悬臂梁的受力分析。

当外部载荷作用在悬臂梁上时,梁材会受到弯矩和剪力的作用。

在支点处产生的反力将平衡外部载荷,而在悬臂梁的其他部位则会产生不同大小的弯矩和剪力。

通过受力分析,我们可以计算出悬臂梁上不同位置的内部应力分布,为结构设计提供重要依据。

其次,我们来讨论悬臂梁的应力分布规律。

在受力分析的基础上,我们可以得出悬臂梁上不同位置的应力大小和方向。

一般来说,悬臂梁上的应力呈线性分布,即距离支点越远,应力越大。

此外,悬臂梁上还会出现最大应力点,这是由于外部载荷的作用位置不同而导致的。

通过对应力分布规律的分析,我们可以合理选择材料和断面尺寸,以保证悬臂梁在承载外部载荷时不会发生破坏。

最后,让我们来探讨悬臂梁的变形规律。

在外部载荷作用下,悬臂梁会产生弯曲变形和剪切变形。

弯曲变形是指梁材在受到弯矩作用下产生的曲线形变,而剪切变形则是指梁材在受到剪力作用下产生的横向位移。

通过对变形规律的分析,我们可以预测悬臂梁在承载外部载荷时的变形情况,从而合理设计结构尺寸和支撑方式,以保证结构的稳定性和安全性。

综上所述,悬臂梁原理是工程设计和结构分析中不可或缺的重要内容。

通过对悬臂梁受力分析、应力分布和变形规律的研究,我们可以更好地理解和应用悬臂梁原理,为工程实践提供可靠的理论基础。

希望本文能够对读者有所帮助,谢谢阅读!。

悬臂梁实验报告

悬臂梁实验报告

悬臂梁实验报告实验目的本实验旨在通过对悬臂梁的实验研究,探究其在不同条件下的变形和破坏情况,了解悬臂梁的受力特性以及工程中的应用。

实验原理悬臂梁是一种常见的结构形式,其上部只有一个端点支撑,另一端悬挑出来。

在实验中,我们通过在悬臂梁上加载,观察悬臂梁的变形和破坏情况,从而探究其受力特性。

悬臂梁的受力分析可以基于弹性力学的理论进行,根据悬臂梁的几何形状和材料特性,可以通过静力学的原理计算出悬臂梁在不同位置的应力和位移。

在实验中,我们使用悬臂梁测力传感器,可以实时监测悬臂梁上的应力和变形情况。

实验装置与步骤实验装置包括悬臂梁、加载装置和测量仪器等。

具体的实验步骤如下:1.调整加载装置使其稳固地连接到悬臂梁上;2.使用测力传感器测量悬臂梁的初始载荷;3.逐步增加载荷,记录悬臂梁的变形情况;4.当载荷接近悬臂梁的破坏载荷时,停止加载,并记录破坏载荷;5.对实验数据进行处理和分析。

结果与讨论在实验中,我们记录了不同载荷下悬臂梁的变形情况,得出如下结果:载荷(N)变形(mm)100 0.2200 0.6300 1.2400 2.0500 3.0600 4.5从实验数据可以看出,随着载荷的增加,悬臂梁的变形也逐渐增大。

在低载荷下,悬臂梁的变形比较小,呈线性关系。

随着载荷的增加到一定程度,悬臂梁的变形开始非线性增加,并且出现明显的弯曲变形。

当载荷达到约600N时,悬臂梁发生破坏。

在破坏前,悬臂梁表现出明显的弯曲变形,并且载荷与变形呈现非线性关系。

破坏时,悬臂梁发生断裂,载荷突然下降。

通过对实验数据的分析,我们可以得出悬臂梁的一些特性。

首先,悬臂梁的承载能力随着载荷的增加而增加。

其次,随着载荷的增大,悬臂梁的变形逐渐增大,并呈现出非线性的关系。

最后,悬臂梁在破坏前会发生明显的弯曲变形,载荷与变形呈现非线性关系。

结论本实验通过对悬臂梁的实验研究,得出了一系列结论。

悬臂梁在受力时会发生变形,随着载荷的增加,悬臂梁的变形逐渐增大。

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结悬臂梁是工程力学中常见的结构,其受力和弯曲变形问题一直是研究的焦点。

本文将对悬臂梁受力和弯曲变形问题的分析与计算方法进行总结。

一、悬臂梁的受力分析在工程实践中,悬臂梁常常承受着外部力的作用,因此对其受力进行准确的分析至关重要。

悬臂梁的受力分析主要包括弯矩和剪力的计算。

1. 弯矩的计算悬臂梁在受力时会产生弯矩,弯矩的计算可以通过弯矩方程进行。

弯矩方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯矩的表达式。

2. 剪力的计算悬臂梁在受力时还会产生剪力,剪力的计算同样可以通过力的平衡原理和材料的本构关系进行推导。

剪力方程可以通过对悬臂梁上各点的力平衡和材料的剪切应力-剪切应变关系进行分析得到。

二、悬臂梁的弯曲变形分析除了受力分析外,悬臂梁的弯曲变形也是需要考虑的重要问题。

弯曲变形是指悬臂梁在受力作用下产生的弯曲形变,主要表现为悬臂梁的中性面发生偏移和悬臂梁上各点的位移。

1. 弯曲形变的计算弯曲形变的计算可以通过弯曲方程进行。

弯曲方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯曲形变的表达式。

2. 中性面的偏移和位移的计算中性面的偏移和位移是悬臂梁弯曲变形的重要表现形式。

中性面的偏移可以通过弯曲方程和几何关系进行计算,位移可以通过位移方程进行计算。

通过这些计算,可以得到悬臂梁上各点的位移和中性面的偏移情况。

三、悬臂梁的计算方法总结为了更准确地分析和计算悬臂梁的受力和弯曲变形问题,工程力学中提出了一系列计算方法。

常见的计算方法包括静力学方法、力学性能方法和有限元方法等。

1. 静力学方法静力学方法是最常用的计算方法之一,它基于力的平衡原理和材料的本构关系进行分析和计算。

通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到悬臂梁的受力和弯曲变形情况。

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化悬臂梁是一种常见的结构,由于其特殊的支持方式,受力分析和结构优化对于设计师来说是非常重要和关键的。

本文将详细介绍悬臂梁的受力分析和结构优化。

首先,我们需要了解悬臂梁的基本结构和受力情况。

悬臂梁由一个固定支座和一个悬挑段组成,其中,固定支座是悬挑段的唯一支撑点。

常见的悬臂梁结构包括悬臂梁、悬臂梁连接梁柱和榀架等。

悬臂梁的受力分析可以通过静力学的原理来进行。

在进行悬臂梁的受力分析时,可以采用以下步骤:1.确定受力类型:首先需要确定悬臂梁所受的外力类型,包括集中力、均布力以及倾覆力。

根据具体情况,可以分析受力的大小、方向和作用点位置。

2.绘制受力图:针对所确定的受力情况,绘制受力图可以帮助我们更加直观地了解悬臂梁的受力情况。

受力图包括受力箭头和标注力的大小、方向和作用点位置。

3.计算受力大小:利用受力图,可以通过应力平衡原理计算出悬臂梁各个部分的受力大小。

利用平衡方程,可以计算出悬臂梁在不同位置的剪力、弯矩和轴力。

4.分析受力状况:通过计算出的受力大小,可以分析悬臂梁的受力状况。

在分析过程中,需要注意各个受力点的正负号,以及受力的分布情况。

在进行悬臂梁的结构优化时,可以采用以下方法:1.材料选型:选择适当的材料是悬臂梁结构优化的重要因素之一、优先选择具有较高的强度和刚度的材料,以减小悬臂梁的自重;同时还要考虑材料的成本和可获得性。

2.梁型设计:根据实际需求,选择合适的梁型可以优化悬臂梁的结构。

常见的梁型包括矩形梁、圆形梁、槽式梁等,每种梁型具有不同的性能和应用范围。

3.截面设计:选择合适的悬臂梁截面形状和尺寸可以优化悬臂梁的结构性能。

通过计算悬臂梁的受力情况,可以确定截面的强度和刚度需求,然后选择合适的截面形状和尺寸。

4.强度验证:在进行结构优化后,需要进行强度验证。

通过对悬臂梁进行负荷测试或使用有限元分析方法,可以验证悬臂梁是否满足强度和刚度的要求。

如果不满足要求,需要对结构进行调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

悬臂梁的受力分析
实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。

实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析
如下图所示悬臂梁,其端部的抗弯刚度为
3
3EI
l ,在其端部施加力F ,可得到其端部挠度为:3
3Fl EI ,设其是半径为0.05米,长为1米,弹性
模量11
210E =⨯圆截面钢梁,则其可求出理论挠度值3
4
43Fl ER
ωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表:
F 100000 200000 300000 400000 500000 ω(m )
0. 03395
0. 067906
0. 101859
0. 1358123
0. 1697654
2有限元软件(ansys )计算: (1)有限元模型如下图:
模型说明,本模型采用beam188单元,共用11个节点分为10个单元,
在最有段施加力为F
计算得到端部的挠度如下表所示,
F 100000 200000 300000 400000 500000
S(端部位移)-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01得到梁端部在收到力为100kN时Y方向的位移云图:
将理论计算结果与ansys分析结果比较如下表:
力F(N)100000 200000 300000 400000 500000 理论值0. 03395 0. 067906 0. 101859 0. 1358123 0. 1697654 实验值-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01相对误差0.37% 0.16% 0.16% 0.15% 0.16%
通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。

通过本次试验,让我对力学知识及力学知识的应用有了更进一步的了解,对今后的学习应该有一定的指导意义。

附:ansys命令流
/TITLE,liangfenxi
/PREP7
!*
ET,1,BEAM188
!*
!*
MPTEMP,,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,2e11
MPDATA,PRXY,1,,0.3
SECTYPE, 1, BEAM, CSOLID, q, 0
SECOFFSET, CENT SECDATA,0.05,20,3,0,0,0,0,0,0,0 N, ,,,,,,,
N,11,1,,,,,,
fill,1,11
FLST,2,2,1
FITEM,2,1
FITEM,2,2
E,P51X
FLST,4,1,2,ORDE,1
FITEM,4,1
EGEN,10,1,P51X, , , , , , , , , , , FINISH
/SOL
FLST,2,1,1,ORDE,1
FITEM,2,1
!*
/GO
D,P51X, , , , , ,ALL, , , , , FLST,2,1,1,ORDE,1
FITEM,2,11
!*
/GO
F,P51X,FY,-100000
/ANG,1
/REP,FAST
!*
ANTYPE,0
/STATUS,SOLU SOLVE
FINISH
/POST1
SET,LIST
PLDISP,0
PLDISP,1
!*
/EFACET,1 PLNSOL, U,Y, 0,1.0 DLIST, ALL
!*
PRNSOL,U,Y
/DIST,1,1.08222638492,1 /REP,FAST
/DIST,1,1.08222638492,1 /REP,FAST
FINISH。

相关文档
最新文档