1、11有理数的小结

合集下载

第二单元有理数及其运算(归纳总结)

第二单元有理数及其运算(归纳总结)

2.3×108
天体名称 木星 土星
天王星 海王星
围绕太阳公转的轨道 半长径/km 780 000 000
1 500 000 000
2 900 000 000
4 500 000 000
科学记数法 7.8×108 1.5×109 2.9×109 4.5×109
9. 计算1-2+3-4+5-6+… + 99-100.
23 4
(18) ( -60 )×( 3 5 ).
46
-95
8Байду номын сангаас请用科学记数法表示下表中的数据:
天体名称 水星
围绕太阳公转的轨道 半长径/km
58 000 000
科学记数法 5.8×107
金星
110 000 000
1.1×108
地球
150 000 000
1.5×108
火星
230 000 000
(3)所有有理数都可以用数轴上的点表示.
4.相反数 如果两个数只有符号不同,那么称
其中一个数为另一个数的相反数.
-4 -3 -2 -1 0 1 2 3 4
(1)数a的相反数是-a(a是任意一个有理数); (2)0的相反数是0; (3)若a、b互为相反数,则 a+b = 0.
5.倒数 如果两个有理数的乘积为1,那么称
2
3
4
负数集合
0, 2, 7, 3
整数集合
4. 比较下列每组数的大小:
(1) 1 , 0.009; (2) 8, 7;
100
78
(3)2 ,3 ; 35
(4) 2 1, 2.3. 3
6.在如图所示的圆圈内填上彼此都不相等的数,使 得每条线上的三个数之和为零。你有几种填法?

人教版七年级数学上册第一章至第四章知识总结复习课件

人教版七年级数学上册第一章至第四章知识总结复习课件

指数分别相等.
解:
mn=+25,=3,解得
m=-2, n=2.
所以 mn=(-2)2=4.
针对训练
3、若5x2 y与x m yn是同类项,则m=2( ) ,n=1( ) 若5x2 y与x m yn的和是单项式,则m=2( ) , n=1( )
只有同类项才 能合并成一项
考点三 去括号
例3 已知A=x3+2y3-xy2,B=-y3+x3+2xy2, 求:(1)A+B;(2)2B-2A. 【解析】 把A,B所指的式子分别代入计算. 解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)
5.绝对值 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
6.有理数大小的比较 (1)数轴上表示的两个数,右边的总比左边的大. (2)正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小.
三、有理数的运算 1.有理数的加法
例4 若A是一个三次多项式,B是一个四次多项式,
则A+B一定是( B )
A.三次多项式 B.四次多项式或单项式
C.七次多项式
D.四次七项式
【解析】A+B的最高次项一定是四次项,至于是否含 有其它低次项不得而知,所以A+B只可能是四次多项式或 单项式.故选B.
你能举出对应 的例子吗?
针对训练
5.若A是一个四次多项式,B是一个二次多项式, 则A-B( ) C
第一章 有理数
小结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、正数和负数 1.小学学过的除0以外的数都是正数. 在正数前面加上符号“-”(负)的数叫做负数. 2.用正、负数表示具有相反意义的量

青岛版七年级上册数学《有理数》研讨说课复习课件

青岛版七年级上册数学《有理数》研讨说课复习课件
一个数前面的“+”、“-”号叫做它的符号。 “-”号读为“负”,如:“-5”读为“负5”;“+” 号读为“正”,如:“+3”读为“正3”。“+”号 可以省略。
新课学习
怎样理解具有相反意义的量 在同一问题中,用正、负数表示具有相反意义的量。
收入300元和支出200元,零上6℃和零下4℃,向东30 米和向西50米等等,如果正数表示某种意义,那么负数 表示它的相反的意义,反之亦然。
课堂练习
2.任意写出三个有理数,并说出是什么类型的数, 与同伴进行交流。
课堂练习
3.把下列各数填入它所属于的集合的圈内:
15, 1 , -5, 2
9
15
123, 2.333.
, 13 , 8 …
0.1, -5.32, -80, …
正整数集合 …
正分数集合
负整数集合 …
负分数集合
课堂练习
4.图中两个圆圈分别表示正整数集合和整数集合,请 写并填入两个圆圈的重叠部分.你能说出这个重叠部分 表示什么数的集合吗?
我们还可以按其它标准分类吗?
正有理数
正整数 正分数
有理数 零
负有理数
负整数 负分数
课堂练习
1.观察下面9个数,并给它们进行分类. 5、5.6、-6、-3.7、0、3、-2、3/2、-1/2 正整数:5、3…… 零:0 负整数:-6、-2 正分数:5.6、3/2….. 负分数:-3.7、-1/2…..
1、判断下列各题是否正确
(1) 23=2 ×3
(× )
(2) 2+2+2=23
(× )
(3) 23=2×2 ×2 ( √ )
(4) (-3)(-3)(-3)(-3)= -34( × )

冀教版数学七年级上多媒体同步课件第一章 1-11 有理数的混合运算 1-12 计算器的使用

冀教版数学七年级上多媒体同步课件第一章 1-11 有理数的混合运算 1-12 计算器的使用
【解析】根据题意,得:[-4-(-28)]÷6=4(小时). 答:4 小时能达到所需求的温度.
关键能力·综合练
1.若 x,y 互为相反数,m,n 互为倒数,|a|=1.则 a2-(x+y)2 021+(mn)2 020 的值
为( B )
A.1 B.2 C.0 或 2 D.-2
2.按如图所示的程序进行计算,如果第一次输入的数是 18;而结果不大于 100 时,就 把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为
【解析】答案不唯一,有:(1)3×(10-4)-(-6); (2)10-4-3×(-6); (3)4-10×(-6÷3). 其中 4-10×(-6÷3)=4-10×(-2) =4+20=24.
6.(素养提升题)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩 具 140 个,平均每天生产 20 个,但由于种种原因,实际每天生产量与计划量相比有 出入.下表是小明妈妈某周的生产情况(超产记为正,减产记为负):
环按键.若一开始输入的数据为 100,那么第 2 020 步之后,显示的结果是 0._0_0_01 .
5.(2021·石家庄质检)有一种“24 点”游戏,其游戏规则是:任取 1~13 之间的 4 个 自然数,将这 4 个数(每个数要用且只能用一次)进行加减乘除四则运算,使运算结 果为 24,例如,对 1,2,3,4 可作运算:(1+2+3)×4=24[注意上述运算与 4×(2 +3+1)应视作相同方法的运算].现有数 3,4,-6,10,请运用上述规则,写出三 种运算式子,使其结果等于 24,并选一种写出计算步骤.
上面的解题过程有两处错误:第一处是第
步,错误的原因是
___________________________________________________________;

七年级上册数学学冀教版 第1章 有理数1.11 有理数的的混合运算【教学设计】

七年级上册数学学冀教版 第1章  有理数1.11  有理数的的混合运算【教学设计】
游戏活动
师生共同玩“24点游戏”,教师介绍游戏规则:从一副牌中去掉大、小王的扑克牌中任意抽取4张,根据牌上的数字进行混合运算。每张牌只能用一次,使得运算结果为24或-24,其中红色扑克牌代表负数,黑色扑克代表正数,J,Q,K分别代表11、12、13.比如现在抽到一张黑桃6,一张红桃2,一张梅花2,一张方块6,可通过6×(-2)+2×(-6)的方法把它们凑成-24.
附板书:
有理数的混合运算
(1)先算乘方,再算乘除,最后算加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、
中括号、大括号依次进行。
解法一、原式=
解法二、原式=
=-6+(-5)=-11
(1)
(2)
达到加深巩固与理解的目的。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1、有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标,在加减乘除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题,教师应告诉学生这几种运算可以分成三级:其中加减是第一级运算;乘除是第二级运算;乘方与开方是第三级运算。
有理数的混合运算
教学目标
1、能确定有理数加、减、乘、除、乘方混合运算的顺序;
2、会进行有理数的混合运算;
3、培养学生正确迅速的运算能力。
教学难点
运算顺序的确定和性质符号的处理
教学重点
有理数的混合运算法则的理解与实用
教学过程(师生活动)
设计理念
提出问题
小Байду номын сангаас讨论
教师提出问题:在2×(-3)3-4×(-3)+15这个式子中,存在着哪几种运算?

有理数的46个知识点总结

有理数的46个知识点总结

有理数的46个知识点总结一、有理数的概念。

1. 有理数的定义。

- 有理数是整数(正整数、0、负整数)和分数的统称。

例如,5是正整数属于有理数,-3是负整数属于有理数,(1)/(2)是分数属于有理数。

2. 有理数的分类。

- 按定义分类:有理数可分为整数和分数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数,如0.25(有限小数),0.3̇(无限循环小数)。

- 按正负性分类:有理数可分为正有理数、0、负有理数。

正有理数包括正整数和正分数,负有理数包括负整数和负分数。

3. 有理数与无理数的区别。

- 无理数是无限不循环小数,如π、√(2)等,而有理数是整数或分数。

有理数可以表示为两个整数之比,无理数则不能。

二、有理数的数轴表示。

4. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

原点表示0,原点右边表示正数,原点左边表示负数。

5. 有理数在数轴上的表示。

- 每一个有理数都可以用数轴上的一个点来表示。

例如,3在原点右边3个单位长度处, -2在原点左边2个单位长度处。

6. 数轴上点的移动规律。

- 向右移动为加,向左移动为减。

如点A表示2,向右移动3个单位长度后表示2 + 3=5;向左移动4个单位长度后表示2-4 = - 2。

三、相反数。

7. 相反数的定义。

- 绝对值相等,符号相反的两个数互为相反数。

例如,3和 - 3互为相反数,0的相反数是0。

8. 相反数的性质。

- 互为相反数的两个数相加为0,即a+(-a)=0。

如5+( - 5)=0。

- 在数轴上,互为相反数的两个数位于原点两侧,且到原点的距离相等。

四、绝对值。

9. 绝对值的定义。

- 一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,|3| = 3,| - 2|=2,|0| = 0。

10. 绝对值的性质。

- | a|≥slant0,即绝对值是非负的。

- 若| a|=| b|,则a = b或a=-b。

11有理数的混和运算教学设计

11有理数的混和运算教学设计

1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力。

2学情分析学生在小学已经学习了非负有理数的四则混合运算法则,运算顺序,掌握了运算律的使用方法,已经具备了计算的技能基础,在本章前十一节的学习过程中,也已具有了进行有理数加、减、乘、除、乘方各种运算的知识与技能基础。

在相关知识的学习过程中,学生已经历了实验、猜想、视察、比较、分析、综合、抽象概括等数学活动,积累了较为丰富的活动经验,在解决问题的同时体会到了学习数学的兴趣,在独立思考的基础上,体验到了合作交流的重要性,同时在语言表达,发表见解方面都有成功的感受,具备了学习本节课所需要的活动经验基础。

3重点难点教学重点:是有理数的混合运算;教学难点:是准确地掌握有理数的运算顺序和运算中的符号问题。

4教学过程4.1 第一学时教学活动活动1【导入】一、创设情境,导入新课师生活动:活动1:说一说请同学们回顾有理数的运算律如何叙述?如何用字母表示?活动2:想一想请同学们视察下列各题,包含了哪几种运算?设计说明:学生思考,并举手发言,学生的回答中.只要意思正确,就要加以肯定并鼓励,以保护学生的积极性,并展示规范语言:(先算乘法,再算加减;如果有括号,先算括号里的),从导入新课。

设计目的:通过“说一说”复习回顾有理数四则运算的法则和运算律,并通过练习为新课学习铺设台阶;通过“想一想”引出新课学习课题:有理数的混和运算,并为下一环节的进行提出问题。

活动2【活动】二、想一想,探索新知计算问题1:算式里含有哪几种运算?问题2:哪些运算是同一级运算?分别是几级运算?问题3:根据以上分析你能解答该题吗?你能通过视察、类比,从而概括出有理数混合运算法则吗?设计说明:对于问题1、问题2,要给学生一定的思考、讨论、交流的时间.鼓励学生积极参与和发展见解。

对于问题3,要让学生合作完成,并请一个小组派代表上台扮演并讲授,然后师生共同评价,对出现的问题做出适当处理。

七上:_第1章有理数_11_正数和负数_12__有理数_13_有理数的加减_14_AqHMKU

七上:_第1章有理数_11_正数和负数_12__有理数_13_有理数的加减_14_AqHMKU

七上:第1章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减1.4 有理数的乘除1.5 有理数的乘方第2章整式的加减2.1 整式2.2 整式的加减第3章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)----合并同类项与移项 3.3 解一元一次方程(二)----去括号与去分母 3.4 实际问题与一元一次方程第4章图形认识实步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习 ---设计制作长方体形状的包装纸盒七下:第5章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第6章平面直角坐标系6.1平面直角坐标系6.2 坐标方法的简单应用第7章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形的内角和7.4 课题学习----镶嵌第8章二元一次方程组8.1 二元一次方程组8.2 消元-----二元一次方程组的解法8.3 实际问题与二元一次方程组8.4 三元一次方程组解法举例第9章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第10章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习---从数据谈节水八上:第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第12章轴对称12.1 轴对称12.2 作轴对称图形(信息技术应用)12.3 等腰三角形第13章实数13.1 平方根13.2 立方根13.3 实数第14章一次函数14.1 变量与函数14.2 一次函数14.3 用函数的观点看方程(组)与不等式14.4 课题学习—选择方案第15章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八下:第16章分式16.1 分式16.2 分式的运算16.3 分式方程第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 平行四边形19.2 特殊的平行四边形19.4 课题学习—重心第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习---体质健康测试中的数据分析九上:第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减(海伦—秦九韶公式)第22章一元二次方程22.1 一元二次方程22.2 降次—解一元二次方程(黄金分割数)22.3 实际问题与一元二次方程(发现一元二次方程根系关系)第23章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习(图案的设计)第24章圆24.1 圆24.2 与圆有关的位置关系24.3 正多边形和圆24.2 弧长和扇形面积第25章概率初步25.1概率25.2 用例举法求概率25.3 利用频率估计概率25.4 课题学习(键盘上字母的排列规律九下:第26章二次函数26.1 二次函数26.2 用函数的观点看一元二次方程26.3 实际问题与二次函数第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第28章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第29章投影与视图29.2 三视图29.3 课题学习(制作立体模型)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、有理数的________________________________________________________________________
____________________________________________________________________________
3、计算:
(1)(-81)÷9÷(-16);
(2) 3×(-2.5)×(-4)+5×(-6)×(-3)×2;
(3){0.85-[12+4×(3-10)]}÷5;(4)22+(-2)3×5-(-0.28)÷(-2)×2
(5)[(-3)×3-(-5)×3]÷[(-3)-(-5)]
备注:
板书设计
有理数复习课
⑨如果-a>a,则a是_____;
10如果x2=81,那么x=____
(二)、练习设计
1、写出下列各数的相反数和倒数
原数5 -6 1 05 -1
相反数
倒数
2、计算:
(1)5÷0.1;(2)5÷0.001;(3)5÷(-0.01);
(4)0.2÷0.1;(5)0.002÷0.001;(6)(-0.03)÷0.01
1、阅读教材中的“全章小结”,给关键性词语打上横线。
2、利用数轴讲有理数有关概念
本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数的范围在不断扩大。从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了实际意义,原点所表示的0也不再是最小的数了,数轴上的点所表示的数从左向右越来越大,A点所表示的数小于B点所表示的数,而D点所表示的数在四个数中最大我们用两个大写字母表示这两点间的距离,则AO>BO>CO,这个距离就是我们说的绝对值由AO>BO>CO可知,负数的绝对值越大其数值反而越小。
课 题
1.11有理数复习课
共课时
第课时
教 学
目 标
1、复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;
2、培养学生综合运用知识解决问题的能力;
3、渗透数形结合的思想
重 点
有理数概念和有理数运算
难 点
负数和有理数法则的理解
备课人
肖习艳
授课人
肖习艳
教具准备
施教时间
教学过程:
(一)、讲授新课
3、课堂练习
(1)填空:
①两个互为相反数的数的和是_____;
②两个互为相反数的数的商是_____;(0除外)
③____的绝对值与它本身互为相反数;
④____的平方与它的立方互为相反数;
⑤____与它绝对值的差为0;
⑥____的倒数与它的平方相等;
⑦____的倒数等于它本身;
⑧____的平方是4,_____的绝对值是4;
2、有理数运算
(1)+17+20;(2)-13+(-21);(3)-15-19;
(4)-31-(-16);(5)-11×12;(6)(-27)+(-13);
(7)-64÷16;(8)(-54)÷(-24);(9)(-8)+3;
(10)-(-5)+2;(11)-(-1)×100;(12)-2×32;
(13)-(2×3)2;(14)(-2)×3+32
由上图中还可以知道CO=DO,即C,D两点到原点距离相等,即C、D所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数。从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数。利用数轴,我们可以很方便地解决许多题目
例1:求出大于-5而小于5的所有整数;
解:(1)大于-5而小于5的所有整数,在数轴上表示±5之间的整数点,如图,显然有±4,±3,±2,±1,0
____________________________________________________________________________
相关文档
最新文档