LED结温知识讲解
LED结温热阻计算方法详解

LED结温热阻计算方法详解.Ta: 环境温度Rsa:铝基散热装置的热阻、散热器与环境间的热阻Ts: 散热装置的温度. Rms:铝基板到铝散热装置的热阻Tm: 铝基板的温度. Rcm:引脚到铝基板的热阻Tc: 引脚的温度. Rjc:PN结到引脚的热阻、结壳间的热阻Rja:PN结点到环境的热阻 Tj:晶体管的结温、芯片PN结最大能承受之温度( 100-130℃)P表示功耗 Rcs表示晶体管外壳与散热器间的热阻,L50: LED光源亮度降至50%的寿命L70: LED光源亮度降至70%的寿命结温计算的过程:1.热阻与温度、功耗之间的关系为: Ta=Tj-*P(Rjc+Rcs+Rsa)=Tj-P*Rja,2.当功率晶体管的散热片足够大而且接触足够良好时,壳温Tc=Ta晶体管外壳与环境间的热阻Rca=Rcs+Rsa=0。
此时Ta=Tj-*P(Rjc+Rcs+Rsa)演化成公式Ta=Tc=Tj-P*Rjc。
厂家规格书一般会给出,最大允许功耗Pcm、Rjc及(或) Rja等参数。
一般Pcm 是指在Tc=25℃或Ta=25℃时的最大允许功耗。
当使用温度大于25℃时,会有一个降额指标。
3.以ON公司的为例三级管2N5551举个实例:1)2N5551规格书中给出壳温Tc=25℃时的最大允许功耗是1.5W,Rjc是83.3度/W。
2)代入公式Tc=Tj- P*Rjc有:25=Tj-1.5*83.3可以从中推出最大允许结温Tj为150度。
一般芯片最大允许结温是确定的。
所以,2N5551的允许壳温与允许功耗之间的关系为:Tc=150-P*83.3。
3)比如,假设管子的功耗为1W,那么,允许的壳温Tc=150-1*83.3=66.7度。
4)注意,此管子Tc =25℃时的最大允许功耗是1.5W,如果壳温高于25℃,功率就要降额使用。
规格书中给出的降额为12mW/度(0.012W/度)。
5)我们可以用公式来验证这个结论。
假设壳温为Tc,那么,功率降额为0.012*(Tc-25)。
led的灯珠的结温

LED的灯珠的结温1. 介绍LED灯珠LED(Light Emitting Diode)是一种半导体器件,可以将电能转化为光能。
它具有高效、节能、寿命长等特点,因此被广泛应用于照明、显示和通信等领域。
在LED中,灯珠是最基本的发光单元。
2. 灯珠的结温概念灯珠的结温是指LED芯片内部的温度,也称为芯片结温或Tj。
它是衡量LED工作状态和性能稳定性的重要指标。
3. 影响灯珠结温的因素3.1 光通量光通量是指单位时间内从光源发出的光功率,单位为流明(lm)。
当光通量较大时,意味着LED芯片需要消耗更多的电能来产生更多的光,从而导致芯片温度上升。
3.2 散热设计良好的散热设计可以有效降低LED芯片的结温。
散热器、散热胶和散热风扇等散热装置可以帮助将芯片产生的热量迅速散发到周围环境中。
3.3 工作电流LED芯片的工作电流也会对结温产生影响。
较大的工作电流会导致芯片发热量增加,进而使得结温升高。
3.4 环境温度环境温度是指LED灯珠所处的周围环境温度。
较高的环境温度会导致LED芯片难以散热,从而使得结温升高。
4. 结温对LED性能的影响4.1 光衰当LED芯片的结温升高时,其光衰速率也会加快。
光衰是指LED光通量随时间逐渐减小的现象。
过高的结温会缩短LED灯珠的使用寿命。
4.2 光效光效是指单位功率下所发出的光通量。
当LED芯片工作在较低结温下时,其光效较高;而当结温升高时,光效则下降。
4.3 可靠性结温过高还会对LED芯片的可靠性产生负面影响。
过高的结温可能导致元器件老化、损坏或失效,从而降低LED灯珠的可靠性。
5. 结温的测试与控制为了确保LED灯珠的正常工作和稳定性能,需要对其结温进行测试和控制。
5.1 测试方法常见的结温测试方法包括接触式测量和非接触式测量。
接触式测量通常使用热电偶或红外测温仪,直接接触或瞄准LED芯片进行测量。
非接触式测量则利用红外热像仪等设备,通过检测LED芯片发出的红外辐射来估算结温。
关于 LED冷光源 热阻 结温三个问题

关于 LED冷光源热阻结温三个问题
一、LED是冷光源吗?
LED是英文Light Emitting Diode(发光二极体)缩写,是一种新型的用微弱的电能就能发光的高效固体光源,属于半导体。
LED最重要的组成部分是半导体晶体,如果有电流通过,晶体就会发光。
冷光源的特点是把其他的能量几乎全部转化为可见光了,其他波长的光很少,关于这个问题,我们要从以下几点考虑:
1、LED的发光原理是电子与空穴经过复合直接发出光子,过程中不需要热量。
LED可以称为冷光源。
2、LED的发光需要电流驱动。
输入LED的电能中,只有约15%有效复合转化为光,大部分(约85%)因无效复合而转化为热。
3、LED
发光过程中会产生热量,LED并非不会发热的冷光源。
二、降低LED热阻的途径有哪些?
1.降低芯片的热阻
2.最佳化热通道(1)通道结构 *长度(L)越短越好; *面积(S)越大越好; *环节越少越好; *消除通道上的热传导瓶颈。
(2)通道材料的导热係数λ越大越好;
(3)改良封装工艺,令通道环节间的介面接触更紧密可靠。
3.强化电通道的导/散热功能
4.选用导/散热性能更高的出光通道材料
三、降低LED结温的途径有哪些?
1.减少LED本身的热阻;
2.良好的二次散热机构;
3.减少LED与二次散热机构安装介面之间的热阻;
4.控制额定输入功率;
5.降低环境温度。
LED结温测算方法

LED结温测算⽅法⽬录第⼀章电压法测量结温第⼀节电压法测算结温的理论依据第⼆节K系数的测量1. 测量K系数的原理2. 关于K系数的说明3. 测试电流⼤⼩对K系数的影响4. K系数测量⽅法5. 数据处理6. 关于器件⼚商提供K值的建议7. K系数测量误差问题第三节利⽤K系数测算结温第⼆章热阻法测算结温第⼀节热阻法测算结温的基本原理第⼆节热阻法测结温的问题1. 为什么要⽤热阻法测结温2. 热阻参考点的选择3. 器件传热状况的影响4. 温度的影响5. 热阻法测结温参考点的正确选择第三章其它测结温⽅法简介前⾔关于 PN 结温度的测量,以往在半导体器件应⽤端测算结温的⼤多是采⽤热阻法,但这种⽅法对LED 器件是有局限性的,并且以往很多情况下被错误地应⽤。
应⽤热阻法的错误之处,以及其局限性,本⼈已在⽂献【1】中有详细阐述。
本⼈认为应该摒弃热阻法。
现在出现了不少新的测结温的⽅法,但其中⼀些⽅法也许并不能很好地反映结温。
⽐如红外成像法,理论上讲这只是测量器件表⾯或芯⽚表⾯的温度,不可能测量到实际 PN 结处的温度。
光谱法则只是个别专业测试机构能够进⾏,仪器昂贵,不适于器件使⽤者⽇常⼯作。
实际上,⽆论从专业测量,还是业余测量,最简便易⾏、最准确的、最基础的,还是电压法测算结温。
热阻法其实是在电压法基础上衍⽣⽽来的。
由于现在测量显⽰精度达 1mV 的仪表很便宜,器件使⽤者完全没有必要采⽤热阻法来测算结温。
本⽂主要是介绍电压法测算结温。
也介绍了热阻法测算结温,并提出热阻法存在的问题。
最后简单介绍了⼀些其它测结温的⽅法。
本⽂介绍的电压法测算结温的⽅法,是从⼀般⼯程应⽤的⾓度来讲。
主要是为⼀般的器件⼚商和器件使⽤者提供⾃⼰测试的⽅法。
因此所述的⽅法中,使⽤的⼀些仪器不能与专业的仪器设备⽐较,但精度和准确性不⽤担⼼。
这⽅⾯只要你懂得了物理原理就明⽩了。
关键还是看具体的操作者对测试机构的设计和仪表的选择,以及操作中的精⼼程度。
大功率LED结温方法

大功率LED 结温方法GaN 基白光LED 结温测试方法1. 正向电压法(forward voltage method)原理:初始电压与初始结温符合很强的线性关系KV V T T t j 00-+= 其中T0是作为参考的环境温度,V0是在T0下的初始电压;Tj 和Vt 分别是稳定时的结温和正向电压。
系数K 可以通过测量两组不同的参考温度和电压得到K=(V1-V0) /(T1-T0),也可以通过测量多组参考温度和电压作线性拟合得到。
K 值测量测量时将LED 放置在控温烤箱中,施加小电流(10mA ),分别在不同的烤箱温度下(Ta1,Ta2),每个温度阶段恒温30min (样品为1WLED 加散热片,如果未加散热片可另外考虑),使得结温与环境温度一致,测试过程中保持电流恒定。
测量LED 的正向电压(Vf1,Vf2),这时可近似认为;K=(V1-V0) /(Ta2-Ta1)Rth 为热阻Rth=(Tj-Tb )/PTb 为测试得到的基板底部的温度,P 为L E D 的耗散功率,Tb 用热电偶实时测量LED 基板底部的温度。
2. 管脚法(Pin method)原理:管脚温度法是利用LED 器件的热输运性质,通过测量管脚温度和芯片耗散的热功率,以及热阻系数来确定结温p j j p j R P T T -+=*其中Tp 是管脚温度,Tj 是结温;Pj 是LED 芯片耗散的热功率;R Θj-p 是从结到管脚的热阻系数,可以由厂家给出,或者由实验确定,本实验中结合电压法测量来确定热阻系数文献中提到热阻系数由电压法测得,而电压法又会存在误差,所以此方法误差会较大一些。
3. 蓝白法(non-contactmethod for determining junction temperatur ) 原理:利用白光LED 的发光光谱分布(SPD)来测量结温,最大的优点是不需要破坏器件的整体性,是一种非接触的结温测量方法。
蓝白比R 与结温都有较好的线性关系,可通过测量光谱算得R 值,然后用下面的换 算公式得到结温:rj K R R T T 00-+= 其中T0为参考结温,Tj 是要测量的结温;R0和R 分别是结温为T0和Tj 时的蓝白比;Kr 是比例系数,可以通过测量两组不同的参考结温和蓝白比得到Kr=(R0-R1) /(T0-T1),也可以通过测量多组已知结温情况下的蓝白比作线性拟合。
什么是LED 的结温

什么是LED 的结温LED 的基本结构是一个半导体的P—N 结。
实验指出,当电流流过LED 元件时,P —N 结的温度将上升,严格意义上说,就把P—N 结区的温度定义为LED 的结温。
通常由于元件芯片均具有很小的尺寸,因此我们也可把LED 芯片的温度视之为结温。
现在世界上知名的LED 光源品牌CREE、LUMILED(流明)、CIZITEN(丰田合成)、NICHIA(日亚)、ORSAM、首尔半导体。
光效:单位每瓦流明 Lm/w,说明电光源将电能转化为光的能力,以发出的光通量除以耗电量来表示真空普通灯泡的光效约为 7-8LM/W、充气普通灯泡的光效约为10-13 LM/W高色温卤钨灯的光效约为 26-28 LM/W、日光色荧光灯的光效约为 40-65 LM/W 三基色荧光灯的光效约为 65-80 LM/W、荧光高压汞灯的光效约为 40-60 LM/W 超高压氙灯的光效约为 30-35 LM/W、高压钠灯的光效约为 90-120 LM/W金属卤化物灯的光效约为 70-100 LM/W理论计算表明,1W能量如果全部转变为视见函数最高的555NM 波长的光时,光效可达680LM/WLED 封装生产工艺流程1.芯片检验外观检验:材料表面是否有机械损伤及麻点麻坑(lockhill)芯片尺寸及电极大小是否符合工艺要求电极图案是否完整。
2.扩晶由于LED 芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。
我们采用扩片机对黏结芯片的膜进行扩张,是LED 芯片的间距拉伸到约0.6mm.也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。
3.点固晶胶在LED 支架的相应位置点上银胶或绝缘胶.(对于GaAs、SiC 导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。
对于蓝宝石绝缘衬底的蓝光、绿光LED 芯片,采用绝缘胶来固定芯片),评估一款银胶的好坏主要有两点:一、粘稠度(一般在3000-4000cps)二、热量传导率(目前我司采用的是美国银胶EPO-TEK 公司生产导热系数为29W/mk)三、固化条件工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求.由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的解冻、搅拌、使用时间都是工艺上必须注意的事项.4.备固晶胶和点胶相反,备胶是用备胶机先把银胶涂在LED 背面电极上,然后把背部带银胶的LED 安装在LED 支架上.备胶的效率远高于点胶,但不是所有产品均适用备胶工艺(一般应用于做数码管生产上面)。
LED的结温

LED的结温计算LED的PN结结温主要影响LED光通量和寿命,本文用电压法对直插LED,食人鱼LED和大功率LED的结温和热阻进行了实验研究。
在测量LED结温的同时,研究它的光谱变化,色光LED峰值波长的偏移与其结温存在线性关系,白光LED的总能量和蓝光能量比率(W/B)的变化与结温也存在线性的关系。
LED存在发热现象,随着LED的工作时间和工作电流的增加,其发光强度和光通量会下降,寿命降低,对白光还会导致激发效率的下降,这主要是由于LED结温升高导致的。
对于白光LED,随着结温的增加,LED发出黄光和蓝光的强度以不同的速率下降,白光LED的总能量和蓝光能量比率(W/B)与结温存在关系。
首先对LED的结温进行研究,由此可得到LED的热阻。
然后在测量结温的同时,测量LED光谱变化,可以得出LED的PN结结温与色光LED峰值波长或白光LED的白色/蓝色能量比(W/B)之间存在一定的关系。
因此可以采用非接触式方法来进行结温的测量。
测量原理LED的结温是影响发光二极管各项性能指标的一个重要因素,测量LED结温的方法可用通过测量在不同环境温度下LED的正向电压的大小来得到。
实验原理如图1所示,被测LED置于积分球内,积分球放在恒温箱的中间,积分球内的光经石英光纤导入SSP3112快速光谱分析仪,可以快速测取LED的峰值波长或W/B比率。
将热电偶与LED管脚紧密接触,用测温仪读取不同加热电流和不同环境温度下的管脚温度。
恒温箱的温度范围为0℃-150℃,精度 1℃。
PC机通过高速开关控制对LED的加热电流(IF)和参考电流(IFR),并测量IF和IFR下的VF和VFR。
热是从温度高处向温度低处散热。
大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜层→印制板→环境空气。
若LED的结温为T J,环境空气的温度为T A,散热垫底部的温度为T c(T J>T c>T A。
在热的传导过程中,各种材料的导热性能不同,即有不同的热阻。
LED结温的相关知识

LED结温的相关知识1、什么是LED的结温?LED的基本结构是一个半导体的P-N结。
实验指出,当电流流过LED 元件时,P-N结的温度将上升,严格意义上说,就把P-N结区的温度定义为LED的结温。
通常由于元件芯片均具有很小的尺寸,因此我们也可把LED芯片的温度视之为结温。
发光二极管(LED)由于其亮度高、功耗低、寿命长、可靠性高、易驱动、节能、环保等特点,已被广泛应用于交通、广告和仪器仪表的显示中,现已在特殊照明中获得应用[1][2],并将成为普通照明中的主要光源[3].目前世界上生产和使用LED呈现急速上升的趋势,但是LED存在发热现象,随着LED的工作时间和工作电流的增加,其发光强度和光通量会下降,寿命降低,对白光还会导致激发效率的下降[4],这主要是由于LED结温升高导致的。
2002年Hongetal.[5]研究结果表明,AlGaInP红色LEDs的峰值波长的偏移与结温的变化存在线性关系。
对于白光LED,随着结温的增加,LED发出黄光和蓝光的强度以不同的速率下降,白光LED的总能量和蓝光能量比率(W/B)与结温存在关系。
2、产生LED结温的原因有哪些?在LED工作时,可存在以下五种情况促使结温不同程度的上升:a、元件不良的电极结构,视窗层衬底或结区的材料以及导电银胶等均存在一定的电阻值,这些电阻相互垒加,构成LED元件的串联电阻。
当电流流过P-N结时,同时也会流过这些电阻,从而产生焦耳热,引致芯片温度或结温的升高。
b、由于P-N结不可能极端完美,元件的注人效率不会达到100%,也即是说,在LED工作时除P区向N区注入电荷(空穴)外,N区也会向P区注人电荷(电子),一般情况下,后一类的电荷注人不会产生光电效应,而以发热的形式消耗掉了。
即使有用的那部分注入电荷,也不会全部变成光,有一部分与结区的杂质或缺陷相结合,最终也会变成热。
c、实践证明,出光效率的限制是导致LED结温升高的主要原因。
目前,先进的材料生长与元件制造工艺已能使LED极大多数输入电能转换成光辐射能,然而由于LED芯片材料与周围介质相比,具有大得多的折射係数,致使芯片内部产生的极大部分光子(>90%)无法顺利地溢出介面,而在芯片与介质介面产生全反射,返回芯片内部并通过多次内部反射最终被芯片材料或衬底吸收,并以晶格振动的形式变成热,促使结温升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED结温知识讲解
1、什么是LED的结温?
LED的基本结构是一个半导体的P-N结。
实验指出,当电流流过LED元件时,P-N结的温度将上升,严格意义上说,就把P-N结区的温度定义为LED的结温。
通常由于元件芯片均具有很小的尺寸,因此我们也可把LED芯片的温度视之为结温。
发光二极管(LED)由于其亮度高、功耗低、寿命长、可靠性高、易驱动、节能、环保等特点,已被广泛应用于交通、广告和仪器仪表的显示中,现已在特殊照明中获得应用[1][2],并将成为普通照明中的主要光源[3].目前世界上生产和使用LED呈现急速上升的趋势,但是LED存在发热现象,随着LED的工作时间和工作电流的增加,其发光强度和光通量会下降,寿命降低,对白光还会导致激发效率的下降[4],这主要是由于LED结温升高导致的。
2002年Hongetal.[5]研究结果表明,AlGaInP红色LEDs的峰值波长的偏移与结温的变化存在线性关系。
对于白光LED,随着结温的增加,LED发出黄光和蓝光的强度以不同的速率下降,白光LED的总能量和蓝光能量比率(W/B)与结温存在关系。
2、产生LED结温的原因有哪些?
在LED工作时,可存在以下五种情况促使结温不同程度的上升:
a、元件不良的电极结构,视窗层衬底或结区的材料以及导电银胶等均存在一定的电阻值,这些电阻相互垒加,构成LED元件的串联电阻。
当电流流过P-N结时,同时也会流过这些电阻,从而产生焦耳热,引致芯片温度或结温的升高。
b、由于P-N结不可能极端完美,元件的注人效率不会达到100%,也即是说,在LED工作时除P区向N 区注入电荷(空穴)外,N区也会向P区注人电荷(电子),一般情况下,后一类的电荷注人不会产生光电效应,而以发热的形式消耗掉了。
即使有用的那部分注入电荷,也不会全部变成光,有一部分与结区的杂质或缺陷相结合,最终也会变成热。
c、实践证明,出光效率的限制是导致LED结温升高的主要原因。
目前,先进的材料生长与元件制造工艺已能使LED极大多数输入电能转换成光辐射能,然而由于LED芯片材料与周围介质相比,具有大得多的折射係数,致使芯片内部产生的极大部分光子(>90%)无法顺利地溢出介面,而在芯片与介质介面产生全反射,返回芯片内部并通过多次内部反射最终被芯片材料或衬底吸收,并以晶格振动的形式变成热,促使结温升高。
d、显然,LED元件的热散失能力是决定结温高低的又一个关键条件。
散热能力强时,结温下降,反之,散热能力差时结温将上升。
由于环氧胶是低热导材料,因此P-N结处产生的热量很难通过透明环氧向上散发到环境中去,大部分热量通过衬底、银浆、管壳、环氧粘接层,PCB与热沉向下发散。
显然,相关材料的导热能力将直接影响元件的热散失效率。
一个普通型的LED,从P-N结区到环境温度的总热阻在300到600℃/w之间,对于一个具有良好结构的功率型LED元件,其总热阻约为15到30℃/w.巨大的热阻差异表明普通型LED元件只能在很小的输入功率条件下,才能正常地工作,而功率型元件的耗散功率可大到瓦级甚至更高。
3、降低LED结温的途径有哪些?
a、减少LED本身的热阻;
b、良好的二次散热机构;
c、减少LED与二次散热机构安装介面之间的热阻;
d、控制额定输入功率;
e、降低环境温度LED的输入功率是元件热效应的唯一来源,能量的一部分变成
了辐射光能,其餘部分最终均变成了热,从而抬升了元件的温度。
显然,减小LED温升效应的主要方法,一是设法提高元件的电光转换效率(又称外量子效率),使尽可能多的输入功率转变成光能,另一个重要的途径是设法提高元件的热散失能力,使结温产生的热,通过各种途径散发到周围环境中去。
发表评论加入收藏告诉好友打印本页关闭窗口返回顶部
∙(2009-12-1)· LED节能灯的基本概述及其特性
∙(2009-10-29)· LED知识概述
∙(2009-10-28)· LED发光二极管是按什么分类?
∙(2009-10-28)· LED照明灯的基本概述及其特性
∙(2009-10-10)·三路输出LED驱动器可驱动共阳极LED串
∙(2009-8-22)· LED结温的相关知识
∙(2009-7-13)· led灯电路图:高亮度白光led灯电路图,单片机控制LED灯电路图,串口控制的LED 灯电路图
∙(2009-6-15)·研究发现:俄歇复合是LED效率下降的祸首
∙(2009-5-23)·白光LED的特性参数,九点衡量LED优劣的特性参数
∙(2009-5-23)·选择和设计LED驱动电源应该考虑的问题。