离散数学期末复习试题及答案(一)
离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
离散数学期末考试含答案

离散数学综合练习题一一、单项选择题(每题2分 )16 %设P :王强是南方人,Q :他怕热.命题“王强不怕热是因为他是南方人”符号化为 ( ) (A)(B)()(D)P Q P Q C Q P Q P →→⌝→⌝→2 设F (x ):x 是熊猫,G (y ):y 是竹子,H (x ,y ):x 喜欢y. 那么命题“有些熊猫喜欢各种的竹子”符号化为 ( )(A) (()(()(,)))x F x y G y H x y ∃→∀∧ (B) (()(()(,)))x F x y G y H x y ∃→∀→ (C) (()(()(,)))x F x y G y H x y ∃∧∀→ (D) (()(()(,)))y x F x G y H x y ∀∃→∧3. 命题公式()p q p →∧⌝是 ( )(A) 重言式 (B) 矛盾式(C) 可满足式 (D) 以上3种都不是4. 设集合A ={a,b,{c,d,e}}则下列各式为真的是 ( )(A) ∈A (B) c ∈A (C) {c,d,e} A (D) {a,b}A5. 设函数 :f N N →且()3x f x =,则f 是 ( )(A) 单射,非满射 (B) 满射,非单射 (C) 双射 (D) 非单射,非满射6. 设E 为全集, A , B 为非空集,且BA ,则空集为( )(A) A B I (B) A B :I (C) A B I : (D) A B :I :7. 设A ={0,1,2,3},A 上的关系R ={<0,1>,<0,2>,<1,1>,<1,2>,<2,1>,<2,2>,<3,3>},则R 是 ( )(A )自反的 (B )对称的 (C )反对称的 (D )可传递的8. 无向图K 3,3是( )(A )哈密顿图 (B )欧拉图 (C )完全图 (D )平面图二、填空题(每空2分)18 %1. 设():F x x 是火车,():G y y 是汽车,H (x,y ):x 比y 快,则命题“说所有火车比有的汽车快是不对的”符号化是 ,其另一种等值形式为 。
最新离散数学期末考试试题与答案[1]课件ppt
![最新离散数学期末考试试题与答案[1]课件ppt](https://img.taocdn.com/s3/m/9ceca2c04431b90d6d85c7c2.png)
19. (5分) 已知公理 A: (pq) ((qp) (pq)) B: pp∨q
C: pp D: (pr) ((qr) ((p∨q) r)) E: p∧qp 证明定理: p(p∨p)
证明:
(1) pp∨q
公理B
(2) pp∨p
代入
(3) (pr) ((qr) ((p∨q) r))
公理D
(4) (pp) ((pp) ((p∨p) p)) 代入
∑d(v) ≥1+2(|V|-1)=2|E|+1, 这与结论 ∑ d(v) =2|E| 矛盾! 矛盾说明 T 不止
一片树叶。
12. (8分) (G, ·)是一个群,取定u ∊ G. ∀g1,g2∊G,定义: g1*g2= g1·u-1·g2. 证明: (G,*)是群。
证明: (1) 封闭性 (2) 可以结合性 (3) 幺元 e*=u. 事实上, g*e*=g*u=g·u-1·u=g·e=g e**g=u*g=u·u-1·g=e·g=g (4) 逆元 对于∀g∊G, 在代数运算*下的逆元记为g*-1 于是, g*-1=u·g-1·u
所以,根据连通的定义知:G的补图一定连通 。
9. (4分) 一个有奇数条边、偶数个顶点的欧拉图,但不是哈 密尔顿图。
10 (6分) 画出K4,4,判断K4,4是否平面图. 否!
11. (5分) 证明: 多于一个顶点的树,至少有两片树叶。
证明:设 T=(V,E)是一棵树,若T中最多只有一片树叶, 则有
g*a*g-1H,
g*a*g-1K, 从而有g*a*g-1HK, 故HK是G的正规子群。
14. (4分) 已知(G, *),(A, △)是两个群,f: G→A是群同态的。
证明: (1) f(eG)=eA (eG G是幺元, eA A是幺元). (2) ∀g∊G, f(g-1)=(f(g))-1.
离散数学期末考试试题及答案

离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。
证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。
离散数学期末考试题及答案

离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。
离散期末考试题及答案

离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。
离散数学期末考试试题(有几套带答案1)

离散数学试题(A卷及答案)一、证明题(10分)1)(P∧(Q∧R))∨(Q ∧R)∨(P ∧R)R证明: 左端(P ∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R((P ∨Q)∨(P∨Q))∧R T∧R(置换)R2)∃x(A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E, ⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S证明:(1) (C∨D)→⌝E(2) ⌝E→(A∧⌝B)(3) (C∨D)→(A∧⌝B)(4) (A∧⌝B)→(R∨S)(5) (C∨D)→(R∨S)(6) C∨D(7) R∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x)) 证明(1)∃xP(x)(2)P(a)(3)∀x(P(x)→Q(y)∧R(x))(4)P(a)→Q(y)∧R(a)(5)Q(y)∧R(a)(6)Q(y)(7)R(a)(8)P(a)(9)P(a)∧R(a)(10)∃x(P(x)∧R(x))(11)Q(y)∧∃x(P(x)∧R(x))五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分)证明∵x∈A-(B∪C)⇔x∈A∧x∉(B∪C)⇔x∈A∧(x∉B∧x∉C)⇔(x∈A∧x∉B)∧(x∈A∧x∉C)⇔x∈(A-B)∧x∈(A-C)⇔ x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C)六、已知R、S是N上的关系,其定义如下:R={<x,y>| x,y∈N∧y=x2},S={<x,y>| x,y∈N∧y=x+1}。
大学离散数学期末考试题库和答案

大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学习题参考答案
第一章集合
1.分别用穷举法,描述法写出下列集合
(1)偶数集合
(2)36的正因子集合
(3)自然数中3的倍数
(4)大于1的正奇数
(1)E={,-6,-4,-2,0,2,4,6,}
={2 i | i∈ I }
(2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 }
(3) N
= { 3, 6, 9, ```} = { 3n | n∈N }
3
(4) A
= {3, 5, 7, 9, ```} = { 2n+1 | n∈N }
d
2.确定下列结论正确与否
(1)φ∈φ×
(2)φ∈{φ}√
(3)φ⊆φ√
(4)φ⊆{φ}√
(5)φ∈{a}×
(6)φ⊆{a}√
(7){a,b}∈{a,b,c,{a,b,c}}×
(8){a,b}⊆{a,b,c,{a,b,c}}√(9){a,b}∈{a,b,{{a,b}}}×
(10){a,b}⊆{a,b,{{a,b}}}√
3.写出下列集合的幂集
(1){{a}}
{φ, {{ a }}}
( 2 ) φ
{φ}
(3){φ,{φ}}
{φ, {φ}, {{φ}}, {φ,{φ}} }
(4){φ,a,{a,b}}
{φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }}, {a, {a b }}, {φ,a,{ a, b }} }
(5)P(P(φ))
{φ, {φ}, {{φ}}, {φ,{φ}} }
4.对任意集合A,B,C,确定下列结论的正确与否(1)若A∈B,且B⊆C,则A∈C√(2)若A∈B,且B⊆C,则A⊆C×(3)若A⊆B,且B∈C,则A∈C×(4)若A⊆B,且B∈C,则A⊆C×
5.对任意集合A,B,C,证明
右
分配
差
差
左=--=--)C A ()B A ()C B (A M
.D )
C B (A )C B (A )C A ()B A ()C B (A )1(
右
差
分配
差
左
右差
的结论
差
左
=--=-------=-)C A ()B A ()
C A ()B A ()
C B (A M
.D )
C B (A )2)C A ()B A ()
C A ()B A ()1()
C B (A )1)C A ()B A ()C B (A )2(
右
交换
结合幂等
差
左=--=-)C A ()B A (,)
C B ()A A ()
C B (A M
.D )
C B (A )C A ()B A ()C B (A )3(
))
B )B (A ())B B ()B A ((,)B )B A (()B )B A ((B
)B A (B
A B )B A )(4( --⊕=⊕+结合
分配对称差
差
左
右
零一
互补
==φ-φ-)B A ()B A ()A ()U )B A ((
)
C B (A )
C B (A M .
D )C B (A C )B A ()
C B (A C )B A )(5( --=--差
结合
差
左
右
差
结合
交换结合差
左=----=--B )C A (B
)C A ()
B C (A )
C B (A C )B A (B )C A (C )B A )(6(
左
交换
零一互补
分配差右=------------=--C )B A ()
5()
C B (A )
B C (A )U )B C ((A ))C C ()B C ((A ))
C B (C (A ))C B (C (A )5()C B ()C A (C )B A )(7(
6.问在什么条件下,集合A,B,C满足下列等式
时等式成立须左若要右右左A C ),C B (A C ,)C A ()B A (C )B A ()C B (A )1(⊆∴⊆⊆⊆==
时等式成立是显然的右左φ=∴⊆=-⊆⊆=-B A ,B A ,B A B A A ,A B A )2(
时等式成立代入原式得φ==∴φ=φ-φ=⊆==-B A ,A ,B ,B B ,B B A B
B A )3(
时等式成立只能B A ,A B ,A B ,B A ,B A ,A B B A A B B A )4(=∴⊆φ=-⊆φ=-φ==-=-
矛盾当矛盾当若A B A b ,A b ;A B A b ,A b ,
B b ,B ,
B A B A )5(=⊕∈∉=⊕∉∈∈∃φ≠φ==⊕
} 时等式成立是显然的左右B A B A A
B ,B A B B
A ,
B A A ,B A B A ,
B A B A )6(=∴=⎩⎨
⎧⊆⊆⊆⊆⊆⊆=
时等式成立左φ=∴=-=====--C B A A )C B (A )C B (A )C B (A )C A ()B A (A
)C A ()B A )(7(
时等式成立左C A ,B A ),
C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(8(⊆⊆∴⊆φ=-====φ
=--
时等式成立左)C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(9(⊆∴φ=-====φ
=--
时等式成立知由C A B A ,C A B A ),C A ()B A (,)6()C A ()B A ()C A ()B A ())C A ()B A (())C A ()B A (()C A ()B A )(10(=∴-=--=---=--φ=-----φ
=-⊕-
时等式成立B A B )B A (U )B A ()
A A ()
B A ()A B (A B
)A B (A )11(⊆∴=====-
7.设A={a,b,{a,b},},求下列各式
(1)φ∩{φ}=φ (2){φ}∩{φ}={φ} (3){φ,{φ}}-φ={φ,{φ}} (4){φ,{φ}}-{φ}= {{φ}} (5){φ,{φ}}-{{φ}}={φ} (6)A-{a,b}={{a,b}, φ} (7)A-φ = A
(8)A-{φ}={a,b,{a,b}} (9)φ-A=φ (10){φ}-A=φ
8.在下列条件下,一定有B=C吗?
(1) C A B A =
否,例:A={1,2,3},B={4},C={3,4},
C B ,}4,3,2,1{C A B A ≠==而 。
(2)C
A B A =
否,例:A={1,2,3},B={2,3},C={2,3,4}
C B ,}3,2{C A B A ≠==而 。
(3)C A B A ⊕=⊕
矛盾若若不妨若对C
A a ,C A a ,C A a ,
B A a ,B A a ,B A a ,A a ;
C A a ,C A a ,C A a ,
B A a ,B A a ,B A a ,A a ,
C a ,B a ,,C B ,⊕∉∉∉⊕∈∉∈∉⊕∈∉∈⊕∉∈∈∈∉∈∃≠
(4)C A B A C A B A ==且
C B ,B C ,,C B ,C b ,C A B A b ,A b ,C b ,C A B A b ,A b ,B b =∴⊆⊆∴∈=∉∉∈=∈∈∈∀同理若若
9. (1) B A )C B ()B A ( ⊆
B A a ,A a ,B a ,)B A (a ;B a ,B a ,)
C B (a ,a :∈∴∈∉∈∈∉∉∈∀而左证
(2)φ≠⊆⊆B ,)C A (B )C B (A 则且若 。
矛盾即若,B a B a ,C a ,)C B (A a ),
C A ()C A (B a ,B ∉∈∴∉⊆∈=⊆∈∃φ≠
10.化简
A
B )A B ()A B ()A A (A
)B A (A )B A ()A ))C B (A (())B A ()C B A ((-=-φ===-=-
11. 设A={2,3,4},B={1,2},C={4,5,6},求 (1)
4} 3, {1,B A =⊕
(2)}
6,5,3,1{C B A =⊕⊕
(3)}
6,5,3,2{)C B ()B A (=⊕⊕⊕
12. 设A={1,2,3,4},B={1,2,5},求 (1) =)B (P )A (P {φ,{1},{2},{1,2}} (2) =)B (P )A (P
{φ,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}, {1,2,3,},{1,2,4,},{1,3,4,},{2,3,4},{1,2,3,4,},{5},{1,5}, {2,5},{1,2} } (3)=-)B (P )A (P
{ {3},{4},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4},{1,2,3,4} } (4)=⊕)B (P )A (P
{{3},{4},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4},{1,2,3,4},{5},{1,5},{2,5},{1,2,5} }
(注:可编辑下载,若有不当之处,请指正,谢谢!)。